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Version Abrégée

Ce travail est consacré à l’étude des propriétés d’analyticité des potentiels ther-
modynamiques (énergie libre, pression) pour des systèmes classiques réticulaires à
basse température. L’objet central de notre analyse, dans ce cadre, est de montrer
rigoureusement l’absence de prolongement analytique aux points de transition de
phase du premier ordre.

Notre premier résultat s’applique à la classe générale de modèles à deux phases
considérée dans la Théorie de Pirogov-Sinai. L’analyse révèle que la condition
de Peierls, hypothèse de base de cette théorie, suffit à montrer l’absence de pro-
longement analytique de la pression au point de transition.

Dans une deuxième partie, on étudie un cas particulier de potentiel à deux corps,
de la forme γdJ(γx), où γ > 0 est un petit paramètre et J une fonction à support
borné (dans la limite γ ց 0, ce potentiel permet de justifier rigoureusement la
“loi des aires” de la Théorie de van der Waals-Maxwell). Pour toutes les valeurs
strictement positives (petites) du paramètre γ, on montre que l’énergie libre n’a
pas de prolongement analytique aux points de transition.

Ces résultats confirment d’anciennes conjectures affirmant que la nature finie de
la portée de l’interaction est responsable de la présence de singularités dans les
potentiels thermodynamiques.
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Foreword

This work is devoted to the study of the analyticity properties of thermodynamic
potentials (free energy, pressure) for classical lattice systems at low temperature.
The central topic of our analysis, in this framework, is to show rigorously the
absence of analytic continuation at points of first order phase transition.

Our first result applies to the general class of two phase models considered in the
Theory of Pirogov-Sinai. The analysis reveals that the Peirls condition, which is
the basic hypothesis of the theory, suffices to show the absence of analytic con-
tinuation of the pressure at the transition point.

In a second part, we study a particular two body potential, of the form γdJ(γx),
where γ > 0 is a small parameter and J a function with bounded support (in the
limit γ ց 0, this potential gives a rigorous justification of the “equal area rule”
of the van der Waals-Maxwell Theory). For all small strictly positive values of
the parameter γ, we show that the free energy has no analytic continuation at
the transition points.

These results confirm early conjectures stating that the finiteness of the range of
interaction is responsible for the presence of singularities in the thermodynamic
potentials.
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proches, à qui j’aimerais faire part de ma plus tendre affection.
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Chapter 1

Introduction

This thesis is devoted to the study of a particular aspect of rigorous statistical
mechanics, namely the problem of analytic continuation at first order phase tran-
sition. Until the work of S.N. Isakov on the Ising Model, and since the early
theories of the condensation phenomenon initiated by van der Waals and Mayer,
this had remained an unresolved problem in the field of mathematical physics.
Our results are a continuation of those of Isakov, and aim at showing that ab-
sence of analytic continuation is generic and valid for any lattice system with
finite range interactions.

Since the problem of analytic continuation is related, above all, to the existence of
transition points, we devote Section 1.1 of this introduction to a brief exposition
of the existing theories of the condensation phenomenon. At each step of this
brief review, we will emphasise the point of view which will be ours throughout
this thesis: the analyticity properties of thermodynamic potentials. These histor-
ical references are, necessarily, non-technical and non-exhaustive; our choice has
been to mention only a few major developments, which are essentially the Theory
of van der Waals (1873), followed, respectively, by the Theories of Mayer (1937),
Yang-Lee (1952), and Pirogov-Sinai (1975). Kac potentials are also a method for
studying phase transitions and are one of the main subjects of interest of this
thesis.

In Section 1.2 we consider finer analyticity properties of thermodynamic poten-
tials at first order phase transition and describe the few existing rigorous results
concerning non-analyticity. We expose briefly our results in Section 1.2.4. The
rigorous description of lattice models, as well as a more precise formulation of
our results, will be given in Chapters 2 and 3, and in Appendix A.

1



2 CHAPTER 1. INTRODUCTION

1.1 On the Theory of Condensation

1.1.1 The Thesis of van der Waals

The theory leading to a first description of the phenomenon of condensation
started in 1873 with the thesis of J.D. van der Waals 1, who succeeded in es-
tablishing an equation of state that described significant deviations from the
equation of the perfect gas. His main contribution was to make two fundamental
hypotheses on the microscopic structure of matter, that can be formulated as
follows:

1. The microscopic constituents of the gas, called molecules, are extended in
space; their volume is denoted b > 0.

2. The interaction between the molecules consists of two parts: the first is re-
pulsive, and forbids any pair of molecules to overlap; the second is attractive,
long range, characterised by a constant a > 0 called specific attraction.

An important feature of the attractive part of the potential is that it does not de-
pend on the position of the molecules. Assuming the system to be homogeneous,
these two hypotheses led van der Waals to his famous equation of state, relating
the pressure p, the volume v, and the temperature T of the gas:

(
p+

a

v2

)(
v − b

)
= RT , (1.1)

where R = 8, 3145 J/mK is the universal gas constant. An isotherm is the family
of values taken by the pressure in function of the volume when the temperature
is fixed: p = p(v). As a simple analysis shows, the particularity of this equa-
tion lies in the fact that there exists a critical temperature Tc = Tc(a, b) such
that when T > Tc, p(v) is essentially a refinement of the former equation of the
perfect gas, but when T < Tc, then a new phenomenon occurs. Namely, there
exist pressures p0 such that the cubic equation p(v) = p0 has three distinct roots.
At one of these roots, the derivative of the pressure with respect to v is posi-
tive which is a contradiction with the principles of thermodynamics. For this
value of v, the system is said to be unstable. When T ր Tc, the three roots coa-
lesce into a single one, denoted vc. The point (vc, p(vc)) is called the critical point.

1van der Waals J.D., De Continuiteit va den Gas en Vloeistoftoestand, Leiden, (1873). Sev-
eral translations exist, among which the one of J.S. Rowlinson, On the Continuity of the Gaseous

and Liquid States, in Studies in Statistical Mechanics, vol. 14, J.L. Lebowitz ed., North-Holland,
(1988).
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Van der Waals compared his isotherms with those observed experimentally by An-
drews 2. For T > Tc, the isotherm (1.1) gave remarkable results. When T < Tc,
it described correctly the pure gas and liquid phases, but not their coexistence.
That is, by starting the system in a gas phase, with large volume, and by pro-
gressively decreasing v, one expects to reach a volume vg, called the condensation
point, at which the gas is in a state of saturated vapour, with pressure psat. At
v = vg, the vapour starts to condense, and there is creation of a macroscopic frac-
tion of liquid. When v further decreases, the pressure remains constant, p = psat,
and the quantity of liquid (resp. gas) phase increases (resp. decreases) linearly
with v, until a volume vl is reached, called the evaporation point, at which the
vapour is entirely transformed into liquid. For volumes v ≤ vl, the system is in
a pure liquid phase, and the pressure starts increasing again, much faster, since
liquids have a very low compressibility coefficient.

These experimental facts suggest that van der Waals’ isotherm p(v) should be
replaced, on a well chosen interval [vl, vg], by a flat coexistence plateau, removing
at the same time the unstable values of v.

At about the same time, Maxwell 3 gave a prescription, today called the Maxwell
Construction, for the height at which the plateau psat should be positioned. By
imposing coexistence and assuming liquid and vapour to be at thermal and me-
chanical equilibrium (i.e. same temperature and pressure), Maxwell was led to
define psat (and, in turn, vl and vg), in the following way:

psat · (vg − vl) =

∫ vg

vl

p(v)dv . (1.2)

This definition has a geometrical interpretation: psat must be chosen such that the
area of p(v) above and below psat are equal, therefore bearing the name “equal
area rule”. (See Figure 1.1 for an illustration of this construction.) The new
isotherm is denoted MC p(v). The derivative of MC p(v) has the correct sign for
all v, and has jumps at vl and vg. The interval (b, vl] is called the liquid branch;
[vg,+∞) is called the gas branch.

The Simple Analytic Structure

After the Maxwell Construction, a natural question raises, namely of the signif-
icance of p(v) when v ∈ [vl, vg]. If we consider the path v ց vg, along the gas

2Andrews T., Ann. Physik Ergänzbd. 5, 64, (1871). Andrews had made precise measure-
ments on carbonic acid, varying temperature and pressure, and had discovered the existence of
a critical point.

3Maxwell J.C., On the Dynamical Evidence of the Molecular Constitution of Bodies, Nature,
(1875). See also The Scientific Papers of James Clerk Maxwell, W.A.Niven ed., 418-438, (1890)
(reprinted by Dover, New York, (1965)).
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vl vg
v

p(v)
psat

Figure 1.1: The Maxwell Construction.

branch, then MC p(v) can be continued analytically at vg, and the unique analytic
continuation is nothing but the original isotherm provided by (1.1). Experimen-
tally, the state obtained by driving the gas along this path without it starting
to condensate is called a metastable state. Such a state is likely to have a very
long lifetime, but the slightest perturbation can abruptly drive the system away
from it, into the stable liquid state with same pressure. The values taken by the
analytic continuation of MC p(v) on a small interval (vg − ǫ, vg] were originally
interpreted as the pressure of what is called a super-saturated vapour. The same
can be done along the liquid branch, in which case a liquid can be prepared into
a state of under-cooled liquid. Such states can be created in the laboratory; their
existence had first been proposed by Thomson 4. The latter was commenting on
Andrews’ experiments, and in particular on the isotherms below the critical tem-
perature. Andrews had, essentially, drawn straight lines between the points that
represent the coexisting liquid and vapour, on such an isotherm, and Thomson
thought that

[..] this represented a practical breach of continuity, and there may ex-
ist, in the nature of things, a theoretical continuity across this breach
having some real or true significance. This theoretical continuity, from
the ordinary liquid state to the ordinary gaseous state, must be sup-
posed to be such as to have its various courses passing through condi-
tions of pressure, temperature, and volume in unstable equilibrium for
any fluid matter theoretically conceived as homogeneously distributed
while passing through the intermediate conditions.

The original isotherm of van der Waals p(v) can be thought as the “theoretical
continuity” mentioned by Thomson.

4Thomson J., Considerations on the Abrupt Change at Boiling or Condensing in Reference

to the Continuity of the Fluid State of Matter, Proc. Roy. Soc. 20, 1, (1871).
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During the later developments of statistical mechanics and for many decades,
analytic continuation was believed to be the natural way of defining the ther-
modynamic potentials of a metastable state. Nowadays, metastability is rather
considered as a dynamical problem of non-equilibrium statistical mechanics, but
the problem of analytic continuation remains of central importance in the under-
standing of the structure of thermodynamic potentials. In the van der Waals-
Maxwell Theory, the branches of MC p(v) have analytic continuation through the
transition points. Our concern is to know if this remarkable property, in general,
holds in the context of classical equilibrium statistical mechanics.

The Birth of Equilibrium Statistical Mechanics

The postulates and methods of statistical mechanics were given a definite form by
Boltzmann and Gibbs, at the end of the 19th century. In this theory, macroscopic
quantities (pressure, magnetisation, etc.) are related precisely to the underlying
interactions between the microscopic constituents (molecules), via the notion of
statistical ensemble: consider a gas of N indistinguishable particles living in a
vessel V . The positions of the particles are denoted x1, . . . , xN , xi ∈ V , and the
energy of interaction is denoted U(x1, . . . , xN). In the canonical ensemble, the
number of particles is fixed, and the free energy of the gas, at inverse temperature
β > 0, fV = fV (N, β), is defined by the identity

e−βV fV =
λN

N !

∫

V

dx1· · ·
∫

V

dxNe
−βU(x1,...,xN ) , (1.3)

where the constant λ comes from integration over the momenta of the particles.
The quantity

Qcan(V,N, β) :=
1

N !

∫

V

dx1· · ·
∫

V

dxNe
−βU(x1,...,xN ) (1.4)

is called the configurational partition function. In the grand canonical ensemble,
the number of particles can fluctuate, and the pressure pV = pV (µ, β) depends
on the chemical potential µ ∈ R. It is defined by the identity

eβV pV :=
∑

N≥0

eβµNQcan(V,N, β) ≡ Qgcan(V, µ, β) . (1.5)

All the thermodynamic properties of the system are expected to be contained in
the functions fV and pV . In the following section, we describe the work of the
pioneers who tried to understand condensation from these first principles.

1.1.2 The Treatment of Mayer, Kahn et al.

The problem was to know whether the free energy and pressure, as defined in
formulas (1.3) or (1.5), can consist of two branches separated by a coexistence
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plateau, as in Figure 1.1. It was stated explicitly only in the thirties 5 that
such sharp behaviour should occur only in the limit of a very large number of
particles. This limiting procedure, called the thermodynamic limit, was discussed
by Kahn 6:

From the mathematical standpoint, it is hard to imagine how from
(1.3) it can follow that fV (and therefore pV ) as a function of V con-
sists of three analytically different parts. It seems to us that this is
possible because we are only interested in a limit property of fV . The
problem has a physical sense only when N is very large. One may
expect that for a fixed specific volume v = V

N
the limit

f(v, β) = lim fV (N, β) (1.6)

for V → ∞, N → ∞, v = V
N

fixed, may exist. [. . . ] It is not surprising
that this function can consist of analytically different parts.

The limits f = limV→∞ fV and p = limV→∞ pV will be called respectively free
energy and pressure densities. Their existence and convexity would be shown
later by van Hove 7. As will be seen, the first attempts to describe condensation
from first principles were very imprecise in respect to the thermodynamic limit.
For this reason, they failed in describing the pure liquid phase, but nevertheless
succeeded in giving an argument for the occurence of condensation, which later
proved to be correct.

The Treatment of Mayer

The first attempt was made by Mayer 8, in the case where the particles interact
with a two body potential:

U(x1, . . . , xN ) =
∑

1≤i<j≤n
φ(xi, xj) . (1.7)

We will assume for simplicity that φ depends only on the distance between xi
and xj , and that φ has a finite range, i.e. that φ(xi, xj) = 0 when the particles

5See for instance Dresden M., Kramers Contributions to Statistical Mechanics, Physics To-
day, september (1988).

6Kahn B., On the Theory of the Equation of State, thesis, (1938). A re-edition can be found
in Studies in Statistical Mechanics, vol.3, J. de Boer G.E. Uhlenbeck eds., North-Holland,
(1965).

7van Hove L., Quelques Propriétés Générales de l’Intégrale de Configuration d’un Système

de Particules avec Interaction, Physica XV, 11-12, 951-961, (1949).
8Mayer J.E., The Statistical Mechanics of Condensing Systems, Journ. Chem. Phys. 5,

67-73, (1937).
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i and j are sufficiently far apart. Mayer used the same representation that had
been obtained by Ursell:

Qcan(V,N, β) =
∑

{m1,...,mN}∑
l lml=N

∏

l

(V bl(V ))ml

ml!
, (1.8)

where the sum is over all possible partitions of N molecules into families of
clusters: m1 clusters of one molecule, m2 clusters of 2 molecules, etc. The numbers
bl(V ) are called cluster integrals. The grand canonical pressure then has the
following form:

βpV (z) = χV (z) :=
∑

l≥1

bl(V )zl , (1.9)

where z = eβµ is the fugacity, and the pressure density equals

βp(z) = χ(z) := lim
V→∞

χV (z) . (1.10)

The cluster integrals can be positive or negative. When V is very large, they
become independent of V 9. Define:

b0l := lim
V→∞

bl(V ) . (1.12)

Mayer assumed that all the cluster integrals are positive, and neglected their de-
pendence on the volume, replacing each bl(V ), in Qcan(V,N, β), by its limiting
value b0l . Under these hypothesis, he was led to the following expression for the
pressure density:

βp0(z) = χ0(z) :=
∑

l≥1

b0l z
l . (1.13)

9Namely, consider the definition of bl(V ), which is

bl(V ) =
1

l!V

∑

G
′
⊂Gl

connected

∫

V

· · ·
∫

V

dx1 . . . dxl

∏

e∈G
′

e=(i,j)

(
e−βφ(xi,xj) − 1

)
, (1.11)

where the sum is over all simple non-oriented connected partial graphs G′ of the complete graph
with l vertices (denoted Gl). Assume x1 is fixed. Then, since φ has finite range and the graphs
G′ must be connected, the integration over x2, . . . , xl is essentially independent of x1, up to a
term of order ∂V

V
≃ V − 2

3 . The integration over x1 then gives V , which cancels with the factor
V appearing in the denominator. Clearly, this argument holds when l is small when compared
to V . Since l ranges from 1 to N , the approximation holds when N

V
is small, i.e. in the gas

phase.
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The assumption of Mayer is equivalent to exchanging the thermodynamic limit
with the sum over l ≥ 1:

lim
V→∞

∑

l≥1

bl(V )zl =
∑

l≥1

lim
V→∞

bl(V )zl . (1.14)

(We will see that this operation can be justified when |z| is small enough). To
obtain p0 as a function of the specific volume v, which is determined by v−1 =
ρ = ∂p0

∂µ
= βz ∂p

0

∂z
, we must find z = z(v), given implicitly by

v−1 =
∑

l≥1

lb0l z
l . (1.15)

After that, the pressure of Mayer has the form of an infinite sum:

βp0(v) =
1

v
+
a1

v2
+
a2

v3
+ . . . . (1.16)

The expression obtained by Mayer gave the corrections to the equation of state
of the perfect gas (for which ai = 0 for all i ≥ 1), and showed that, in general,
an equation of state has no reason for being given in a closed form, like van der
Waals had obtained. Since Mayer’s equations should be considered as valid in
the pure gas phase, it remains to see if condensation can be understood from the
infinite series (1.13) and (1.16).

Condensation

Let us assume that the series
∑
b0l z

l has a finite radius of convergence, denoted
as R. Then χ0(z) has at least one singularity on the boundary of the disc |z| ≤ R.
Since Mayer assumed that all the coefficients b0l were positive, the point z∗ := R
is a singularity 10. Mayer interpreted z∗ as the manifestation of condensation, and
the value v∗ for which z(v∗) = z∗ as the condensation point. He also sketched an
argument to justify the appearance of the coexistence plateau: for all values of
the volume v ∈ [0, v∗], the pressure remains constant (see Figure 1.2).

A few years later, Kahn and Uhlenbeck 11 were led to the same expression for the
pressure, but with a rigorous argument. Rather than assuming positivity of the
coefficients b0l , they gave a general result, valid under a set of natural assump-
tions on the function χ0(z), and obtained the same isotherm as depicted in Figure
1.2. Although they firmly believed that both phases can be described within the
formalism of Gibbs, they also were not successful in describing the pure liquid

10See Remmert R., The Theory of Complex Functions, Springer, (1991).
11Kahn B., Uhlenbeck G.E., On the Theory of Condensation, Physica 5, 399-416, (1938).
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v∗
v

p0(v)

Figure 1.2: A sketch of the isotherm obtained by Mayer et al. Notice the absence of
the evaporation point from the theory.

phase within the same equation. Similar computations led Born and Fuchs 12 to
the same results.

Naturally, the problems encountered by these authors in describing the liquid
phase can be ascribed to the simplifying hypothesis they made on the cluster
integrals bl; it seems very unlikely for the liquid phase to suddenly appear from
an equation of state which is valid under hypothesis that hold only in the gas
phase. Moreover, the confusion concerning the thermodynamic limit is evident:
the function Qcan(V,N, β) describes a finite system, but the cluster integrals are
approximated by their infinite-volume limit b0l . These remarks also raise the
question, more serious, of knowing if the singularity z∗ proposed by Mayer et al.
even determines the real condensation point. We will come back to this later.

1.1.3 The Theory of Yang and Lee

After the exact computation of Onsager 13, the major contribution to the theory
of Phase Transitions was the double paper of Yang and Lee 14. (The Peierls ar-
gument will be discussed in the following section.) Consider the grand canonical
partition function Qgcan(V, z, β) expressed as a function of the fugacity z ∈ C.
Yang and Lee studied the relationship between the zeroes of Qgcan(V, z, β) and
the analyticity properties of the pressure density p(z) = limV→∞ pV (z). The main
theorem of their first paper is a general result on the absence of phase transitions

12Born M., Fuchs K., The Statistical Mechanics of Condensating Systems, Proc. Royal Soc.
166, 391-414, (1938).

13Onsager L., Crystal Statistics I, A Two-Dimensional Model with an Order-Disorder Tran-

sition, Phys. Rev. 65, 117-149, (1944).
14Yang C.N., Lee T.D., Statistical Theory of Equations of State and Phase Transitions. I.

Theory of Condensation, Phys. Rev. 87, 3, 404-409, (1952). Lee T.D., Yang C.N., Statistical

Theory of Equations of State and Phase Transitions. II. Lattice Gas and Ising Model, Phys.
Rev. 87, 3, 410-419, (1952).
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in the thermodynamic limit:

Assume there exists a domain D ⊂ C such that Qgcan(V, z, β) 6= 0 for all z ∈ D,
for all V . Then p(z) exists and z 7→ p(z) is analytic in D. Moreover, the
thermodynamic limit and the derivatives with respect to log z commute in D:

lim
V→∞

∂k

∂(log z)k
pV (z) =

∂k

∂(log z)k
p(z) . (1.17)

This result allows to relate the occurence of condensation to the distribution of
zeros of the partition function. By definition, the roots of Qgcan(V, z, β) always lie
outside the positive real line. The previous theorem implies that if the pressure
p has, for example, a first order phase transition at a point z0 > 0, then zeros of
the grand canonical partition function must accumulate at z0 when V becomes
large. This clarifies the role played by the thermodynamic limit, and allows, a
priori, a description of the gas and liquid phases in the thermodynamic limit.

What the theory does not say is: 1) where the zeros accumulate (if they do),
and 2) whether the accumulation of zeros at some z0 > 0 does induce a phase
transition at z0. Indeed, it could happen that zeros accumulate while the pres-
sure remains analytic. A deep result partially answers the first question. It is the
content of the Unit Circle Theorem of the second paper:

For the Ising Model 15, z = eβh , D = {z ∈ C : |z| < 1} ∪ {z ∈ C : |z| > 1}.

That is, the Ising Model can have a phase transition only at h = 0. In their
second paper, Yang and Lee also established clearly the relationship existing
between the Ising Model and the discrete version of the gas, called lattice gas.
The Circle Theorem thus allows a precise localisation of the phase transition point
of the lattice gas. We will revert to the correspondence ferromagnet-lattice gas
in Chapter 2.

1.1.4 Peierls Argument and Pirogov-Sinai Theory

The first proof of the existence of a phase transition originated with the argu-
ment given by Peierls in 1936 16. In his study of the two dimensional Ising Model,
Peierls used a key ingredient that was absent in the works of Mayer, Kahn et al.:

15Ising E., Beitrag zur Theorie der Magnetismus, Zeits. für Physik 31, 253, (1925).
16Peierls R., On Ising’s Model of Ferromagnetism, Math. Proc. Cambridge Phil. Soc. 32,

477-481, (1936).



1.1. ON THE THEORY OF CONDENSATION 11

symmetry. The crucial remark made by Peierls is that in the Ising Model, re-
gions of opposite spin are separated by energy barriers, called contours. His idea
was then to describe the system in terms of contours rather than configurations,
and to show that at low temperature, the volume enclosed by the contours can’t
exceed a quarter of the total volume of the system. Since the system is invariant
under spin-flip, the volume enclosed can contain either + spins or − spins. That
is, two phases can be described under the same thermodynamic conditions: the
+ (resp. −) phase consists of a “sea” of + (resp. −) spins with sparse “islands”
of − (resp. +) spins. From the point of view of the lattice gas, this argument
provides the first rigorous construction of stable isotherms showing condensation
and evaporation 17.

A few decades later, Pirogov and Sinai 18 took advantage of the contour picture
proposed by Peierls and elaborated the first general theory for the study of first
order phase transitions, applicable to a broad class of lattice spin systems, with
multiple coexisting phases. The starting point of their theory is the consideration
of a hamiltonian H0 having q degenerated ground states ψ1, . . . , ψq. These ground
states need not be related by symmetry. The main hypothesis on H0 is that
it satisfies the Peierls condition; that is, regions of distinct ground states are
separated by energy barriers, the contours. The aim of the theory is to describe
the phase diagram of the perturbed hamiltonian

Hµ = H0 +

q−1∑

i=1

µiHi , (1.18)

where µ = (µ1, . . . , µq−1) ∈ R
q−1 and the family H1, . . . , Hq−1 splits the degener-

acy of H0. In the simple case q = 2, where two phases coexist, the main result is
the following:

Let p = p(µ), µ ∈ R, denote the pressure 19 of the model with hamiltonian Hµ. At
low temperature, there exists a transition point µ∗ = µ∗(β) = O(e−β) such that p

has a phase transition at µ∗. For µ ≥ µ∗, the phase 1 is stable, and for µ ≤ µ∗ the
phase 2 is stable. At µ∗ the two phases coexist. The phase q, q = 1, 2, describes
small stable deviations (the “islands”) from the ground state ψq (the “sea”).

17It is surprising to notice that the work of Peierls, which appeared before the theories of
Mayer, Kahn et al., was ignored, until refinements of the argument were given by Griffiths and
Dobrushin in the sixties. Even Yang and Lee did not mention it in their double paper of 1952.

18Pirogov S.A., Sinai Y.G., Phase Diagrams of Classical Lattice Systems, Teoreticheskaya
i Matematicheskaya Fizika 26, 1, 61-76, (1976). See also the book of Sinai, Theory of Phase

Transitions: Rigorous Results, Pergamon Press, (1982).
19In the literature, this function is usually called “free energy”. We keep the name “free

energy” for the thermodynamic potential that depends on the density. The letters f, p will be
used for spin systems, and f, p will be used for gases and liquids.
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µ

p1

µ∗

p2

Figure 1.3: The construction of the pressure for a two phase system, in the alternate
version of Zahradńık. The point where p1 and p2 coincide is the transition point µ∗.
µ > µ∗ corresponds to the pure phase 1, µ < µ∗ to the pure phase 2.

Two important features are: 1) the theory depends weakly on the details of the in-
teractions (anisotropies, multibody interactions, etc.), and 2) the different phases
are treated in an equivalent manner, even in the absence of symmetry. These two
points show that, conceptually, the Pirogov-Sinai Theory is an essential step for-
ward in the understanding of phase transitions, and represents much more than
just a “generalisation” of the Peierls argument, as can often be read.

A decade later, Zahradńık 20 proposed an alternate way of constructing the phase
diagram, using the notion of truncated models. These essentially consist of asso-
ciating each ground state ψq, q = 1, 2, with a truncated pressure pq obtained by
considering a model in which only stable deviations from the ground state ψq are
allowed. Then, the real pressure of the model is obtained by finding the maximal
truncated pressure (see Figure 1.3):

p = max{p1, p2} . (1.19)

The construction of Zahradńık was simplified and extended to complex interac-
tions by Borgs and Imbrie 21. In the complex case, the refinement of the previous
theorem is the following:

The pressure p = p(µ) is analytic on {µ < µ∗} and {µ > µ∗}.

An interesting contribution was the work of Borgs and Kotecký 22, who showed
that the truncated pressures could be made Ck in µ when β is large enough

20Zahradńık M., An Alternate Version of Pirogov-Sinai Theory, Commun. Math. Phys. 93,
559-581, (1984).

21Borgs C., Imbrie J.Z., A Unified Approach to Phase Diagrams in Field Theory and Statis-

tical Mechanics, Commun. Math. Phys. 123, 305-328, (1989).
22Borgs C., Kotecký R., A Rigorous Theory of Finite-Size Scaling at First-Order Phase Tran-

sitions, J. Stat. Phys. 61, 79-119, (1990).
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(depending on k). By (1.19), the functions p1, p2 thus provide Ck-continuations
of the pressure across µ∗ (see figure 1.3). Although these continuations can be
made as smooth as desired by taking β large enough, one of our main results
(see Theorem 1.2 of Section 1.2.4) will show that analytic continuation is never
possible.

Recently, Biskup et al. 23 showed that the smooth truncated pressures of Borgs
and Kotecký could be used to generalise the Circle Theorem of Yang and Lee to
the class of models treated by the Pirogov-Sinai Theory. Finally, the truncation
was used also by Lebowitz, Mazel, Presutti 24 in their recent proof of a phase
transition in the continuum.

1.1.5 Kac Potentials

After the contributions of Mayer et al., Peierls and Yang-Lee, it remained to be
understood how exactly the van der Waals-Maxwell Theory, in particular the
Maxwell Construction, could be justified from first principles.

On one hand, we must keep in mind the second assumption of van der Waals, i.e.
that the particles attracted each other with a weak infinite range potential, inde-
pendent of the distance between the molecules, proportional to the square of the
density ρ2 = v−2. This approximation produces the loop in the low temperature
isotherms, and is the reason for which the Maxwell Construction was necessary.
On the other hand, van Hove 25 showed that when the range of interaction is
finite (possibly very long) the free energy as defined in (1.6) is always convex.
That is, the pressure is always a decreasing function of the specific volume and
need not be complemented by a Maxwell Construction.

To interpolate between finite range and van der Waals-type interactions, Kac,
Uhlenbeck and Hemmer 26 studied a one-dimensional model in which the range
of the interaction is a parameter of the model. In the limit where the range of
interaction goes to infinity, their theory gave the first rigorous justification of
the Maxwell Construction. Their result was generalised to higher dimensions by
Lebowitz and Penrose 27, and can be described as follows. Let ϕ : Rd → R+ be

23Biskup M., Borgs C., Chayes J.T., Kleinwaks L.J., Kotecký R., Partition Function Zeroes

at First Order Phase Transition: A General Analysis, preprint, (2003).
24Lebowitz J.L., Mazel A., Presutti E., Liquid-Vapor Phase Transitions for Systems with

Finite-Range Interactions, J. Stat. Phys. 94, 5-6, 955-1025, (1999).
25van Hove L., Quelques Propriétés Générales de l’Intégrale de Configuration d’un Système

de Particules avec Interaction, Physica XV, 11-12, 951-961, (1949).
26Kac M., Uhlenbeck G.E., Hemmer P.C., On the van der Waals Theory of the Vapor-Liquid

Equilibrium, J. Math. Phys. 4, 2, 216-228, (1962).
27Lebowitz J.L., Penrose O., Rigorous Treatment of the van der Waals-Maxwell Theory of
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supported by the cube [−1,+1]d (d is the dimension of the system), so that

∫
ϕ(x)dx = α . (1.20)

Let 0 < γ < 1 be the scaling parameter, and define the Kac potential

Kγ(x, y) := γdϕ(γ(x− y)) . (1.21)

The potential considered by the the authors is of the form

φγ(x, y) = q(x, y) −Kγ(x, y) , (1.22)

where q(x, y) is a short range repulsive potential equal to +∞ if x− y is smaller
than the diameter of the particles, and zero if otherwise. When γ is small, Kγ

is weak, with range R = γ−1. One thus expects systems with Kac potentials to
have properties analogue to those predicted by the van der Waals Theory.

Lebowitz and Penrose considered the double limiting process which consists first
in taking the thermodynamic limit V → +∞, and then the limit γ ց 0. This
limiting procedure corresponds to 1 ≪ γ−1 ≪ V . Since, in this procedure, the
limit γ ց 0 is taken after the thermodynamic limit, the range of interaction of
the Kac potential can always be considered as very small when compared to the
size of the vessel V . The limit γ ց 0 is called the van der Waals Limit.

Let fγ = fγ(ρ) denote the free energy density of the model, obtained after the
thermodynamic limit V → ∞. According to the Theorem of van Hove, fγ is con-
vex in ρ for all γ > 0. Then, the van der Waals Limit gives a function limγց0 fγ
which is still convex. The main result is the following.

Let f̃ denote the free energy of the reference system, i.e. with potential q(x, y)
rather than φγ(x, y). In the van der Waals Limit, fγ(ρ) converges to the convex
envelope of −1

2
αρ2 + f̃(ρ) (see Figure 1.4).

Notice that taking the convex envelope is equivalent, in terms of the pressure, to
applying the Maxwell Construction.

The method used by Lebowitz and Penrose to show this result (refered to as the
Lebowitz-Penrose Theorem in future) was inspired by a coarse-graining procedure
invented by van Kampen 28: the volume occupied by the system is divided into
a large number of cells, each small compared with the range of the long range

the Liquid-Vapor Transition, J. Math. Phys. 7, 1, 98-113, (1966).
28van Kampen N.G., Condensation of a Classical Gas with Long-Range Attraction, Phys.

Rev. 135, A362-369, (1964).
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ρ

ρg ρl

Figure 1.4: The Lebowitz-Penrose Theorem: in the van der Waals Limit, the
free energy fγ converges to the convex envelope of −1

2αρ2 + f̃(ρ). The points
ρg, ρl are the points of condensation and evaporation.

attractive force, but large enough to contain many particles. The distribution
of the molecules throughout the cells is then determined by minimising the free
energy. In a pure phase (liquid or gas branch), the density is uniform, but in the
coexistence region the free energy is found to be minimised by non-homogeneous
distribution throughout the cells. This is the mechanism responsible for the ap-
pearance of the plateau in the free energy.

From the point of view of analyticity, this theory makes the same predictions as
the one of van der Waals-Maxwell. After the van der Waals Limit, thermody-
namic potentials are analytic in a pure phase, and can be continued analytically
at condensation/evaporation points.

We will come back to a detailed description of Kac potentials in Chapter 3.

1.2 Analytic Properties at Condensation

All the theories we described in the previous section agree that in a pure phase,
thermodynamic potentials are analytic. As to analyticity at transition points,
only the van der Waals-Maxwell Theory and Kac potentials in the van der Waals
Limit give precise information. As we saw, the problem of analytic continuation
at first order phase transition points was originally related to the existence of
metastable states. Another motivation for the study of analytic properties is the
following discussion. It originates with the problem of knowing if the theories
of Mayer and Yang-Lee describe the same condensation point. Consider the
expansion obtained by Mayer for the pressure:

χ0(z) =
∑

l≥1

b0l z
l . (1.23)
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Mayer actually discussed condensation without considering the problem of con-
vergence. The first proof of the convergence of the series (1.23) for sufficiently
small z was given by Groeneveld 29. We present here a stronger result that can
be found in the book of Ruelle 30:

Assume B := infx φ(0, x) > −∞, and

C(β) :=

∫
|e−βφ(0,x) − 1|dx <∞ . (1.24)

Then the radius of convergence of the series
∑
b0l z

l is at least e−2βB−1C(β)−1.
In the disc {|z| < e−2βB−1C(β)−1}, the pressure of the gas is given by the Mayer
expansion: βp(z) = χ(z) ≡ χ0(z).

That is, well inside the gas phase (small z), the pressure has a convergent Taylor
expansion, and the interchange (1.14) made by Mayer is justified. It is to be
remembered that Mayer assumed all the cluster integrals were positive. In fact,
Groeneveld showed that the coefficients b0l have alternating signs: (−1)l+1b0l ≥ 0.
This implies that χ0(z), if it has a radius of convergence R, is guaranteed to have
a singularity only at the point z = −R, which is non-physical. The singularity
must be determined by other means. Let us consider the analytic continuation
of χ0(z) along the positive real line, possibly beyond z = R, and denote this
analytic continuation by χ̃(z). Let us then assume that χ̃(z) has a singularity on
the positive real line, denoted zM > 0. What must be understood is whether the
physical phenomenon of condensation really occurs at zM . Indeed, the function
χ̃(z) might very well not “see” the real condensation point, situated somewhere
between the origin and the singularity zM .

On the other hand, we saw that the main result of Yang and Lee indicates that
condensation implies accumulation of zeros of the grand canonical partition func-
tion. Let zLY denote the smallest point of the positive real line at which zeros
accumulate. We thus have two possible a priori condensation points, zM and zLY .
Consequently, the following two questions arise:
Do the points zM and zLY coincide? Which of them describes condensation?
Since

∑
b0l z

l concides with the real pressure near z = 0, we necessarily have
zLY ≤ zM . It remains to be seen whether zLY < zM is possible. If so, and
if condensation occurs at zLY , then χ̃(z), obtained from the theory of Mayer,
provides the analytic continuation of the pressure across the condensation point.
The possibility of this scenario was suggested in the fifties by Katsura and Fu-

29Groeneveld J., Two Theorems on Classical Many-Particle Systems, Phys. Letters 3, 1,
50-51, (1962).

30 Ruelle D., Statistical Mechanics. Rigorous Results, World Scientific, (1969).
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jita 31, showing that the problem of analytic continuation at condensation is also
intimately related to the validation of the theory of Mayer. Indeed, if it can be
shown rigorously, for a simple model, that there is no analytic continuation at the
condensation point z∗, along z ր z∗, then necessarily z∗ = zLY = zM , which val-
idates Mayer’s determination of the condensation point. In case there is analytic
continuation at z∗, then Mayer’s theory describes only metastable continuation
up to some supersaturation limit.

This discussion shows that a detailed investigation of the analyticity properties
at condensation should be undertaken, with emphasis on the role played by the
physical phenomenon itself. Beyond the possibility of proving absence or pres-
ence of metastable states or justifying the Theory of Mayer, the study of analytic
properties is a way of understanding the global structure of thermodynamic po-
tentials; the question arises as to whether the different branches can be continued
analytically, or if the singularities at transition points are such that these con-
tinuations are forbidden. In the following two sections, we expose the first two
arguments that were given in view of answering this question.

1.2.1 Analytic Continuation in the Mean Field Model

In the mid-fifties, Temperley 32 and Katsura 33 considered the so-called Bragg-
Williams approximation of the lattice gas, in which exact computations can be
carried out. Today, this model is called the Curie-Weiss or mean field model:
all particles interact with each other, although very weakly, as in van der Waals
Theory. Temperley and Katsura observed a kink of the pressure at the value
z∗ = zLY , but the Mayer expansion showed a singularity at a point zM strictly
larger than z∗ (see Figure 1.5). Within this example, the series expansion of
Mayer thus fails in describing the correct condensation point, and provides the
analytic continuation of the isotherm across the condensation point - exactly like
in van der Waals Theory. It was conjectured by Katsura 34 that these properties
hold in general for simple models with finite range interactions, like the Ising
Model.

31Katsura S., Fujita H., Point of Condensation and the Volume Dependency of the Cluster

Integrals, Progr. Theor. Phys. 4, vol. 4, (1951). See also Ikeda K., On the Theory of

Condensation, Progr. Theor. Phys. 4, vol. 16, (1956) for a detailed discussion of this problem.
32Temperley H.N.V., The Mayer Theory of Condensation Tested Against a Simple Model of

the Imperfect Gas., Proc. Phys. Soc. A 67, 233-238, (1954).
33Katsura S., Phase Transition of Husimi-Temperley Model of Imperfect Gas, Progr. Theor.

Phys. 6, vol. 13, (1955).
34Katsura S., On the Theory of Condensation, Journ. Chem. Phys. 22, 1277, (1954). The

same conjecture appeared again almost ten years later in Katsura S., Singularities in First-

Order Phase Transitions, Adv. Phys. 12, 48, 391-420, (1963).
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p(z)

z
zMzLY

Figure 1.5: The isotherm obtained with the Bragg-Williams approximation of the
lattice gas, showing that the transition point zM of Mayer lies beyond the condensation
point z∗ = zLY .

1.2.2 Non-Analyticity and the Droplet Mechanism

In the sixties, Andreev 35, Fisher 36 and Langer 37 presented an argument saying
that for finite range interaction, there is absence of analytic continuation at the
transition point. They proposed an effective model which captured the main
features of the phenomenon of condensation, and characterised in a more precise
manner the nature of the singularity present in the pressure. We present this
argument in its simplest form, starting with the following heuristic description,
given by Fisher:

One may get a physical idea as to the “cause” of condensation, how-
ever, by considering a real gas or, for that matter, a lattice gas or Ising
Model, at low densities and temperature. Evidently, most configura-
tions of the system will consist of distributions of isolated molecules
well separated from one another. There will also be present, however,
clusters of two, three or more molecules bound together more-or-less
tightly by the attractive forces but isolated, for the most part, from
other clusters. Clusters of different sizes will be in mutual statistical
equilibrium, associating and dissociating, but even fairly large clusters
resembling “droplets” of the liquid phase will have some, generally
rather small, chance of occurring.

The simplest definition of the droplet model is the following. Consider the d-
dimensional simple lattice gas. Let C be a cluster or “droplet” of |C| = n
molecules, with a boundary of length |∂C| (see Figure 1.6). Let τ0 > 0 denote the
“surface tension” associated to the boundary of the droplet: the surface energy
of C is equal to τ0|∂C|. Since droplets must tend to minimise their surface, one

35Andreev A.F., Singularity of Thermodynamic Quantities at a First Order Phase Transition,
Soviets Physics JETP, 5, vol. 18, 1415-1416, (1964).

36Fisher M.E., The Theory of Condensation and the Critical Point, Physics, 5, vol. 3, 255-
283, (1967).

37Langer J.S., Theory of the Condensation Point, Annals of Physics, 41, 108-157, (1967).



1.2. ANALYTIC PROPERTIES AT CONDENSATION 19

Figure 1.6: A two-dimensional cluster of molecules, or “droplet”, with |C| = 34
molecules and a boundary |∂C| = 30.

can guess that they have a cubic shape, i.e. |∂C| ≃ 2d|C| d−1
d . We thus define

the energy of a droplet by E(C) := −µ|C|+ τ02d|C|
d−1

d , where µ is the chemical
potential. The Boltzmann factor of a droplet becomes

e−βE(C) = e−τ |C|
σ

z|C| , (1.25)

where σ = d−1
d

, τ = 2dβτ0, and z = eβµ is the fugacity. The transition point is
expected to be µ∗ = 0, i.e. z∗ = 1. We then ignore the interactions between the
droplets, and consider the pressure defined by (compare with (1.13))

pD(z) :=
∑

n≥1

e−τn
σ

zn . (1.26)

Now the integer n is identified with a cubical droplet of volume n. As Langer
said,

[. . . ], the droplet model is more nearly a phenomenology than a pre-
cise model of a physical system. From one point of view, it is sim-
ply a guess concerning the asymptotic behaviour of the Mayer cluster
coefficients for very large clusters. From another point of view the
model is a crude but intuitively appealing microscopic picture of how
a macroscopic system might look near its condensation point and well
below its critical temperature. In any case, the droplets themselves are
not unambiguously definable physical entities whose properties (shape,
size, surface free energy, etc.) may be computed systematically from
a partition function.

The radius of convergence of the series (1.26) is R = 1. Since the coefficients
e−τn

σ

are positive, the point z∗ = 1 must be a singularity of the function pD(z).
To understand the precise nature of this singularity we make a local analysis of
the derivatives of the pressure at z = z∗ = 1. It is easy to see that the limits
p

(k)
D (1−) := limzր1− p

(k)
D (z) exist for all integer k, and equal

p
(k)
D (1−) =

∑

n≥k
n(n− 1)(n− 2) . . . (n− k + 1)e−τn

σ

. (1.27)
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That is, pD has left derivatives of all orders at z = 1. It is often said that the
singularity at z = 1 is “too weak to be observable”, since none of the derivatives
diverges when approaching the transition point.

Since all the terms of (1.27) are positive, one can obtain an explicit lower bound

on p
(k)
D (1−) by keeping only the droplet corresponding to the term n = n0(k),

defined by

n0(k) :=

⌊( k
τσ

) 1
σ

⌋
. (1.28)

An upper bound can be obtained easily; this gives the existence of two constants
C± = C±(τ, σ) > 0 such that

C−
kk!

d
d−1 ≤ p

(k)
D (1−) ≤ C+

kk!
d

d−1 . (1.29)

As a consequence, the Taylor series describing pD in a neighbourhood of z = 1,
given by

pD(1) + p
(1)
D (1−)(z − 1) +

1

2!
p

(2)
D (1−)(z − 1)2 + . . . (1.30)

diverges for all z 6= 1, even if |z − 1| is very small.

More than a decade later, Kunz and Souillard 38 analysed a similar model in the
context of Bernoulli percolation, where the cluster containing the origin plays the
role of the droplet:

pKS(z) :=
∑

n≥1

Pp(|C| = n)zn ; (1.31)

Pp denotes the Bernoulli measure with parameter p ∈ [0, 1]. The difference be-
tween this model and the previous one is that the coefficients of the series are not
given explicitly; Kunz and Souillard showed that their behaviour is the following
(α and τ both depend on p):

Pp(|C| = n) ∼ e−αn for p close to 0 , (1.32)

Pp(|C| = n) ∼ e−τn
d−1

d for p close to 1 , (1.33)

For small p, the radius of convergence of (1.31) is thus larger than one, and pD
behaves analytically at z = 1 whereas for p close to 1, the asymptotic behaviour
of the coefficients is the same as those given a priori in the series (1.26). The

38Kunz K., Souillard B., Essential Singularity and Asymptotic Behavior of Cluster Size Dis-

tribution in Percolation Problems, Journ. Stat. Phys. 19, 77-106, (1978).
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authors were thus led to the same conclusion as before: the pressure has left
derivatives of all orders at z = 1 but has no analytic continuation.

These simple models suggest that it is the condensation phenomenon itself that is
responsible for the absence of analytic continuation: when |z| < 1, i.e. in a pure
phase, droplets of the wrong phase are strongly suppressed due to the volume
term zn. At z = 1, the volume term equals 1, and the decrease of the weight of
each droplet is ruled only by the surface term, of the order e−τn

σ

. Upon derivation
at z = 1, the volume term produces essentially a factor nk. Then, since all terms
of the series are positive, we can choose a single droplet to obtain a lower bound
on p

(k)
D (1−); this droplet is chosen so as to maximise the factor nke−τn

σ

. Hence

the choice of the dominant term n = n0(k), leading to the behaviour ∼ k!
d

d−1 for
the derivatives at z = 1.

This mechanism seemed to be a reasonable heuristic description of any two phase
model with finite range interactions. Griffiths had said, in an earlier discussion
on the droplet model 39:

[. . . ] This has led to the suggestion, rather hotly debated among the
small number of people who worry about such things, that a similar
singularity exists in the actual Ising Model.

There were thus, apparently, two possible scenarios concerning the analytic be-
haviour of the pressure of the Ising Model p = p(h) at h = 0 (or, equivalently, of
the simple lattice gas at z∗), the first being predicted by mean field, the second
by droplet approximations. The solution to this problem would not be given until
twenty years later, by Isakov. In the mean time, the contributions to this field
were essentially refinements of the droplet model, studies of simplified models, or
numerical simulations.

Newman and Schulman 40 made some conjectures for the Ising Model. Their
first two conjectures, which to date remain unproved, assert that p can be con-
tinued analytically around h = 0, and their third conjecture asserted that there
is analytic continuation through h = 0. Then, Enting and Baxter 41 investigated
numerically the series for the magnetisation:

m(0) +m′(0)h+
1

2!
m′′(0)h2 + . . . , (1.34)

39Griffiths R.B., Phase Transitions, in Statistical Mechanics and Quantum Field Theory, Les
Houches 1970, De Witt C. & Stora R. eds., Gordon & Breech Science Publishers, (1970).

40Newman C.M., Schulman L.S., Metastability and the Analytic Continuation of Eigenvalues,
J. Math. Phys. 18, 1, 23-30, (1977).

41Enting I.G., Baxter R.J., An Investigation of the High-Field Series Expansions for the

Square Lattice Ising Model, J. Phys. A: Math. Gen. 13, 3723-3734, (1980).
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for different subcritical temperatures, up to 35th order, and observed evidence
for divergence of the series, in accordance with the droplet predictions. Similar
results were obtained by Privman and Schulman 42, but no final conclusion could
be drawn.

1.2.3 The Theorem of Isakov

In 1984, Isakov 43 showed that the singularity predicted by the droplet model
indeed occurs, and invalidated the mean field predictions, by showing rigorously
that the pressure of the Ising Model has no analytic continuation at h = 0.

Theorem 1.1 (Isakov, 1984). Let d ≥ 2, β be sufficiently large. Then for all
k ∈ N, the limit of the k-th derivative of the pressure of the Ising model along
hց 0+ exists:

p(k)(0+) = lim
hց0+

p(k)(h) . (1.35)

Moreover, there exist two strictly positive functions C± = C±(β), such that for
large enough k,

C−
kk!

d
d−1 ≤ |p(k)(0+)| ≤ C+

kk!
d

d−1 (1.36)

For the lattice gas, this result definitely ruled out the possibility of defining
metastability by analytic continuation through h = 0. With regard to what
was said at the beginning of the section, it also justified the determination of
the condensation point made by Mayer. By confirming droplet predictions, the
theorem of Isakov showed that the analytic behaviour of thermodynamic poten-
tials at transition points must be intimately related to the range of interactions:
very long range interactions (mean field) imply analytic continuation, short range
interaction, apparently, imply absence of analytic continuation.

Consider (1.36). The lower bound shows that the series

p(0) + p(1)(0+)h +
1

2!
p(2)(0+)h2 + . . . (1.37)

diverges for all h 6= 0. Nevertheless, existence of the limits (1.35) happens to be
a sufficient condition for the series (1.37) to be asymptotic 44. That is, for all

42Privman V., Schulman L.S., Analytic Properties of Thermodynamic Functions at First

Order Phase Transitions, J. Phys. A: Math. Gen. 15, 231-238, (1982). Privman V., Schulman
L.S., Analytic Continuation at First Order Phase Transitions, J. Stat. Phys. 29, 2, (1982).

43Isakov S.N., Non-analytic Features of the First Order Phase Transition in the Ising Model,
Commun. Math. Phys. 95, 427-443, (1984).

44Remmert R., Theory of Complex Functions, Springer, (1990), p. 296.
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integer n,

lim
hց0+

[
p(h) −

n∑

k=0

1

k!
p(k)(0+)hk

]
h−n = 0 . (1.38)

The structure of the pressure is thus the following: all the limits limhց0+ p(k)(h)
exist, but allow expressing p only as an asymptotic, non convergent expansion at
h = 0. Actually, it can also be shown that this asymptotic expansion is Borel-
summable (see Chapter 8).

We saw, in the droplet model, that the precise nature of the singularity was
obtained by studying the pressure at z = 1, i.e. at the boundary of the region
of analyticity. Isakov followed the same route and investigated precisely the
behaviour of large systems in a neighbourhood of h = 0. His technique for
obtaining the bounds (1.36) is inspired by the droplet mechanism; we will first
give a brief description of its main steps, and then present our results in Section
1.2.4.

The Mechanism

The problem we face when studying a model more realistic than those considered
by Fisher et al. is that the common representation of the pressure, like the ex-
pansion of Mayer, is usually an infinite alternated sum. (We should keep in mind
the alternating property (−1)l+1b0l ≥ 0 of the cluster coefficients.) This “sign
problem” does not allow a rough estimate of p(k)(0+) by simple determination of
the dominant term, as in the droplet model.

What Isakov did to overcome this difficulty, is to work in a large finite box
Λ ⊂ Zd with boundary condition +, and to introduce a new representation for
the pressure p+

Λ , which is defined by

p+
Λ :=

1

β|Λ| logZ+(Λ) . (1.39)

For a finite box, the pressure p+
Λ is always analytic at h = 0.

Let C+(Λ) denote the set of all possible Peierls contours associated with spin
configurations in Λ. Denote the volume of a contour Γ by V (Γ). The partition
function Z+(Λ) can be represented as a sum over sub-families of C+(Λ) of pairwise
compatible (disjoint) contours. The family C+(Λ), which is finite, can be ordered
in an arbitrary way, C+(Λ) = {Γ1,Γ2, . . . ,ΓN}. Consider a volume-preserving
order, i.e. V (Γi) ≤ V (Γj) when i ≤ j. The predecessor of a contour Γ, with
respect to the chosen order, is denoted i(Γ). Consider, for all Γ ∈ C+(Λ), the
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partition function Z+
Γ (Λ), in which any contour must be smaller than Γ. We have

Z+
ΓN

(Λ) = Z+(Λ) and Z+
i(Γ1)(Λ) := 1. The main idea is to write the partition

function as a product:

Z+(Λ) = Z+
Γ1

(Λ)
Z+

Γ2
(Λ)

Z+
Γ1

(Λ)

Z+
Γ3

(Λ)

Z+
Γ2

(Λ)
· · ·

Z+
ΓN

(Λ)

Z+
ΓN−1

(Λ)
=

∏

Γ∈C+(Λ)

Z+
Γ (Λ)

Z+
i(Γ)(Λ)

. (1.40)

With this, the pressure has the form of a finite sum,

p+
Λ =

1

β|Λ|
∑

Γ∈C+(Λ)

u+
Λ(Γ) , (1.41)

where

u+
Λ(Γ) := log

Z+
Γ (Λ)

Z+
i(Γ)(Λ)

(1.42)

The analysis of the phase diagram of the model implies existence of a complex
domain UΓ ∋ 0 in which each function u+

Λ(Γ) is analytic in h. The construction
of the domains UΓ can roughly be described as follows. Like in the droplet
model, each contour Γ has a surface energy ‖Γ‖ (for the Ising Model, ‖Γ‖ is just
the number of dual bonds on the dual lattice) and a volume energy 2hV (Γ). The
domain UΓ is defined so that the volume energy doesn’t exceed the surface energy:
for all h ∈ UΓ,

2|Reh|V (Γ) ≤ θ‖Γ‖ , (1.43)

where θ ∈ (0, 1). Then, on UΓ (which is a strip centered on the imaginary axis
{Reh = 0}), the Boltzmann weight of Γ is bounded by

|e−β‖Γ‖−2βhV (Γ)| ≤ e−β‖Γ‖eθβ‖Γ‖ ≤ e−(1−θ)β‖Γ‖ . (1.44)

This implies stability of the contour for values h ∈ UΓ. Clearly, (1.43) shows that
an optimal construction of the domains UΓ can be done by studying carefully the
ratios V (Γ)

‖Γ‖ . It can be shown that for h ∈ UΓ (the symbol ≃ means there exist

upper and lower bounds of the type mentioned),

u+
Λ(Γ) ≃ e−β‖Γ‖−2βhV (Γ) . (1.45)

The derivatives of the functions u+
Λ(Γ) are studied with the help of the Cauchy

formula:

dk

dhk
u+

Λ(Γ)
∣∣
h=0

=
k!

2πi

∫

C

u+
Λ(Γ)(z)

zk+1
dz , (1.46)
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C+(Λ)

ΓN

k0

Γ1

Γ2

ΓN−1

k+(Γ1) k+(ΓN )k+(ΓN−1)

k-large

k-small

k+(Γ2) k

Figure 1.7: The intervals of integers for the derivatives that can be estimated by the
method of Isakov: for each Γi, the bold interval gives the set of integers k for which
precise estimates can be obtained on the k-th derivative of u+

Λ(Γi) at h = 0. We also
depicted, at fixed k, the partition of {Γ1, . . . , ΓN} into k-small and k-large contours.

where the contour of integration C ⊂ UΓ can be chosen arbitrarily, encircling the
origin. It happens that sharp bounds on the integral can be obtained only when
k ∈ [k0, k+(Γ)], where k0 is a fixed constant and k+(Γ) increases with the volume
V (Γ). Namely, when k ∈ [k0, k+(Γ)], the contour of integration can be chosen so
as to go through a saddle point giving the dominant contribution to the integral.

For a fixed integer k, the family C+(Γ) then splits in two. The contours Γ for
which [k0, k+(Γ)] ∋ k are called k-large, those for which [k0, k+(Γ)] 6∋ k are called
k-small. This notion is independent of Λ. See Figure 1.7.

p+
Λ =

1

β|Λ|
∑

Γ∈C+(Λ)
k−small

u+
Λ(Γ) +

1

β|Λ|
∑

Γ∈C+(Λ)
k−large

u+
Λ(Γ) . (1.47)

For k-large contours, the saddle point analysis allows a very accurate estimation
of the integral in (1.46):

(−1)k
dk

dhk
u+

Λ(Γ)
∣∣
h=0

≃ (2β)kV (Γ)ke−β‖Γ‖ . (1.48)

That is, the k-th derivative of the k-large contours all have the same sign; they
can be treated like in the droplet model, by choosing translates of an appropriate
contour maximising the quantity V (Γ)ke−β‖Γ‖. This is nothing but a discrete

isoperimetric problem, in which the ratio V (Γ)
‖Γ‖ must be maximised under a k-
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dependent constraint. This yields, like in the droplet model,

∣∣∣
1

β|Λ|
∑

Γ∈C+(Λ)
k−large

dk

dhk
u+

Λ(Γ)
∣∣
h=0

∣∣∣ ≥ Akk!
d

d−1 . (1.49)

This bound is uniform in the size of the box Λ. For the k-small contours, only an
upper bound can be obtained, with the Cauchy formula (use the largest possible
disc contained in the domains UΓ):

∣∣∣
1

β|Λ|
∑

Γ∈C+(Λ)
k−small

dk

dhk
u+

Λ(Γ)
∣∣
h=0

∣∣∣ ≤ Bkk!
d

d−1 . (1.50)

At last, the whole point is to show that the contribution from the k-small contours
is negligible in comparison with the k-large ones, i.e.

A > B . (1.51)

Typically, texts on Pirogov-Sinai Theory usually provide domains UΓ whose size
is proportional to the inverse of the diameter of the contour Γ, which is insuffi-
cient to show that A > B.

The main difficulty, in the proof of (1.51), is related to the study of a discrete

isoperimetric problem involving the ratios V (Γ)
‖Γ‖ . Namely, these appear 1) in the

construction of the regions UΓ, i.e. in B since B depends on the size of the largest
disc possible in UΓ, and 2) in the maximisation of the quantity V (Γ)ke−β‖Γ‖, i.e.
in A.

In the Ising Model, the isoperimetric problem can be solved explicitly (the so-
lutions are given by cubes), but in more general models, the surface energy ‖Γ‖
depends on the details of the hamiltonian, and the optimising shapes can be
very hard, if not impossible, to find. In a second paper 45, Isakov tried to ex-
tend his first theorem to a general class of two phase models. Unfortunately,
this could only be done by assuming the isoperimetric problems can be solved.
We will come back to the discussion of this delicate point at the end of Chapter 4.

The final step is to show that the bounds obtained in a finite volume extend to
the thermodynamic limit. That is,

p(k)(0+) = lim
ΛրZd

p+
Λ(0) . (1.52)

45Isakov S.N., Phase Diagrams and Singularity at the Point of a Phase Transition of the

First Kind in Lattice Gas Models, Teoreticheskaya i Matematicheskaya Fizika, 71, 3, 426-440,
(1987).
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This follows from the fact that derivatives of any order are bounded in a neigh-
bourhood of h = 0; we will come back to it in details later.

Remark: Although the pressure has no continuation at h = 0 in the sense of
complex functions, continuations in the sense of real functions always exist, due to
the existence of the limits p(k)(0+). For instance, Schonmann and Schlosman 46

proposed a particular C∞-continuation through the transition point, provided
naturally by dynamical considerations, making a link between metastable relax-
ation and the theory of equilibrium cristal shapes.

1.2.4 New Results on Non-Analyticity

Isakov’s papers remain the only rigorous study of non-analyticity at first or-
der phase transition; our results are their natural continuation. They contain
two main parts: the first is an extension of Theorem 1.1 to the whole class of
two phase models considered in Pirogov-Sinai Theory whereby we show that the
Peierls condition is sufficient to guarantee non-analyticity at the transition point;
the second result aims at studying how non-analyticity relates to the range of
interaction, in the framework of Kac potentials.

Hereafter we briefly present our results; more precise statements are to be found
in subsequent chapters, especially concerning Kac potentials (see Chapter 3).

Two Phase Models of Pirogov-Sinai Theory

The framework is the one described in Section 1.1.4. Let H0 be a hamiltonian
with finite range periodic interaction, with two periodic ground states ψ1, ψ2, so
that the Peierls condition is satisfied. Let p = p(µ) denote the pressure of the
model with hamiltonian

Hµ = H0 + µH1 , (1.53)

where H1 is a hamiltonian with periodic and finite range interactions that splits
the degeneracy of the ground states of H0. We saw in the Introduction that
the main result of Pirogov-Sinai Theory is the existence of a first order phase
transition point µ∗(β) such that p is analytic in µ on {µ < µ∗(β)} and {µ >
µ∗(β)}. Our first result is the following (remember Figure 1.3).

Theorem 1.2. For any two phase model considered by the Pirogov-Sinai Theory,
there exists an inverse temperature β∗ such that for all β ≥ β∗, the pressure has
no analytic continuation from {µ < µ∗(β)} to {µ > µ∗(β)} across µ∗(β), or vice
versa.

46Schonman R., Schlosman S., Metastable Kinetics, Commun. Math. Phys.
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The proof of Theorem 1.2, which is the main result of [FP1], can be found in
Appendix A.

Kac Potentials

Kac potentials were described in Section (1.1.5). We saw that the Lebowitz-
Penrose Theorem gave a closed form to the free energy in the van der Waals
Limit γ ց 0 (in which the range of interaction goes to infinity) and justified the
Maxwell Construction.

After the van der Waals Limit, the only vestige of the finiteness of the range of
interaction is the plateau appearing in the free energy, and the free energy has
analytic continuation at condensation/evaporation points. The question arises as
to whether this analytic behaviour already holds for small enough γ or if a mech-
anism similar to the one used by Isakov can be used to show that non-analyticity
persists for all the smaller values of γ, along the van der Waals Limit γ ց 0. This
interesting question was raised by Joel Lebowitz at the Conference Inhomoge-
neous Random Systems, held in Paris, January 2001, and had already appeared,
in a less precise form, in the paper of Langer [L].

Consider the lattice gas on Zd (see Chapter 2) with Kac potential Kγ(x, y), 0 <
γ < 1. Denote the free energy of this gas by fγ = fγ(ρ), with particle density
ρ ∈ (0, 1). For simplicity, we consider the potential associated to the step function

ϕ(x) := 2−d1{‖y‖≤1}(x) , (1.54)

where 1A(x) = 1 if x ∈ A, zero otherwise.

It is known 47 that for low temperatures and sufficiently small 0 < γ < 1, the free
energy fγ has a phase transition, i.e. is affine on a coexistence plateau [ρg, ρl].
Our contribution is the following.

Theorem 1.3. There exists an inverse temperature β0 and γ0 > 0 such that
for all β ≥ β0 and for all γ ∈ (0, γ0), the following holds: the free energy fγ is
analytic on the gas (resp. liquid) branch (0, ρg) (resp. (ρl, 1)), but has no analytic
continuation at ρ = ρg (resp. ρ = ρl) along the path ρր ρg (resp. ρց ρl).

This result is the content of [FP2]; its proof will be given in details, in the Chap-
ters 2 to 7 of this thesis.

47Cassandro M., Presutti E., Phase Transitions in Ising Systems with Long but Finite Range

Interactions, Mark. Proc. and Rel. Fields 2, 241-262, (1996), Bovier A., Zahradńık M., The

Low-Temperature Phases of Kac-Ising Models, J. Stat. Phys. 87, 311-332, (1997).
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In other words, as long as the range of interaction is finite (γ > 0), the free
energy has singularities at condensation and evaporation points that block the
analytic continuation along the gas and liquid branches; analytic continuation
occurs only after the van der Waals Limit, as described in the Lebowitz-Penrose
Theorem. In particular when γ > 0, there is no way of obtaining fγ from a
Maxwell Construction, i.e. by taking the convex envelope of an analytic function.

ρ

ρg ρl

Figure 1.8: The free energy for small γ > 0, which has singularities at conden-
sation and evaporation points blocking analytic continuation along the paths
ρ ր ρg, ρ ց ρl. Compare with Figure 1.4.

A non-trivial feature of Theorem 1.3 is that β0 is independent of the scaling
parameter γ, which allows studying the van der Waals Limit at fixed temperature.
Namely, Theorem 1.2 applies for each choice of 0 < γ < 1, but the range of
temperatures for which the result then depends on γ, and shrinks to zero in
the van der Waals Limit. The key ingredient for obtaining uniformity in γ, in
Theorem 1.3, will be to use a coarse-grained description of the model.

1.3 Overview of the Rest of the Thesis

The rest of the thesis is essentially devoted to the proofs of Theorems 1.2 and
1.3. We have chosen to keep the proof of Theorem 1.2 separate from the rest of
the thesis, in Appendix A. The reason for this is that it uses different notations,
faithful with those of the book of Sinai [S]. Appendix A can be read indepen-
dently of the rest of the thesis.

In Chapter 2 we start the rigorous description of the lattice gas with two body
potentials K(i, j), of which Kγ(i, j) is a special case. Therein we introduce the
main thermodynamic potentials and make precise the relationship existing be-
tween this lattice gas and the ferromagnet with couplings J(i, j). In particular,
we show how all the analyticity properties can be inherited from each other. This
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allows, in Chapter 3, to reformulate our main result only in terms of the pressure
of the Kac ferromagnet (Theorem 3.4).

Chapters 4 to 7 contain the proof of Theorem 3.4; see the end of Chapter 3 for
a description of the strategy proof. The stationary phase analysis, which is a
crucial ingredient for estimating the derivatives of k-large contours, is given in
details in Appendix B. The cluster expansion technique, which is used at several
places during the proof, is briefly exposed in Appendix C.

In Chapter 8, we make some concluding remarks and discuss of a few open prob-
lems.



Chapter 2

The Simple Lattice Gas

In this chapter we present the lattice description of the liquid-vapor equilibrium,
in its simplest form. The properties of the lattice gas will be inherited from those
of the Ising ferromagnet, in which symmetry allows to use strong existing results
(correlation inequalities, Circle Theorem, etc.). In particular, we show that the
analyticity properties can be deduced one from the other.
Our notations will be the following: p = p(µ) and f = f(ρ) denote the pressure
and free energy density of the lattice gas, whereas p = p(h) and f = f(m) denote
the pressure and free energy density of the ferromagnet. Some general proper-
ties of these functions, such as existence or convexity, can be found e.g. in the
monograph of Israel [Isr].

2.1 Thermodynamic Potentials

The lattice gas is defined on the lattice Zd, d ≥ 2. The distance we use is
d(x, y) := ‖x− y‖, where

‖x‖ := max
1≤i≤d

|xi| . (2.1)

This distance will also be used for points of Rd. The letter Λ will always denote
a finite subset of Zd.
The thermodynamic limit will be taken along a sequence of boxes ΛN = [−N,+N ]d∩
Zd. In the sequel, when F = F (Λ), we will use the following notation for the
thermodynamic limit (when it exists):

lim
ΛրZd

F (Λ) := lim
N→∞

F (ΛN) . (2.2)

The Simple Lattice Gas

At each site of the lattice, a variable ωi can take two values, 0 or 1. If ωi = 1, we
say that there is a particle at the site i, and when ωi = 0 we say that the site i is

31
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empty. Particles are indistinguishable. The set of particle configurations in a set
Λ is denoted {0, 1}Λ. Repulsion at short distance, as in van der Waals Theory, is
modelised by the fact that there can exist at most one particle at each site. The

a) b)

Figure 2.1: Expected configurations of the lattice gas a) in the gas phase, with density
ρg, b) in the liquid phase, with density ρl > ρg.

long distance attractive potential between two particles located at sites i, j ∈ Zd

is realised with a coupling K(i, j) ≥ 0, which is assumed to have the symmetry
K(i, j) = K(j, i), to be translation invariant: K(i + x, j + x) = K(i, j) for all
x ∈ Zd, and to be summable in the sense that

K̂ :=
∑

j 6=0

K(0, j) <∞ . (2.3)

The energy of a configuration of particles in Λ, ω ∈ {0, 1}Λ, is obtained via the
hamiltonian, as follows:

HΛ(ω) := −
∑

{i,j}⊂Λ
i6=j

K(i, j)ωiωj . (2.4)

When the number of particles in Λ is fixed,
∑

i∈Λ ωi = N , the canonical partition
function, at inverse temperature β > 0, is defined by

Qcan(Λ, N, β) :=
∑

ω∈{0,1}Λ∑
i∈Λ ωi=N

e−βHΛ(ω) . (2.5)

For N ∈ [0, |Λ|], define the free energy in Λ, fΛ(N, β), by

e−βfΛ(N,β)|Λ| := Qcan(Λ, N, β) . (2.6)

Let ρ ∈ [0, 1]. For each box Λ, let N(Λ) ∈ [0, |Λ|] be such that N(Λ)
|Λ| → ρ in the

thermodynamic limit. The free energy density is given by

f(ρ, β) := lim
ΛրZd

fΛ(N(Λ), β) , (2.7)
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and f(ρ, β) := +∞ when ρ 6∈ [0, 1]. f(ρ, β) exists and is convex in ρ. When the
number of particles can fluctuate, the grand canonical partition function, at inverse
temperature β > 0 and chemical potential µ ∈ R, is defined by

Qgcan(Λ, µ, β) :=

|Λ|∑

N=0

eβµNQcan(Λ, N, β) . (2.8)

The pressure in Λ, pΛ(µ, β), is defined by

eβpΛ(µ,β)|Λ| := Qgcan(Λ, µ, β) . (2.9)

The pressure density is obtained by taking the thermodynamic limit

p(µ, β) := lim
ΛրZd

pΛ(µ, β) . (2.10)

This limit exists and is convex in µ. Most often, we will drop β from the notation:
p(µ, β) ≡ p(µ), f(ρ, β) ≡ f(ρ). As will be seen, the pressure density can have at
most one first order phase transition point, at µ∗ := −K̂. The interval (−∞, µ∗] is
the gas branch and [µ∗,+∞) is the liquid branch. When µ 6= µ∗, p is differentiable
with respect to µ, and we define the particle density

ρ(µ) :=
∂p

∂µ
. (2.11)

At µ∗, only directional derivatives can be defined. Their existence is guaranteed
by the convexity of the pressure.

ρg := lim
ǫց0+

p(µ∗) − p(µ∗ − ǫ)

ǫ
, ρl := lim

ǫց0+

p(µ∗ + ǫ) − p(µ∗)

ǫ
. (2.12)

At low temperature we expect that ρg < ρl, like in Figure 2.2. The equivalence
of ensembles states that the pressure and free energy densities are related one to
the other by a Legendre transform:

f(ρ) = sup
µ

(
µρ− p(µ)

)
, p(µ) = sup

ρ

(
ρµ− f(ρ)

)
. (2.13)

At low temperature, p(µ) and f(ρ) are expected to behave as in Figure 2.2.

The Ferromagnet

At each site of the lattice, a spin variable σi can take two values, −1 or +1.
The set of spin configurations on a finite set Λ is denoted ΩΛ = {±1}Λ. A
ferromagnetic interaction between two spins located at sites i, j is modelised with
a coupling J(i, j) ≥ 0, which is assumed to have the symmetry J(i, j) = J(j, i),



34 CHAPTER 2. THE SIMPLE LATTICE GAS

µ∗

µ

ρ
f(ρ) 1

p(µ)
ρg ρl

Figure 2.2: The expected graphs of the pressure and free energy of the lattice gas at
low temperature.

to be translation invariant: J(i + x, j + x) = J(i, j) for all x ∈ Zd, and to be
summable in the sense that

Ĵ :=
∑

j 6=0

J(0, j) <∞ . (2.14)

For a spin configuration σ ∈ ΩΛ, the hamiltonian is defined by:

Hh
Λ(σ) := −

∑

{i,j}⊂Λ
i6=j

J(i, j)σiσj − h
∑

i∈Λ
σi , (2.15)

where h ∈ R is a magnetic field. When h = 0 we have the spin-flip symmetry
Hh

Λ(−σ) = H−hΛ (σ). Define

MΛ := {−|Λ|,−|Λ| + 2, . . . , |Λ| − 2, |Λ|} . (2.16)

Let M ∈ MΛ. The canonical partition function associated to this ferromagnet, at
inverse temperature β > 0 is defined by

Zcan(Λ,M, β) :=
∑

σ∈ΩΛ∑
i∈Λ σi=M

e−βH
0
Λ(σ) . (2.17)

For M ∈ MΛ, define the free energy in Λ, fΛ(M,β), by

e−βfΛ(M,β)|Λ| := Zcan(Λ,M, β) . (2.18)

Let m ∈ [−1,+1]. For each cube Λ, let M(Λ) ∈ MΛ be such that M(Λ)
|Λ| → m in

the thermodynamic limit. The free energy density is defined, for m ∈ [−1,+1], by

f(m, β) := lim
ΛրZd

fΛ(M(Λ), β) , (2.19)
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and f(m, β) := +∞ when m 6∈ [−1,+1]. The free energy density exists and is con-
vex in m. The (grand canonical) partition function associated to this ferromagnet,
at inverse temperature β > 0 and magnetic field h ∈ R, is defined by

Z(Λ, h, β) :=
∑

σ∈{±1}Λ
e−βH

h
Λ(σ) =

∑

M∈MΛ

eβhMZcan(Λ,M, β) . (2.20)

The pressure in Λ, pΛ(h, β), is defined by

eβpΛ(h,β)|Λ| := Z(Λ, h, β) , (2.21)

and the pressure density is obtained by taking the thermodynamic limit

p(h, β) := lim
ΛրZd

pΛ(h, β) . (2.22)

The pressure density exists and is convex in h. Usually, we will drop β from the
notations. By the spin-flip symmetry, we have p(−h) = p(h). By the Theorem
of Yang and Lee (see Theorem 2.2 hereafter), p can have a phase transition only
at h = 0. When h 6= 0, the pressure is differentiable with respect to h, and we
define the magnetisation

m(h) :=
∂p

∂h
(h) . (2.23)

At h = 0, convexity guarantees the existence of the directional derivative:

m∗ = m∗(β) := lim
ǫց0+

p(ǫ) − p(0)

ǫ
. (2.24)

By the equivalence of ensembles, we have

f(m)

h

p(h)

−Ĵ

−m∗ +m∗
m

Figure 2.3: The thermodynamic potentials of the ferromagnet when there is a phase
transition at h = 0. f(m) is the Legendre transform of p(h).

f(m) = sup
h

(
hm− p(h)

)
, p(h) = sup

m

(
mh− f(m)

)
. (2.25)
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We have represented the expected behaviour of p(h) and f(m) on Figure 2.3.
A convenient method, in the study of ferromagnets, is the use of correlation
inequalities. For instance, the Griffiths-Kelly-Sherman inequalities [GKS] imply

Lemma 2.1. For all β > 0,

∂m

∂h
(h) > 0 ∀h 6= 0 , lim inf

hց0+

∂m

∂h
(h) > 0 . (2.26)

Proof. Let 〈·〉Λ,h denote the Gibbs state in the finite volume Λ with free boundary
conditions. An elementary computation and the second GKS inequality allow to
bound

∂2pΛ

∂h2
=

β

|Λ|
∑

i,j∈Λ
〈σiσj〉Λ,h − 〈σi〉Λ,h〈σj〉Λ,h ≥

β

|Λ|
∑

i∈Λ
(1 − 〈σi〉2Λ,h) . (2.27)

We kept only the indices i = j. Using the first GKS inequality gives, for all i ∈ Λ
(apply a magnetic field hր +∞ on each j 6= i),

〈σi〉Λ,h ≤ 〈σi〉{i},h+Ĵ = tanh(β(h+ Ĵ)) . (2.28)

This implies the following lower bound, uniform in Λ:

∂2pΛ

∂h2
≥ β

(
1 − tanh(β(h+ Ĵ))2

)
. (2.29)

By the Theorem of Yang and Lee (see Theorem 2.2 hereafter), the derivatives
and the thermodynamic limit can be exchanged outside h = 0, yielding

∂m

∂h
=
∂2p

∂h2
= lim

ΛրZd

∂2pΛ

∂h2
≥
(
1 − tanh(β(h+ Ĵ))2

)
. (2.30)

This in turn implies (2.26).

The simplest coupling for which the ferromagnet has a phase transition is the
Ising model, whose couplings are defined by

J(i, j) :=

{
1 if i, j are nearest neighbours,

0 otherwise,
(2.31)

In this case, we have the following result due to Peierls [Pei], Griffiths [G] and
Dobrushin [Dob].

Theorem 2.1. If β is large enough, the Ising model has a first order phase tran-
sition at h = 0, characterised by spontaneous magnetisation: m∗(β) > 0. As a
consequence, the critical temperature is well defined:

βc := inf{β > 0 : m∗(β) > 0} . (2.32)
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Lattice Gas vs. Ferromagnet

We go back to the general case J(i, j) ≥ 0. We map each spin configuration to a
particle configuration as follows:

ωi :=
σi + 1

2
(2.33)

A spin +1 thus corresponds to a site containing a particle and a spin −1 corre-
sponds to a vacant site. The thermodynamic properties of the lattice gas and
of the ferromagnet can be studied one from the other using the following propo-
sition, which first appeared, in a slitghly different form, in the second paper of
Yang and Lee [YL].

Proposition 2.1. Consider the pressure density p = p(h) of the ferromagnet
with coupling constants J(i, j). Define the function

h(µ) :=
1

2
(µ+ 4Ĵ) . (2.34)

Then the pressure p = p(µ) of the simple lattice gas with K(i, j) = 4J(i, j) can
be obtained by the following identity:

p(µ) = p
(
h(µ)

)
+ h(µ) − Ĵ . (2.35)

In the sequel we will always assume that the gas under consideration is related
to a given ferromagnet via K(i, j) = 4J(i, j). The function h(µ) can be inverted:
µ(h) = 2h− 4Ĵ . Since the ferromagnet has a possible phase transition at h = 0,
the lattice gas has a possible phase transition at

µ∗ := µ(0) = −4Ĵ = −K̂ . (2.36)

Outside the transition point, the particle density of the gas and the magnetisation
of the ferromagnet are related by

ρ =
∂p

∂µ
=
∂p

∂h

∂h

∂µ
+
∂h

∂µ
=

1 +m

2
. (2.37)

At the transition point we have

ρg =
1 −m∗

2
ρl =

1 +m∗

2
, i.e. ρg + ρl = 1 . (2.38)

The GKS inequalities imply, as in (2.26),

∂ρ

∂µ
(µ) > 0 , ∀µ 6= µ∗ , lim inf

µցµ∗
∂ρ

∂µ
(µ) > 0 . (2.39)
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We express the pressure as a function of the particle density ρ and as a function
of the specific volume v := ρ−1. By (2.39), the map ρ : (µ∗,+∞) → (ρl, 1) is
bijective, and can be inverted: ξl : (ρl, 1) → (µ∗,+∞). The same can be done on
the gas branch, yielding ξg : (0, ρg) → (−∞, µ∗). Define, for ρ ∈ (0, 1),

µ(ρ) :=





ξg(ρ) if ρ ∈ (0, ρg) ,

µ∗ if ρ ∈ [ρg, ρl] ,

ξl(ρ) if ρ ∈ (ρl, 1) .

(2.40)

The pressure as a function of the particle density,

p(ρ) := p(µ(ρ)) , (2.41)

is depicted on Figure 2.4 a). Let vl := ρ−1
l , vg := ρ−1

g . On Figure 2.4 b), we
expressed the pressure as a function of the specific volume v = ρ−1:

p(v) := p(µ(v−1)) . (2.42)

We see that each ferromagnet with a phase transition at h = 0 provides, via
Proposition 2.1, a lattice gas with a liquid-vapor transition.

ρ

p(ρ) p(v)

v

a) b)

vgvlρg ρl 11

Figure 2.4: The pressure as a function a) of the particle density b) of the specific
volume, in the case where there is a phase transition.

It remains to discuss the analyticity properties in the pure phases and at conden-
sation/evaporation points.

2.2 Analyticity Properties. Equivalences

In the present section, we relate the general analyticity properties of the lattice
gas to those of the ferromagnet. More precisely, we show that the analyticity
properties, of any potential, can be derived from those of the pressure of the
ferromagnet.
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Analyticity Properties in Pure Phases

The main result on analyticity for the ferromagnet is the Circle Theorem of Yang
and Lee [YL], which we already mentionned in Section 1.1.3.

Theorem 2.2 (Yang and Lee, 1952). We have Z(Λ, h, β) 6= 0 for all Λ and
for all h ∈ C, Reh 6= 0. The pressure density p = p(h) of the ferromagnet
is analytic on the domains {Reh > 0} and {Reh < 0}. Moreover, on these
domains,

p(k)(h) = lim
ΛրZd

p
(k)
Λ (h) . (2.43)

As a consequence, the ferromagnet can have a phase transition only at h = 0. In
turn, the lattice gas can have a phase transition only at µ∗ and is analytic on the
liquid {Reµ > µ∗} and gas branches {Reµ < µ∗}.

Since it is the derivative of the pressure with respect to h, the magnetisation
m : (0,+∞) → (m∗, 1) is also analytic (the same holds on the branch (−∞, 0)).
The following result shows that in a pure phase (h 6= 0 or m 6∈ [−m∗ +m∗]), the
inverse of the magnetisation exists and is also analytic.

Corollary 2.1. The inverse h : (m∗, 1) → (0,+∞) is analytic in a complex
neighbourhood of each m ∈ (m∗, 1). Similarly, the particle density ρ : (µ∗,+∞) →
(ρl, 1) is analytic in a complex neighbourhood of each µ ∈ (µ∗,+∞). The inverse
µ : (ρl, 1) → (µ∗,+∞) is analytic in a complex neighbourhood of each ρ ∈ (ρl, 1).
As a consequence, the pressure p = p(ρ) (see (2.41)) is analytic on the liquid
branch (ρl, 1), and p = p(v) (see (2.42)) is analytic on (1, vl). The same holds on
the gas branch.

The proof follows from the fact that the derivatives ∂m
∂h

, ∂ρ

∂µ
are strictly positive

in a pure phase (see (2.26), (2.39)), and from the following theorem, a proof of
which can be found in [Rem1], p. 281-282.

Biholomorphic Mapping Theorem. Let g : D → C be analytic and z0 ∈ D
a point such that g′(z0) 6= 0. Then there exists a domain V ⊂ D containing z0,
such that the following holds: V ′ = g(V ) is a domain, and the map g : V → V ′

has an inverse g−1 : V ′ → V which is analytic, and which satisfies, for all ω ∈ V ′,

g−1′(ω) =
(
g′(g−1(ω))

)−1
.

Analyticity Properties at the Transition Point

We now give a result which aims at showing that the analyticity properties of
all the thermodynamic potentials at condensation/evaporation can be deduced
from those of the ferromagnet at h = 0. A complete equivalence will be obtained
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only under a further assumption on the second derivative of the pressure (i.e. the
succeptibility), which must remain bounded in a neighbourhood of h = 0.

Theorem 2.3. Consider the following statements.
1) The pressure of the ferromagnet p = p(h) has analytic continuation at h = 0
along the path hց 0 (resp. hր 0).
2) The pressure of the lattice gas p = p(µ) has analytic continuation at µ∗ along
the path µ ց µ∗ (resp. µ ր µ∗).
3) The pressure of the lattice gas p = p(ρ) has analytic continuation at ρl along
the path ρց ρl (resp. at ρg along the path ρր ρg).
4) The pressure of the lattice gas p = p(v) has analytic continuation at vl along
the path v ր vl (resp. at vg along the path v ց vg).

Then we have the equivalences 1) ⇐⇒ 2) =⇒ 3) ⇐⇒ 4). Moreover, if ∂2p

∂µ2 is

bounded in a neighbourhood of µ∗, then 2) ⇐= 3).

Proof. The equivalence 1) ⇐⇒ 2) follows from the identity (2.35). Assume 2).
Then by derivation, ρ = ρ(µ) has analytic continuation along µ ց µ∗. Then,
(2.39) and the biholomorphic mapping theorem imply that the inverse µ = µ(ρ)
has analytic continuation along ρց ρl. This implies that the composition p(ρ) :=
p(µ(ρ)) has analytic continuation along ρ ց ρl. This shows 2) =⇒ 3). The
equivalence 3) ⇐⇒ 4) is obtained easily.
Assume 3) holds. Then ρ 7→ ∂p

∂ρ
has analytic continuation along ρ ց ρl. Using

(2.41) gives, for ρ ∈ (ρl, 1),

∂p

∂ρ
=
∂p

∂µ

∂µ

∂ρ
, i.e.

1

ρ

∂p

∂ρ
=
∂µ

∂ρ
. (2.44)

The left hand side is analytic along ρ ց ρl, which implies the right hand side is
too. By integration, µ = µ(ρ) is also analytic along ρ ց ρl. The last step is to
show that the inverse of this map, ρ = ρ(µ), is analytic in a neighbourhood of

µ∗. Indeed, since we are assuming that ∂2p

∂µ2 is bounded in a neighbourhood of µ∗,
we have

∂µ

∂ρ
(ρl) = lim

ρցρl

∂µ

∂ρ
= lim

µցµ∗

(∂ρ
∂µ

)−1

= lim
µցµ∗

(∂2p

∂µ2

)−1

6= 0 . (2.45)

By the biholomorphic mapping theorem, this shows that ρ = ρ(µ) is analytic in
a neighbourhood of µ∗. By integration, p = p(µ) is analytic in a neighbourhood
of µ∗.

Assume ∂2p

∂h2 is bounded near h = 0. By Theorem 2.3, non-analyticity of the
ferromagnet at h = 0 implies non-analyticity of the simple gas at condensation
and evaporation points, in any of the variables µ, ρ, v.
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Analyticity of the Legendre Transforms

Analyticity of pressure densities also imply analyticity of free energy densities,
which are obtained by a Legendre transform (see (2.13) and (2.25)).

Theorem 2.4. The free energy f = f(m) is analytic in a complex neighbourhood
of each m ∈ (−1,−m∗)∪(+m∗,+1), and has analytic continuation along mց m∗

if p has analytic continuation along h ց 0. Moreover, if ∂2p

∂h2 is bounded in a
neighbourhood of h = 0, then analytic continuation of f along m ց m∗ implies
analytic continuation of p along hց 0.
Similar results hold for the free energy and pressure densities of the lattice gas.

Proof. Consider the identities (2.25). For m ≥ 0 we have

f(m) = h(m)m− p(h(m)) , (2.46)

where h(m) is the unique solution of m = m(h)(= p′(h)). If p = p(h) has analytic
continuation at h = 0 then so does m(h). By (2.26) and the biholomorphic
function theorem, this implies that h = h(m) has analytic continuation at m∗.
By (2.46), f(m) is a composition of analytic maps, i.e. analytic.
Inversely, if f(m) has analytic continuation at m∗, then so does f′(m) = h(m).
Using the biholomorphic mapping theorem and the assumption that the second
derivative of the pressure is bounded near h = 0, we compute

h′(m∗) = lim
mցm∗

h′(m) = lim
hց0

m′(h)−1 = lim
hց0

(∂2p

∂h2

)−1

6= 0. (2.47)

This implies thatm(h) and, in turn, p(h), have analytic continuation at h = 0.
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Chapter 3

Kac Potentials

Kac potentials, which we already described briefly in the Introduction, are a
particular case of the potentials described in the previous chapter. Their main
characteristic is to provide, in the van der Waals Limit, a rigorous justification
of the Maxwell Construction.

One of our main results, Theorem 1.3, was formulated in terms of the simple
lattice gas. In Chapter 2, we showed that all the analyticity properties of the
lattice gas can be deduced from those of the associated ferromagnet. Therefore,
the aim of this chapter is to give a stronger version of Theorem 1.3, in terms of
the ferromagnet.

The notations are the same as those of Chapter 2: at each site i ∈ Zd, d ≥ 2,
lives a spin σi ∈ {±1}. The configuration space is Ω = {±1}Z

d

. For any finite
set Λ ⊂ Zd, ΩΛ = {±1}Λ. Let J : R

d → R
+ be supported by the cube {y ∈ R

d :
‖y‖ ≤ 1} = [−1,+1]d, so that

∫
J(x)dx = 1 . (3.1)

Recall that Kac potentials are defined with the help of a scaling parameter 0 <
γ < 1 that allows to tune the range of interaction:

Jγ(i, j) := cγγ
dJ(γ(i− j)) , (3.2)

where cγ is defined in such a way that

Ĵ =
∑

j 6=0

Jγ(0, j) ≡ 1 . (3.3)

It is easy to see that (3.1) implies limγց0 cγ = 1. Since Jγ(i, j) = 0 if d(i, j) > γ−1,
we call R := γ−1 the range of the interaction.

43
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Convention: Unless stated explicitly, R will always denote the range of interac-
tion, i.e. γ−1.

For a finite volume Λ, σ ∈ ΩΛ, the Kac hamiltonian is defined by

Hh
Λ(σ) = −

∑

{i,j}⊂Λ
i6=j

Jγ(i, j)σiσj − h
∑

i∈Λ
σi , (3.4)

where h ∈ R is the magnetic field. The free energy and pressure density associated
to this ferromagnet are defined as in Chapter 2 and are denoted

fγ = fγ(m) , pγ = pγ(h) . (3.5)

Most often, we will drop the inverse temperature β from the notations. For all
0 < γ < 1, fγ and pγ are convex, and by the equivalence of ensembles, each can
be obtained from the other by a Legendre transform, as in (2.25).

3.1 The van der Waals Limit

An interesting property of the potentials fγ and pγ is that they can be given a
closed form in the van der Waals Limit γ ց 0, in which the range of Jγ(i, j) goes
to infinity. Before stating this result, we must remind the main properties of the
mean field model.

3.1.1 Thermodynamic Potentials of Mean Field

The mean field (or Curie-Weiss) model is an approximation of long range systems,
in which the geometry looses its fundamental role, and in which the thermody-
namic potentials can be computed explicitely. For a finite box Λ, consider the
mean field hamiltonian

HMF,h
Λ (σ) := − 1

|Λ|
∑

{i,j}⊂Λ
i6=j

σiσj − h
∑

i∈Λ
σi . (3.6)

This model is not realistic since the coupling constant depends on the volume of
the system. In particular, the results of Chapter 2 don’t apply. Nevertheless, the
simple form of the hamiltonian shows that the canonical partition function can
be computed explicitely (M ∈ MΛ):

ZMF (Λ,M, β) =
∑

σ∈ΩΛ∑
i∈Λ σi=M

e−βH
MF,0
Λ (σ) =

( |Λ|
|Λ|+M

2

)
eβ

M2

2|Λ| e−β . (3.7)
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The free energy density fMF (m), m ∈ [−1,+1], can then be easily computed:

fMF (m) = −1

2
m2 − 1

β
I(m) , (3.8)

where

I(m) := −1 −m

2
log

1 −m

2
− 1 +m

2
log

1 +m

2
. (3.9)

There are two competing terms in the mean field free energy fMF . The first,
−1

2
m2, is concave. The second,− 1

β
I(m), is convex and depends on β. It is easy

to see that β = 1 is a threshold called the critical temperature of mean field: for
β ≤ 1 the free energy fMF is strictly convex, but for β > 1, fMF is non-convex,
and has two minima ±m∗(β), where m∗(β) is the positive solution of

m = tanh(βm) . (3.10)

In the same way, the pressure density pMF (h) can be computed and yields

pMF (h) = sup
m

(
hm− fMF (m)

)
. (3.11)

The pressure pMF (h) is convex. It is the Legendre transform of the free energy,
but the free energy is not the Legendre transform of the pressure: the equivalence
of ensembles doesn’t hold in the mean field model.

It must be noted that the thermodynamic potentials of mean field behave analyti-
cally at their transition points. Remember that this had been used by Temperley
and Katsura in their discussion of the analyticity properties at condensation.
Katsura had then conjectured that the mean field behaviour holds in general, i.e.
also for finite range models.

3.1.2 The Lebowitz-Penrose Theorem

For all 0 < γ < 1 the functions fγ, pγ are both convex, and equivalence of en-
semble holds. Since a pointwise limit of convex functions is convex, they remain
convex in the van der Waals Limit, and we expect them to be related, in some
way, to the mean field potentials fMF , pMF .

Let f = f(x) be a real function. The convex envelope of f , CE f(x) denotes
the largest convex function smaller than f . In the present setting, the Lebowitz-
Penrose Theorem [LP] is the following.

Theorem 3.1. In the van der Waals Limit,

fγ(m) −→ CE fMF (m) , (3.12)

pγ(h) −→ pMF (h) . (3.13)
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p0(h)

h

f0(m)

−m∗ +m∗
m

Figure 3.1: The pressure p0 and free energy f0 when β > 1. The dotted lines are the
analytic continuations provided by mean field.

See the monograph of Presutti [Pr] for a simple and elegant proof of this result.
Define f0(m) := limγց0 fγ(m) and p0(h) := limγց0 pγ(h). When β > 1, the graph
of f0 is flat on the interval [−m∗(β),+m∗(β)], and p0 has a kink at h = 0. We
have represented f0 and p0 on Figure 3.1.

A consequence of the Theorem of Lebowitz-Penrose is that after the van der Waals
Limit, the analyticity properties are the same as in the van der Waals-Maxwell
Theory.

Corollary 3.1. When β > 1, the limit free energy f0 is analytic everywhere
except at ±m∗(β), and has analytic continuations along the (real) paths m ր
−m∗(β), m ց +m∗(β). The unique analytic continuation is given by the mean
field free energy fMF . Similarly, the limit pressure p0 has analytic continuation
at h = 0.

3.2 Long But Finite Range Interactions

The Lebowitz-Penrose Theorem allows to show that in the van der Waals Limit,
1) the system has a phase transition,
2) the analyticity properties are completely determined by those of the mean field
model.

With regard to 1), a natural question is to know whether the system has a phase
transition also for small γ > 0, i.e. before the van der Waals Limit. As was noted
by Presutti in [Pr], it could be that fγ is strictly convex for all γ > 0 and f0
is flat on [−m∗(β),+m∗(β)]. Indeed, strictly convex functions can approximate
arbitrarily well straight segments. It was shown by Cassandro-Presutti [CP] and
Bovier-Zahradńık [BZ1] that the system does indeed exhibit a phase transition
for small enough γ > 0:
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Theorem 3.2. For all β > 1 there exists γ(β) > 0 such that for all γ ∈ (0, γ(β)),
the free energy fγ is flat on some interval [−m∗(β, γ),+m∗(β, γ)], i.e. the pressure
pγ has a discontinuous derivative at h = 0.

With regard to 2), we will now see that the situation is very different when γ > 0.

3.2.1 Non-Analyticity for γ > 0

Concerning 2) and in comparison with Theorem 3.2, we are naturally led to the
following question: can it be shown that for small enough γ, fγ has analytic
continuation at ±m∗(β, γ)? Our result answers negatively to this question, in
the case where the function J(·) is the step function

J(x) = 2−d1{‖y‖≤1}(x) . (3.14)

Theorem 3.3. There exists β0 and γ0 > 0 such that for all β ≥ β0, γ ∈ (0, γ0),
fγ is analytic everywhere except at ±m∗(β, γ), and has no analytic continuation
along the paths mր −m∗(β, γ), mց +m∗(β, γ).

Notice that β0 is uniform in the scaling parameter γ: Theorem 3.3 confirms the
ideas of Andreev, Fisher and Langer and invalidates the conjecture of Katsura:
the free energy has no analytic continuation as long as the range of interaction is
finite.

As we saw in Chapter 2, the analyticity properties of the free energy can be
obtained from those of the pressure, which is also easier to handle since there
is no constraint on the magnetisation. The following theorem is a complete
description of the analyticity properties of the pressure density at h = 0, again in
the case where J(·) is the step function of (3.14). The presence of the symmetry
pγ(−h) = pγ(h) implies that we need only consider analyticity along the path
hց 0.

Theorem 3.4. There exists β0, γ0 > 0 and a constant Cr > 0 such that for all
β ≥ β0, γ ∈ (0, γ0), the following holds:

1) The limits p(k)(0+) = limhց0 p
(k)
γ (h) exist for all k ∈ N. Moreover, there exists

a constant C+ > 0 such that for all k ∈ N,

sup
0<Reh≤ǫ

|p(k)
γ (h)| ≤

(
C+γ

d
d−1β−

1
d−1

)k
k!

d
d−1 + Ck

r k! (3.15)

where ǫ > 0.
2) The pressure has no analytic continuation at h = 0. More precisely, there
exists C− > 0 and an unbounded increasing sequence of integers k1, k2, . . . such
that for all k ∈ {k1, k2, . . . },

|p(k)
γ (0+)| ≥

(
C−γ

d
d−1β−

1
d−1

)k
k!

d
d−1 − Ck

r k! . (3.16)
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Part 1) of Theorem 3.4 implies that the Taylor series of the pressure at h = 0
exists, part 2) shows that it always diverges. Notice that the lower bound (3.16)
becomes irrelevant when γ ց 0. Moreover, we should mention that each integer
ki of the sequence k2, k2, . . . depends on γ, and limγց0 ki = +∞: information
about non-analyticity is lost in the van der Waals Limit. Since we know from
the Lebowitz-Penrose Theorem, and its corollary that pγ converges, when γ ց 0,
to a function that is is analytic at h = 0, it is worthwhile trying to see if this
emergence of analyticity can be detected for very small γ > 0. Considering the
upper bound (3.15), it easy to show the following

Corollary 3.2. There exists C = C(β) such that for small values of k, i.e. for
k ≤ γ−d, we have the upper bound

sup
0<Reh≤ǫ

|p(k)
γ (h)| ≤ Ckk! , (3.17)

This shows that a close inspection of the derivatives of the pressure reveals how
analyticity starts to manifest when γ approaches 0. These different behaviours
are illustrated on Figure 3.2.

k1 k2 k3 . . .

p
(k)
γ (0+) ∼ k! p

(k)
γ (0+) ∼ k!

d
d−1

N

γ−d

Figure 3.2: The derivatives of the pressure pγ at h = 0, for small γ > 0. The first
ones (k ≤ γ−d) behave like those of an analytic function, but the large ones reveal the
non-analytic feature of the singularity.

By Theorem 3.4, the pressure pγ is non-analytic at h = 0. A consequence of the
upper bound (3.15) is that

sup
h 6=0

|p(2)
γ (h)| <∞ . (3.18)

By Theorem 2.4, this shows Theorem 3.3.

Consequences for the Lattice Gas. Consider the lattice gas with pair inter-
action defined by

Kγ(i, j) := 4Jγ(i, j) , (3.19)

with pressure pγ = pγ(µ) and free energy fγ = fγ(ρ). By Proposition 2.1, pγ is
related to the pressure of the ferromagnet by

pγ(µ) = pγ(h(µ)) + h(µ) − Ĵ , (3.20)
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where h(µ) = 1
2
(µ + 4Ĵ), and Ĵ = 1. As a consequence, the second derivative of

pγ equals

∂2pγ
∂µ2

=
1

4

∂2pγ

∂h2
. (3.21)

Then (3.18) implies that the second derivative of pγ is bounded near µ∗. By
Theorem 3.4 and by the results of Chapter 2, we conclude that

Corollary 3.3. For all β ≥ β0 and γ ∈ (0, γ0), the pressure pγ of the lattice gas
has no analytic continuation at condensation/evaporation points, in either of the
variables µ (chemical potential), ρ (particle density), or v (specific volume). The
same holds for the free energy fγ with respect to the particle density ρ.

3.2.2 Strategy for the proof of Theorem 3.4.

To show Theorem 3.4, we will first construct the phase diagram of the Kac Model
with a complex magnetic field, at low temperatures, γ small. Then, we adapt the
technique of Isakov to obtain lower bounds on the derivatives of the pressure in
a finite volume. These two essential steps deserve a few comments.

Phase Diagram in a Complex Magnetic Field. As we saw in the Introduc-
tion, phase diagrams of lattice systems can be studied in the general framework
of Pirogov-Sinai Theory, which applies when the system under consideration has
a finite number of ground states, and for which the unperturbed hamiltonian
satisfies the Peierls condition. In our case, the Kac potential has two ground
states which are the pure + and pure − configurations, but the Peierls constant
(computed with respect to these two ground states) goes to zero when γ ց 0
since in the van der Waals Limit, the interaction between two arbitrary spins
vanishes. Therefore, a direct application of Pirogov-Sinai Theory, and, in partic-
ular, a direct application of Theorem 1.2, would lead to a range of temperature
shrinking to zero in the van der Waals Limit.

Recently, Bovier and Zahradńık [BZ2] proposed a systematic method to study
spin systems with long but finite range interactions. Their technique allows to
study, for instance, the Kac Model with a magnetic field, in a range of tempera-
ture that is uniform in γ. In their approach, the ground states of Pirogov-Sinai
Theory are replaced by restricted phases, i.e. by sets of configurations. In the
+-restricted phase, for example, all the points are +-correct, i.e. their γ−1-
neighbourhood contains a majority of spins +. When a point is in neither of the
restricted phases, it is in the support of a contour Γ, and it can then be shown
that the contours defined in this way satisfy the Peierls condition with a Peierls
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constant ρ that is uniform in γ: ‖Γ‖ ≥ ρ|Γ| where ‖Γ‖ is the surface energy of
Γ. We will expose this in details in Chapter 4.

In Chapter 5 we show that a polymer representation can be obtained for the
restricted phases, and that their corresponding free energies behave analytically
at h = 0.

The phase diagram is constructed in Chapter 6, where we give precise domains
in which the partition function can be exponentiated. These domains are made
optimal by introducing special isoperimetric constants associated to contours (see
(4.56)). Complications arise from the fact that polymers of the restricted phases
induce interactions among contours. Besides the definition of the restricted en-
sembles, our analysis of the phase diagram is independent of the paper [BZ2].

Implementing the Mechanism of Isakov. To implement the mechanism
used by Isakov, whose main steps were described briefly in the Introduction, we
consider the pressure p+

γ,Λ in a finite box Λ, with a pure +-boundary condition.
By introducing an order among the contours inside Λ, the pressure can be written
as a finite sum:

p+
γ,Λ =

1

β|Λ| logZ+
r (Λ) +

1

β|Λ|
∑

Γ∈C+(Λ)

u+
Λ(Γ) , (3.22)

The difference with (1.41) is the presence of the restricted partition function
Z+
r (Λ), in which the configurations satisfy a local constraint on the magnetisation:

contours (large fluctuations) are absent but small fluctuations are allowed. In
Chapter 7, we use the analysis of Chapters 4 to 6, to study the derivatives of the
functions u+

Λ(Γ), using a stationary phase analysis. When Λ is sufficiently large,

the contributions to p
+(k)
γ,Λ (0) are the following: since it is analytic, the restricted

phase contributes a factor Ck
r k!. Then, a class of contours called k-large gives a

contribution of order k!
d

d−1 . The rest of the contours is shown to have a negligible
contribution in comparison of the k-large ones. This gives a lower bound

|p+(k)
γ,Λ (0)| ≥

(
C−γ

d
d−1β−

1
d−1

)k
k!

d
d−1 − Ck

r k! . (3.23)

In the last step of the proof we show that limΛ p
+,(k)
γ,Λ (0) = p

(k),←
γ (0), and so (3.23)

extends to the thermodynamic limit Λ ր Zd, giving the lower bound (3.16) of
Theorem 3.4.

As we said in the introduction, the technique leading to lower bounds of the type
(3.23) relies heavily on the treatment of some discrete isoperimetric problem.
This will be discussed at the end of Chapter 4.



Chapter 4

Contours and Isoperimetric
Constants

Contours are the relevant objects for the description of systems near first order
phase transition points: they separate regions of space where the system is in
one or the other ground state of the system. Introduced originally by Peierls for
the Ising Model, the notion of contour was extended by Pirogov-Sinai [PS], Sinai
[S] and Zahradńık [Z] for finite range models. Their definition depends on the
range of interaction: the larger the range, the thicker the contours. This implies
that the entropy of the contours, as well as the inverse temperature above which
the theory applies, depends on the range of interaction. For a model with fixed
range this is not a nuisance but in our case we want to study the van der Waals
Limit at fixed temperature, and the standard definition of contour cannot be used.

The key for obtaining a range of temperature that is uniform in γ is to modify the
notion of ground state, and to allow small local deviations of the magnetisation.
This was done by Bovier and Zahradńık in [BZ2] who introduced the notion of
restricted phase, which is the key for studying long but finite range systems 1.

Contours will be composed of blocks of side length l = νγ−1, ν ≥ 2; they sepa-
rate regions of different restricted phases. Since the range of interaction is γ−1,
the analysis of the restricted phases, once the contours are fixed, will depend on
the spins specified on the support of the contours; an important precaution must
be taken when defining the contours: they must be sufficiently decoupled from
the rest of the system. For this reason, we will introduce the parameter δ̃ in (4.16).

Contours are defined in Section 4.1. The Peierls condition is obtained in Section
4.3. In Section 4.4 we introduce the fundamental isoperimetric constants associ-
ated to the contours.

1In a different setting, restricted ensembles were also studied in [BS], [DS] and [BKL], [LMP].
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Remark: Our definition of contour will be different from the usual one used
to study Kac potentials. For instance in [CP] and [BZ1], contours are defined
by comparing the local (empirical) magnetisation to the mean field spontaneous
magnetisation. This allows to study the system very close to the critical tempera-
ture, by using explicitly the mean field functionals. Unfortunately, this technique
hasn’t yet been extended to the study of the Kac model with a magnetic field. In
our case, the local magnetisation is always compared with ±1 (rather than the
spontaneous magnetisation of mean field ±m∗), and we must therefore work at
low temperature, not reaching the whole coexistence regime. Moreover, we need
to introduce a complex magnetic field, which definitely rules out the possibility
of using the standard techniques existing for Kac models.

4.1 Definition of Contours

We introduce some more notations. We have d(x,Λ) = inf{d(x, y) : y ∈ Λ}.
For N ≥ 1, define the box BN(x) := {y ∈ Zd : d(x, y) ≤ N}, and B•N (x) :=
BN(x)\{x}. The N -neighbourhood of Λ is

[Λ]N :=
⋃

x∈Λ
BN(x) , (4.1)

and the boundaries

∂+
NΛ := {x ∈ Λc : d(x,Λ) ≤ N} , (4.2)

∂−NΛ := {x ∈ Λ : d(x,Λc) ≤ N} . (4.3)

A set Λ isN -connected if for all x, y ∈ Λ there exists a sequence x1, x2, . . . , xn−1, xn
with x1 = x, xn = y, xi ∈ Λ, and d(xi, xi+1) ≤ N . If σΛ ∈ ΩΛ, ηΛc ∈ ΩΛc , we
define the concatenation σΛηΛc ∈ Ω in the usual way:

(σΛηΛc)i =

{
(σΛ)i if i ∈ Λ ,

(ηΛc)i if i ∈ Λc .
(4.4)

We often use the symbol # to denote either of the symbols + or −, or the constant
configuration taking the value # at each site of Zd. Recall the definition of Jγ(i, j)
in (3.2). We define

φij(σi, σj) := −1

2
Jγ(i, j)(σiσj − 1) . (4.5)

Let φij := φij(+,−). The overall interaction strength is the upper bound on the
energy of interaction of a single spin with the rest of the system, and equals

∑

j:j 6=i
φij =

∑

j:j 6=i
Jγ(i, j) = 1 . (4.6)
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Correct and Incorrect Points. Relevant functions for the study of nearly
constant spin regions are the following (they will appear naturally later when
reformulating the hamiltonian):

w#
ij (σi, σj) := φij(σi, σj) − φij(#, σj) − φij(σi,#) . (4.7)

Notice that w#
ij (#, σj) = w#

ij (σi,#) = 0. Let δ ∈ (0, 1), σ ∈ Ω. With regard to
the step function J defined in (3.14), we define a point i to be (δ,+)-correct for
σ if

|B•R(i) ∩ {j : σj = −1}| ≤ δ
2
|BR(i)| . (4.8)

That is, the R-neighbourhood of a (δ,+)-correct point contains a majority of
+ spins. Although we will always consider the step function, it is often easier
to formulate proofs with the help of the functions w#

ij , since they will appear
naturally later in the re-formulation of the hamiltonian. We thus define the
notion of correct/incorrect point in the general case.

Definition 4.1. Let δ ∈ (0, 1), σ ∈ Ω, i ∈ Zd.
1) i is (δ,+)-correct for σ if

∑
j:j 6=i |w+

ij(−, σj)| ≤ δ.

2) i is (δ,−)-correct for σ if
∑

j:j 6=i |w−ij(+, σj)| ≤ δ.
3) i is δ-correct for σ if it is either (δ,+)- or (δ,−)-correct for σ.
4) i is δ-incorrect for σ if it is not δ-correct.

It is easy to see that this definition coincides with (4.8) when J is the step
function.
The notion of correctness for a point i depends on the spins in the R-neighbour-
hood of i but neither on the value of σi, nor on the magnetic field. Notice that if
δ = 0 this notion of correct point essentially coincides with the one of Zahradńık
in [Z]. We first show that when δ is small, regions of (δ,+)- and (δ,−)-correct
points are distant. In particular, a point i cannot be at the same time (δ,+)- and
(δ,−)-correct.

Lemma 4.1. Let δ ∈ (0, 2−d), σ ∈ Ω, i ∈ Zd. Then
1) If i is (δ,+)-correct, the box BR(i) contains either (δ,+)-correct, or δ-incorrect
points, but no (δ,−)-correct points.
2) If i is (δ,−)-correct, the box BR(i) contains either (δ,−)-correct, or δ-incorrect
points, but no (δ,+)-correct points.

Proof. Suppose i is (δ,+)-correct for σ. Consider j ∈ BR(i) and compute

∑

k:k 6=j
|w−jk(+, σk)| =

∑

k∈B•
R(j)

σk=+1

2φjk ≥
∑

k∈B•
R(j)∩B•

R(i)
σk=+1

2φjk . (4.9)
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Using the properties of the function J(·) 2, we can exchange j and i and write

∑

k∈B•
R(j)∩B•

R(i)
σk=+1

2φjk =
∑

k∈B•
R(j)∩B•

R(i)
σk=+1

2φik =
∑

k 6=i
σk=+1

2φik −
∑

k 6∈B•
R(j)∩B•

R(i)
σk=+1

2φik . (4.10)

Using (4.6) and |BR(j) ∩ BR(i)| ≥ 2−d|BR(i)|, this last sum can be bounded by

∑

k 6∈B•
R(j)∩B•

R(i)
σk=+1

φik ≤
2d − 1

2d
. (4.11)

Then, since i is (δ,+)-correct for σ,

∑

k 6=i
σk=+1

2φik = 2 −
∑

k 6=i
σk=−1

2φik = 2 −
∑

k:k 6=i
|w+

ik(−, σk)| ≥ 2 − δ . (4.12)

We thus have the lower bound

∑

k:k 6=j
|w−jk(+, σk)| ≥ 2 − δ − 2

2d − 1

2d
> δ , (4.13)

i.e. j cannot be (δ,−)-correct for σ, which finishes the proof.

In the sequel we will always assume that δ ∈ (0, 2−d) is fixed. The cleaned
configuration σ ∈ Ω is defined as follows:

σi :=






+1 if i is (δ,+)-correct for σ ,

−1 if i is (δ,−)-correct for σ ,

σi if i is δ-incorrect for σ .

(4.14)

For any set M ⊂ Zd, we can always consider the partial cleaning σMσMc which
coincides with σ on M and with σ on M c. In the sequel, the cleaning and partial
cleaning are always done according to the original configuration σ, with a fixed
δ. Notice that if a point i is, say, (δ,+)-correct for σ, then the cleaning of σ has
the only effect, in the box BR(i), of changing − spins into + spins (and not +
spins into − spins). This is a consequence of Lemma 4.1. We denote by Iδ(σ)
the set of δ-incorrect points of the configuration σ. The important property of
the cleaning operation is stated in the following lemma.

Lemma 4.2. Let M1 ⊂M2, δ
′ ∈ (0, δ]. Then Iδ′(σM1σMc

1
) ⊂ Iδ′(σM2σMc

2
).

2At this point we use the particularity of the step function: φjk is constant on the intersection
B•

R(j) ∩ B•
R(i).
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Proof. Let i be a (δ′,+)-correct point of σM2σMc
2
. Using the fact that σM1σMc

1

and σM2σMc
2

coincide on M1 and M c
2 , we decompose

∑

k:k 6=i
|w+

ik(−, (σM1σMc
1
)k)| =

∑

k:k 6=i
k∈M1∪Mc

2

|w+
ik(−, (σM2σMc

2
)k)| +

∑

k:k 6=i
k∈M2\M1

|w+
ik(−, σk)|

There are at most three possibilities for a point k of the last sum. 1) If k is
(δ,+)-correct for σ then σk = +1 and so |w+

ik(−, σk)| = 0. 2) If k is δ-incorrect
for σ then σk = σk = (σM2σMc

2
)k. 3) If k is (δ,−)-correct for σ then it is also

(δ,−)-correct for σM2σMc
2
. By Lemma 4.1, i is not (δ,+)-correct for σM2σMc

2
.

This is a contradiction with the fact that i is (δ′,+)-correct for σM2σMc
2
, so this

last possibility for k is excluded.
We can then bound the whole sum by δ′. This shows that i is (δ′,+)-correct for
σM1σMc

1
, and finishes the proof.

Definition of Contours. Contours are defined on a coarse-grained scale. Con-
sider the partition of Zd into disjoint cubes C(l) of side length l ∈ N, l > 2R,
whose centers lie on the sites of a square sub-lattice of Zd. We denote by C

(l)
i the

unique box of this partition containing the site i ∈ Zd. C(l) will denote the family
of all subsets of Zd that are unions of boxes C(l). For any set A ⊂ Zd, consider
the thickening (compare with (4.1))

{A}l :=
⋃

i∈A
C

(l)
i . (4.15)

In the sequel we consider l such that l = νR, with a fixed ν > 2.
We will need to decouple contours from the rest of the system. Since interac-
tions are of arbitrary large finite range, we follow [BZ2] and introduce a second
parameter δ̃ ∈ (0, δ). This new parameter is crucial; its importance will be seen
later, for instance in the proof of the analyticity of the restricted phases (more
precisely, in the proof of Lemma 5.2). For each σ ∈ Ω with |Iδ̃(σ)| <∞, consider
the following set:

E(σ) :=
{
M ∈ C(l) : M ⊃ [Iδ(σ)]R, M ⊃ [Iδ̃(σMσMc)]R

}
. (4.16)

First we show that E(σ) is not empty. Consider M0 := {[Iδ̃(σ)]R}l. If M0 = ∅ then
Iδ̃(σ) = Iδ(σ) = ∅ and any subset of Zd is in E(σ). So we assume M0 6= ∅. This
gives E(σ) 6= ∅ since M0 ∈ C(l), M0 ⊃ [Iδ̃(σ)]R ⊃ [Iδ(σ)]R and M0 ⊃ [Iδ̃(σ)]R ⊃
[Iδ̃(σM0σMc

0
)]R by Lemma 4.2. We then show that E(σ) is stable by intersection.

Suppose A,B ∈ E(σ). Then clearly A ∩ B ⊃ [Iδ(σ)]R and using again Lemma
4.2,

A ⊃ [Iδ̃(σAσAc)]R ⊃ [Iδ̃(σA∩Bσ(A∩B)c)]R , (4.17)

B ⊃ [Iδ̃(σBσBc)]R ⊃ [Iδ̃(σA∩Bσ(A∩B)c)]R , (4.18)
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which implies A ∩ B ∈ E(σ). The following set is thus well defined, and is the
candidate for describing the contours of the configuration σ:

I∗(σ) :=
⋂

M∈E(σ)

M . (4.19)

By construction, I∗(σ) is the smallest element of E(σ). A first important property
of I∗(σ) is the following, which will be essential to obtain the Peierls bound on
the surface energy of contours.

Lemma 4.3. There exists, in the 2R-neighbourhood of each box C(l) ⊂ I∗(σ), a
point j ∈ I∗(σ) which is δ̃-incorrect for the configuration σI∗σI∗c.

Proof. Let C(l) ⊂ I∗(σ). First, suppose Iδ(σ) ∩ [C(l)]2R 6= ∅. Then each j ∈
Iδ(σ) ∩ [C(l)]2R is δ-incorrect for σ, and hence δ̃-incorrect for σI∗σI∗c , since δ̃ < δ
and σ and σI∗σI∗c coincide on BR(j).
Suppose there exists a box C(l) such that 3 [Iδ(σ)]R ∩ [C(l)]R = ∅. If Iδ̃(σI∗σI∗c)∩
[C(l)]2R = ∅, i.e. [Iδ̃(σI∗σI∗c)]R ∩ [C(l)]R = ∅, then we define I ′ := I∗\C(l)

and show that I ′ ∈ E(σ), a contradiction with the definition of I∗. First,
I ′ ⊃ [Iδ(σ)]R. Using Lemma 4.2, I∗ ⊃ [Iδ̃(σI∗σI∗c)]R ⊃ [Iδ̃(σI′σI′c)]R. Since we
have [Iδ̃(σI∗σI∗c)]R∩[C(l)]R = ∅, this implies I ′ ⊃ [Iδ̃(σI′σI′c)]R, i.e. I ′ ∈ E(σ).

When studying restricted phases, we will need to re-sum over the set of configu-
rations that have the same set of contours, that is to consider, for a fixed σ (we
assume I∗(σ) 6= ∅),

A(σ) :=
{
σ′ : σ′I∗(σ) = σI∗(σ), I

∗(σ′) = I∗(σ)
}
. (4.20)

It is important to have an explicit characterisation of the set A(σ). Let Λ#(σ)
denote the set of points of I∗(σ)c that are (δ,#)-correct for σ. By Lemma 4.1 we
have d(Λ+(σ),Λ−(σ)) > l, and we have the partition

Zd = I∗(σ) ∪ Λ+(σ) ∪ Λ−(σ) . (4.21)

We now show that the set A(σ) can be characterised explicitly by

D(σ) :=
{
σ′ : σ′I∗(σ) = σI∗(σ), each i ∈ [Λ#(σ)]R is (δ,#)-correct for σ′

}
.

Proposition 4.1. If I∗(σ) 6= ∅, then A(σ) = D(σ).

Proof. 1) Assume σ′ ∈ A(σ). Then I∗ ≡ I∗(σ) = I∗(σ′) ⊃ [Iδ(σ
′)]R, so that each

i ∈ [I∗c]R is δ-correct for σ′. Let A be a maximal connected component of [I∗c]R.
There exists i ∈ A such that i ∈ I∗, since we assumed I∗ 6= ∅. By Lemma 4.1,
it suffices to show that i is (δ,+)-correct for σ if and only if it is (δ,+)-correct

3Here we use the fact that A ∩ [B]2R = ∅ if and only if [A]R ∩ [B]R = ∅.
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for σ′. Assume this is not the case, e.g. suppose i is (δ,+)-correct for σ and
(δ,−)-correct for σ′. That is,

∑

j 6=i
|ω+
ij(−, (σI∗σI∗c)j)| =

∑

j∈B•
R(i)∩I∗

|w+
ij(−, σj)| ≤ δ̃ , (4.22)

∑

j 6=i
|ω−ij(+, (σ′I∗σ′I∗c)j)| =

∑

j∈B•
R

(i)∩I∗
|w−ij(+, σj)| ≤ δ̃ . (4.23)

Since i ∈ I∗ we have 4

∑

j∈B•
R(i)∩I∗c

|w−ij(+, (σI∗σI∗c)j)| ≤
∑

j∈B•
R(i)∩I∗c

|w−ij(+,+)| ≤ 2(1 − 2−d) .

Therefore we get a contradiction, since,

2 =
∑

j 6=i
|w+

ij(−, (σI∗σI∗c)j)| + |w−ij(+, (σI∗σI∗c)j)|

≤ 2δ̃ + 2
∑

j∈B•
R(i)∩I∗c

|w−ij(+, (σI∗σI∗c)j)| ≤ 2δ̃ + 2(1 − 2−d) < 2 , (4.24)

where we used the fact that δ̃ < δ < 2−d.
2) Suppose σ′ ∈ D(σ). Since σ′ coincides with σ on I∗(σ) and all points of
[I∗(σ)c]R are δ-correct for σ′, we have Iδ(σ

′) = Iδ(σ). This gives I∗(σ) ⊃
[Iδ(σ)]R = [Iδ(σ

′)]R. Then, since σI∗(σ)σI∗(σ)c = σ′I∗(σ)σ
′
I∗(σ)c , we have I∗(σ) ⊃

[Iδ̃(σI∗(σ)σI∗(σ)c)]R = [Iδ̃(σ
′
I∗(σ)σ

′
I∗(σ)c)]R. This implies I∗(σ) ∈ E(σ′), i.e. I∗(σ′) ⊂

I∗(σ). Assume I∗(σ)\I∗(σ′) 6= ∅. Using the fact that σ and σ′ coincide on
I∗(σ)\I∗(σ′), we have σI∗(σ′)σI∗(σ′)c = σ′I∗(σ′)σ

′
I∗(σ′)c . This gives, like before,

I∗(σ′) ⊃ [Iδ̃(σ
′
I∗(σ′)σ

′
I∗(σ′)c)]R = [Iδ̃(σI∗(σ′)σI∗(σ′)c)]R. With I∗(σ′) ⊃ [Iδ(σ

′)]R =
[Iδ(σ)]R, this implies I∗(σ′) ∈ E(σ), i.e. I∗(σ′) ⊃ I∗(σ). So σ′ ∈ A(σ).

In particular, Proposition 4.1 implies that σI∗(σ)σI∗(σ)c is an element of A(σ).

Definition 4.2. The connected components of I∗(σ) form the support of the con-

tours of the configuration σ, and are written supp Γ1, . . . , supp Γn. A contour is
thus a couple Γ = (supp Γ, σΓ), where σΓ is the restriction of σ to Γ.
A family of contours {Γ1, . . . ,Γn} is admissible if there exists a configuration σ
such that {Γ1, . . . ,Γn} are the contours of σ 5.

4Here we use a property of the step function, but this can be done for any Kac potential
whose function J has the symmetry J(x) = J(y) when ‖x‖ = ‖y‖.

5Note that the configuration σ is not unique, unlike in the usual situation treated in Pirogov-
Sinai Theory.
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The fact that the contours are defined on a coarse-grained scale will be crucial
when dealing with their entropy, which we must control uniformly in γ. Notice
that two (distinct) contours are at distance at least l from each other. We will
usually denote supp Γ also by Γ. Contours should always be considered together
with their type and labels, which we are about to define. The following topological
property is needed for the definition of labels.

Lemma 4.4. Fix R ≥ 1. Let B ⊂ Zd be R-connected and bounded. Then ∂+
RA

and ∂−RA are R-connected, where A is any maximal R-connected component of
Bc = Zd\B.

Proof. Let A be any maximal R-connected component of Bc. Then Ac is R-
connected. Indeed, let x, y ∈ Ac, and consider a path x1 = x, x2, . . . , xn = y,
d(xi, xi+1) ≤ R. If xi ∈ Ac for all i there is nothing to show. So suppose there
exists 1 ≤ i− < i+ ≤ n such that {x1, . . . , xi−−1, xi−} ⊂ Ac, xi−+1 ∈ A, xi+−1 ∈ A,
{xi+ , xi++1, . . . , xn} ⊂ Ac. Since A is maximal, we have xi− ∈ B, xi+ ∈ B, and
we can find a path from xi− to xi+ entirely contained in B, i.e. in Ac.
We then show that ∂+

1 A is R-connected. Fix ǫ > 0 and consider the sets

X =
{
x ∈ R

d : d(x,A) ≤ R
2

+ ǫ
}
, (4.25)

Y =
{
y ∈ R

d : d(y, Ac) ≤ R
2

+ ǫ
}
. (4.26)

Then X, Y are closed arc-wise connected subsets of Rd, and X ∪ Y = Rd. By a
Theorem of Kuratowski, X ∩ Y is arc-wise connected 6. Let ǫ′ > 0 and consider
x, y ∈ ∂+

1 A, together with x̃, ỹ ∈ X ∩ Y such that d(x, x̃) < 1
2
, d(y, ỹ) < 1

2
. Then

consider any sequence x̃1 = x̃, . . . , x̃n = ỹ, x̃i ∈ X ∩Y , d(x̃i, x̃i+1) ≤ ǫ′. For each i
we have d(x̃i, A) ≤ R

2
+ ǫ, d(x̃i, A

c) ≤ R
2

+ ǫ. This implies that each box BR
2

+ǫ(x̃i)

contains at least one element x′i ∈ ∂+
1 A, i.e. d(x̃i, x

′
i) ≤ R

2
+ ǫ. We have

d(x′i, x
′
i+1) ≤ d(x′i, x̃i) + d(x̃i, x̃i+1) + d(x̃i+1, x

′
i+1) ≤ R + 2ǫ+ ǫ′ . (4.27)

If 2ǫ + ǫ′ < 1
2
, this shows that ∂+

1 A is R-connected, which implies that ∂+
RA is

R-connected. The same proof holds when ∂+
RA is replaced by ∂−RA.

Let Γ be a contour of σ, A a maximal R-connected component of (supp Γ)c. Let
i ∈ ∂−RA. By definition, i is (δ,#)-correct for σ for some # ∈ {±1}. By Lemmas
4.4 and 4.1, each i′ ∈ ∂−RA is (δ,#)-correct for σ for the same value #. We call
# the label of the component A. There exists a unique unbounded component of
Γc. The label of this component is called the type of the contour Γ. Let Γ be of
type + (resp. −). The union of all components of Γc with label − (resp. +) is
called the interior of Γ, and is denoted intΓ. Notice that there is only one type

6This property of Rd is called unicoherence. See [Ku], vol. 2, Theorem 9 of Chapter 57.I,
and Theorem 2 of Chapter 57.II.



4.2. RE-FORMULATION OF THE HAMILTONIAN 59

of interior. We define V (Γ) := |intΓ|. The union of the remaining components is
called the exterior of Γ, and is denoted by extΓ. A contour is external if it is not
contained in the interior of another contour.

Let Γ be a contour of some configuration σ. Assume Γ is of type +. Consider
the configuration σ[Γ], which coincides with σΓ on the support of Γ, and which
equals +1 on extΓ, −1 on intΓ. Using Proposition 4.1, it is easy to see that σ[Γ]
has a single contour, which is exactly Γ. This can be generalised to a family of
external contours of the same type, as in the second part of the following lemma.

Lemma 4.5. External contours have the following properties:
1) External contours of an admissible family have the same type.
2) Let {Γ1, . . . ,Γn} be a family of external contours, all of the same type. Then
{Γ1, . . . ,Γn} is admissible if and only if d(Γi,Γj) > l for all i 6= j.

Proof. The first statement follows easily from Lemma 4.4. For the second, we
can assume that the contours are of type +. If {Γ1, . . . ,Γn} is admissible, then
by construction the Γi are at distance at least l. Then, assume d(Γi,Γj) > l for
all i 6= j. Consider the configuration σ[Γ1, . . . ,Γn], which coincides with σΓi

on
the support of Γi, which equals +1 on

⋂
i extΓi and −1 on

⋃
i intΓi. Then the

contours of σ[Γ1, . . . ,Γn] are given by {Γ1, . . . ,Γn}.

4.2 Re-formulation of the Hamiltonian

Consider a finite volume Λ ∈ C(l) with the pure +-boundary condition +Λc ∈ ΩΛc .
Let σΛ ∈ ΩΛ. We set σ := σΛ+Λc . The hamiltonian with boundary condition +Λc

is defined by

HΛ(σ) = HΛ(σΛ+Λc) =
∑

{i,j}∩Λ 6=∅
i6=j

φij(σi, σj) +
∑

i∈Λ
u(σi) , (4.28)

where u(σi) = −hσi, h ∈ R. Since we work in a finite volume, we will from now
on identify I∗(σ) with I∗(σ)∩Λ and Λ±(σ) with Λ±(σ)∩Λ. The following lemma
shows how the hamiltonian can be written in such a way that spins in correct
regions interact via the functions w#

ij and are subject to an effective external field

U#.

Lemma 4.6. Define the potential U#(σi) := u(σi) +
∑

j:j 6=i φij(σi,#). Suppose

σΛ is such that I∗(σ) ∩ ∂−RΛ = ∅. Then

HΛ(σ) = HI∗(σI∗σI∗c) +
∑

#

( ∑

{i,j}∩Λ# 6=∅
i6=j

w#
ij (σi, σj) +

∑

i∈Λ#

U#(σi)
)
. (4.29)
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Proof. The proof is a simple rearrangement of the terms. Consider a pair {i, j}
appearing in HΛ(σ). Since d(Λ+,Λ−) > R we have a certain number of cases to
consider: 1) {i, j} ⊂ Λ+. In this case, write

φij(σi, σj) = w+
ij(σi, σj) + φij(σi,+) + φij(+, σj) . (4.30)

The second term contributes to U+(σi), the third to U+(σj). 2) i ∈ Λ+, j ∈ I∗.
In this case the third term contributes to HI∗(σI∗σI∗c). 3) i ∈ Λ+, j ∈ Λc; in this
case, φij(+, σj) = 0. The other cases are similar. Notice that the case i ∈ Λ−,
j ∈ Λc never occurs since points of ∂−RΛ can only be (δ,+)-correct.

4.3 The Peierls Condition

We take a closer look at the term HI∗ . Remember that contours are maximal
R-connected components of I∗. For each contour Γ, σ[Γ] and σI∗σI∗c coincide on
[I∗]R. Since d(Γ,Γ′) > l, we can decompose

HI∗(σI∗σI∗c) =
∑

Γ

HΓ(σ[Γ]) (4.31)

=
∑

Γ

(
‖Γ‖ +

∑

i∈Γ
u(σ[Γ]i)

)
, (4.32)

where the sum is over contours of the configuration σ (contained in Λ), and where
the surface energy is defined by

‖Γ‖ :=
∑

{i,j}∩Γ6=∅
i6=j

φij(σ[Γ]i, σ[Γ]j) . (4.33)

The central result of this section is the following.

Proposition 4.2. Let 0 < δ < 2−d, 0 < δ̃ < δ be fixed, small. The surface
energy satisfies the Peierls condition, i.e. there exists ρ = ρ(δ̃, ν) > 0 such that
for all contour Γ,

‖Γ‖ ≥ ρ|Γ| . (4.34)

The constant ρ is independent of γ and is called the Peierls constant.

Notice that |Γ| denotes the total number of lattice sites contained in the support of
Γ 7. To show Proposition 4.2, we need two lemmas. The first is purely geometric.

Lemma 4.7. For any finite set A ⊂ Zd and for all R0 ∈ N, there exists A0 ⊂ A,
called an R0-approximant of A, such that A ⊂ [A0]R0, and d(x, y) > R0 for all
x, y ∈ A0, x 6= y.

7In the litterature, |Γ| often denotes the number of blocks contained in Γ.
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The second lemma is a property of the Kac potential. (In [BZ2], this property
was called “continuity” for obvious reasons.)

Lemma 4.8. Let σ ∈ Ω, i ∈ Zd, # ∈ {±}. Define

Vσ(i; #) :=
∑

j:j 6=i
φij(#, σj) . (4.35)

Then there exists c2 > 0 such that for all x, y, d(x, y) ≤ R,

|Vσ(x; #) − Vσ(y; #)| ≤ c2
d(x, y)

R
. (4.36)

Proof. The difference Vσ(x; #) − Vσ(y; #) can be expressed as follows:

∑

j∈BR(x)
j 6∈BR(y)

φxj(#, σj) +
∑

j∈BR(x)∩BR(y)
j 6=x, j 6=y

(
φxj(#, σj) − φyj(#, σj)

)
−

∑

j∈BR(y)
j 6∈BR(x)

φyj(#, σj)

The first and last sum can be estimated as follows:

∑

j∈BR(x)
j 6∈BR(y)

φxj(#, σj) ≤
(
|BR(x)| − |BR(x) ∩ BR(y)|

)
sup φij (4.37)

≤ dcγ
(
sup
t

J(t)
)(2R + 1

R

)d−1d(x, y)

R
. (4.38)

Since we are considering the step function (3.14), supt J(t) = 2−d, and the middle
sum vanishes 8, which finishes the proof.

Proof of Proposition 4.2: By Lemma 4.3 there exists in the 2R-neighbourhood of
each C(l) ⊂ Γ a point j ∈ Γ that is δ̃-incorrect for σ[Γ]. Let A be the set of all
such points. We have Γ ⊂ [A]l+2R. Let A0 be any 4R-approximant of A. We have
A ⊂ [A0]4R, i.e. Γ ⊂ [A0]l+6R. Each j ∈ A0 is δ̃-incorrect for σ[Γ] i.e. satisfies

∑

k:k 6=j
|w±jk(∓, σ[Γ]k)| > δ̃ . (4.40)

8If J is an arbitrary K-Lipshitz function:

∑

j∈BR(x)∩BR(y)

∣∣φxj(#, σj) − φyj(#, σj)
∣∣ ≤ Kcγγd

∑

j∈BR(x)∩BR(y)

d(γx, γy)

≤ Kcγγd|BR(x)|d(x, y)

R
. (4.39)
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Since |w±jk(∓, σ[Γ]k)| = 2φjk(±, σ[Γ]k),

Vσ[Γ](j;±) =
∑

k:k 6=j
φjk(±, σ[Γ]k) >

δ̃

2
. (4.41)

We bound the surface energy from below as follows:

‖Γ‖ ≥ 1

2

∑

j∈A0

∑

k∈BR(j)∩Γ

∑

l:l 6=k
φkl(σ[Γ]k, σ[Γ]l)

=
1

2

∑

j∈A0

∑

k∈BR(j)∩Γ
Vσ[Γ](k; σ[Γ]k) ≥

1

2

∑

j∈A0

∑

k∈BR(j)∩C(l)
j

Vσ[Γ](k; σ[Γ]k)

≥ 1

2

∑

j∈A0

∑

k∈BR(j)∩C(l)
j

d(k,j)≤ δ̃
4c2

R

Vσ[Γ](k; σ[Γ]k) ,

where c2 was defined in Lemma 4.8, and we assumed δ̃ is small enough. Using
(4.36) for each k of the sum,

Vσ[Γ](k; σ[Γ]k) = Vσ[Γ](j; σ[Γ]k) +
(
Vσ[Γ](k; σ[Γ]k) − Vσ[Γ](j; σ[Γ]k)

)
(4.42)

≥ δ̃

2
− c2

d(k, j)

R
≥ δ̃

2
− c2

δ̃

4c2
=
δ̃

4
. (4.43)

We used the important fact that the correctness of a point j does not depend on
the value taken by the spin σj . This gives the lower bound

‖Γ‖ ≥ 1

2
|A0|

1

2d
|B δ̃

4c2
R
(0)| δ̃

4
≥ δ̃

2d+3
|B δ̃

4c2
R
(0)||Bl+6R(0)|−1|Γ| ≥ ρ|Γ| .

4.4 Isoperimetric Constants

We discussed in the Introduction of the importance of the isoperimetric ratios
V (Γ)
‖Γ‖ . These will play a fundamental role in the proof of non-analyticity of the
pressure at h = 0. In the present section, we discuss more precisely a few isoperi-
metric problems and their associated constants.

To start with, we give a purely geometrical (model-independent) result. It is
essentially a consequence of the standard isoperimetric inequality on Zd.
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Lemma 4.9. Let B ∈ C(l), and let A be the union of all finite maximal R-
connected component of Bc. Then

|B| ≥ |∂+
l A| ≥ l|A| d−1

d . (4.44)

Proof. Consider the edge boundary δ+A := {e = 〈i, j〉 : i ∈ A, j ∈ Ac}, where
〈i, j〉 means that i, j are nearest neighbours. Decompose δ+A = E1 ∪ · · · ∪ Ed,
where Eα is the set of edges of δ+A that are parallel to the coordinate axis α.
Suppose e = 〈i, j〉, i ∈ A, j ∈ Ac. Since A is maximal, C

(l)
j ⊂ B. Moreover,

Te :=
{
j, j + (j − i), j + 2(j − i), . . . , j + (

l

2
− 1)(j − i)

}
⊂ B . (4.45)

For all e, e′ ∈ Eα, Te ∩ Te′ = ∅. So for all α,

|∂+
l A| ≥

∣∣∣
⋃

e∈Eα

Te

∣∣∣ =
∑

e∈Tα

|Te| =
l

2
|Eα| . (4.46)

Considering the inequality |δ+A| ≤ dmaxα |Eα| and the standard isoperimetric

inequality |δ+A| ≥ 2d|A| d−1
d finishes the proof.

By Proposition 4.2 and Lemma 4.9, we have

V (Γ)

‖Γ‖ ≤ V (Γ)

ρ|Γ| ≤ 1

ρl
V (Γ)

1
d . (4.47)

Since the Peierls constant ρ is not optimal, there certainly doesn’t exist contours
that saturate inequality (4.47). That is, (ρl)−1 can be considered as a “bad”
isoperimetric constant.

The Assumption of Isakov. In his second paper 9, Isakov introduced the
following numbers (N ∈ N):

τ(N) := sup
{V (Γ)

‖Γ‖ : ∀Γ, V (Γ) ≤ N
}
. (4.48)

By (4.47) we have an upper bound τ(N) ≤ (ρl)−1N
1
d , and a lower bound can be

obtained easily, by choosing a cubical contour. We get

α−N
1
d ≤ τ(N) ≤ α+N

1
d , (4.49)

9In [Isakov2], Isakov was considering a two phase model, different from the Kac Model,
where the phases are not necessarily related by symmetry. He studied the phase diagram with
the help of two functions τ1(N), τ2(N), one for each phase. Here we are in the case where only
one function is necessary, because of symmetry.
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with α−, α+ > 0. Isakov constructed the phase diagram of his model with the
help of the numbers τ(N), but he showed non-analyticity at the transition point
only under the following assumption, which requires the exact asymptotic be-
haviour of τ(N) to be known.

Assumption ([Isakov2]): The following limit exists:

lim
N→∞

N−
1
d τ(N) = α . (4.50)

For a given model, in particular in the case we are considering, the existence of
the limit (4.50) seems very hard, if not impossible, to check. The difficulty lies in
the fact that the surface energy ‖Γ‖ depends on the way in which the contours
were defined and on the details of the underlying interactions of the hamiltonian.

Before showing how this problem can be avoided, let us explicit the implications
of (4.50). By definition of τ(N), there exists for all N a contour ΓN such that
V (ΓN) ≤ N and

τ(N) = τ(V (ΓN)) =
V (ΓN)

‖ΓN‖
. (4.51)

Using the bounds (4.49), we get

(α−
α+

)d
N ≤ V (ΓN) ≤ N . (4.52)

By (4.50), this implies limN V (ΓN)−
1
d τ(V (ΓN)) = α. Using (4.51), this shows

that the assumption of Isakov implies the existence, for all ǫ > 0, of a sequence
(ΓN)N≥1, V (ΓN ) ր +∞, such that for large enough N ,

(1 − ǫ)αV (ΓN)
1
d ≤ V (ΓN)

‖ΓN‖
≤ (1 + ǫ)αV (ΓN)

1
d . (4.53)

We call each contour ΓN a maximising contour, in the sense that it saturates some
isoperimetric inequality. The fact that the elements of the sequence (ΓN )N≥1

satisfy V (ΓN) ր +∞ is crucial for obtaining non-analyticity: it implies that the
maximisers can be of arbitrary large size 10. In fact, the assumption of Isakov
could be formulated in the following way, which is slightly weaker but gives the
same results. Let C(N) be the bounded increasing sequence of isoperimetric
constants defined by

C(N) := inf
{
κ > 0 :

V (Γ)

‖Γ‖ ≤ κV (Γ)
1
d ∀Γ , V (Γ) ≤ N

}
. (4.54)

10This will imply the existence of an unbounded sequence k1, k2, . . . such that the ki-th

derivative of the pressure at h = 0 behaves like ki!
d

d−1 .
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Let C(∞) := limN→∞C(N).

Assumption (variant): There exists for all ǫ > 0 a sequence of maximising
contours (ΓN )N≥1 such that V (ΓN) ր +∞ and for large enough N ,

(1 − ǫ)C(∞)V (ΓN)
1
d ≤ V (ΓN )

‖ΓN‖
≤ (1 + ǫ)C(∞)V (ΓN)

1
d . (4.55)

Redefining the Isoperimetric Constants. Our extension of the results of
Isakov is possible after considering the following isoperimetric constants (compare
with (4.54)):

K(N) := inf
{
κ > 0 :

V (Γ)

‖Γ‖ ≤ κV (Γ)
1
d ∀Γ , V (Γ) ≥ N

}
. (4.56)

The advantage of the constants K(N), as can be seen in the following lemma, is
that they are defined in such a way that the assumption of Isakov (or, rather, its
variant) is always satisfied; the precise structure of the maximisers need not be
considered in details.

Lemma 4.10. The sequence K(N) is decreasing and there exists positive con-
stants c−, c+ such that

c−γ ≤ inf
N
K(N) ≤ sup

N

K(N) ≤ c+γ . (4.57)

As a consequence, the following limit exists

K(∞) := lim
N→∞

K(N) . (4.58)

Moreover, there exists for all ǫ > 0 a sequence (ΓN )N≥1, V (ΓN) ր +∞, such
that for N large enough,

(1 − ǫ)K(∞)V (ΓN)
1
d ≤ V (ΓN )

‖Γ‖ ≤ (1 + ǫ)K(∞)V (ΓN)
1
d . (4.59)

Proof. K(N) is decreasing by definition. For the upper bound, use the Peierls
condition and Lemma 4.9: for all Γ,

V (Γ)
d−1

d

‖Γ‖ ≤ V (Γ)
d−1

d

ρ|Γ| ≤ 1

ρl
=

1

ρν
γ ≡ c+γ . (4.60)

For the lower bound, we explicitly construct a large contour of cubic shape.
Fix N and take M ∈ N large, so that ΛM = [−M ; +M ]d ∩ Zd, ΛM ∈ C(l),
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|ΛM | ≥ 2N . Consider the configuration σ defined by σi = −1 if i ∈ ΛM , σi = +1
if i ∈ Λc

M . Clearly, I∗(σ) contains a single contour ΓM (of type +). Using (4.6),
‖ΓM‖ ≤ |ΓM | ≤ 2l|∂+

1 ΛM | = 2νR|∂+
1 ΛM |. Taking M large enough guarantees

|ΛM | ≥ V (ΓM) ≥ 1
2
|ΛM |. This gives, since |∂+

1 ΛM | = 2d|ΛM | d−1
d ,

V (ΓM)

‖ΓM‖ ≥ 1

2

1

2νR

|ΛM |
|∂+

1 ΛM | ≥
γ

8dν
V (ΓM)

1
d ≡ c−γV (ΓM)

1
d . (4.61)

The existence of the sequence (ΓN)N≥1 follows from the definition of K(N) and
from the existence of the limit K(∞).



Chapter 5

Restricted Phases

Restricted phases are the analog of the ground states of Pirogov-Sinai Theory.
The difference with ground states is that they have a non-trivial pressure. We use
them in order to obtain results that are uniform in the range of interaction. The
study of restricted phases we present was invented by Bovier and Zahradńık in
[BZ2]. At a few places our development differs slightly from theirs, so we expose
all the details.

In our analysis of the phase diagram, restricted phases will intervene when we
re-sum over all the configurations that have the same set of contours. Since the
set of configurations having the same set of contours was completely characterised
in Proposition 4.1, we are naturally led to consider systems living in a volume
Λ with a boundary condition ηΛc , with the constraint that each point i ∈ [Λ]R
must be δ-correct. Our aim is to obtain a polymer representation for the parti-
tion function of such systems, and to show that the associated pressure behaves
analytically at h = 0. As will be seen, the presence of the constraint will allow
to treat the system in a way very similar to a high temperature expansion.

A source of complication will be that the definition of polymers, as well as their
weights, will depend on the boundary conditions specified outside Λ. Typically,
the Λ we want to consider is the volume between a given set of contours and the
boundary of a box. That is, the boundary condition is specified partly by the
spins on the contours and partly by the boundary condition outside the box. To
have an idea of the objects that will be constructed in this chapter, see Figure 5.1.

We will only treat the case +, the case − being similar by symmetry. Fix 0 <
δ̃ < δ < 2−d. Consider any finite set Λ ∈ C(l). First of all, we must consider
boundary conditions of the following type:

Definition 5.1. A boundary condition ηΛc ∈ ΩΛc is +-admissible if each i ∈ [Λ]R
is (δ̃,+)-correct for the configuration +ΛηΛc.

67
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More intuitively, a +-admissible boundary condition means that when looked
from any point i inside of Λ, there is a majority of spins +1 on the boundary. In
our case (i.e. with the step function), this can be formulated as follows: for each
i ∈ [Λ]R,

|B•R(i) ∩B| ≤ δ̃
2
|BR(i)| , (5.1)

where the set B is defined by

B = B(ηΛc) := {i ∈ Λc : (ηΛc)i = −1} . (5.2)

In this sense, +-admissible boundary conditions are “good”; there is hope in
being able to control the +-phase in the volume Λ. Notice that the boundary
condition specified by a contour on its interior is always admissible. This is the
reason why the parameter δ̃ was introduced in their definition.

We define the function that allows to realise the constraint obtained after Propo-
sition (4.1): consider a +-admissible boundary condition ηΛc ∈ ΩΛc . Let i ∈ [Λ]R,
σΛ ∈ ΩΛ, and define

1i(σΛ) :=

{
1 if i is (δ,+)-correct for σΛηΛc

0 otherwise .
(5.3)

Then define

1(σΛ) :=
∏

i∈[Λ]R

1i(σΛ) . (5.4)

Notice that 1(+Λ) = 1 since ηΛc is +-admissible. Remember the functions w#
ij

defined in (4.7). The hamiltonian we use for the restricted system is the one
obtained after the re-formulation of Lemma 4.6 in a region of +-correct points.
Set σ := σΛηΛc . The restricted partition function with boundary condition ηΛc is

Zr
+(Λ; ηΛc) :=

∑

σΛ∈ΩΛ

1(σΛ) exp
(
− β

∑

{i,j}∩Λ 6=∅
i6=j

w+
ij(σi, σj) − β

∑

i∈Λ
U+(σi)

)
.

The aim of this chapter is to show that Zr
+ can be put in the form Zr

+ =
eβh|Λ|Zr, where Zr is the partition function of a polymer model, having a normally
convergent cluster expansion in the domain

H+ =
{
h ∈ C : Reh > −1

8

}
. (5.5)
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As will be seen, the reason for logZr
+ to behave analytically at h = 0 is that the

presence of contours is suppressed by 1(σΛ), and that on each spin σi = −1 acts
an effective magnetic field

U+(−1) = h +
∑

j:j 6=i
φij = 1 + h , (5.6)

which is close to 1 when h is in a neighbourhood of h = 0.

Conventions. We will often use the norm

‖f‖D := sup
z∈D

|f(z)| .

When G is a graph we denote by V (G) its set of vertices and by E(G) its set of
edges.

5.1 Representation with Polymers

The influence of a boundary condition can always be interpreted as a magnetic
field acting on sites near the boundary. We thus rearrange the terms of the
hamiltonian as follows:

∑

{i,j}∩Λ 6=∅
i6=j

w+
ij(σi, σj) +

∑

i∈Λ
U+(σi)

=
∑

{i,j}⊂Λ
i6=j

w+
ij(σi, σj) +

∑

i∈Λ

(
U+(σi) +

∑

j∈Λc

w+
ij(σi, (ηΛc)j)

)
. (5.7)

By defining a new effective non-homogeneous magnetic field

µ+
i (σi) := U+(σi) + h+

∑

j∈Λc

w+
ij(σi, (ηΛc)j) , (5.8)

we can extract a volume term from Zr
+ and write Zr

+ = eβh|Λ|Zr, where

Zr :=
∑

σΛ∈ΩΛ

1(σΛ) exp
(
− β

∑

{i,j}⊂Λ
i6=j

w+
ij(σi, σj) − β

∑

i∈Λ
µ+
i (σi)

)
. (5.9)

Notice that the field µ+
i (σi) becomes independent of ηΛc when d(i,Λc) > R. Since

w+
ij(σi, σj) = 0 if σi = +1 or σj = +1 and µ+

i (+1) = 0, we need only consider
points i with σi = −1, which will be identified with the vertices of a graph. Each
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vertex of this graph will then get a factor e−βµ
+
i (−1). When h ∈ H+, we can use

the fact that ηΛc is +-admissible and that δ̃ < 2−d:

Reµ+
i (−1) = 1 + 2Reh+

∑

j∈Λc

w+
ij(−, (ηΛc)j) ≥ 1 − 21

8
− δ̃ > 1

2
. (5.10)

The formulation of Zr in terms of polymers will be a three step procedure. We
first express Zr as a sum over graphs, satisfying a certain constraint inherited
from 1(σΛ). Then, we associate to each graph a spanning tree and re-sum over all
graphs having the same spanning tree. We will see that the weights of the trees
obtained have good decreasing properties. Finally, the constraint is expanded,
yielding sets on which the constraint is violated. These sets are linked with trees.
After a second partial re-summation, this yields a sum over polymers, which are
nothing but particular graphs with vertices living on Zd and whose edges are of
length at most R.

A sum over graphs. Let GΛ be the family of simple non-oriented graphs
G = (V,E) where V ⊂ Λ, each edge e = {i, j} ∈ E has d(i, j) ≤ R. For e = {i, j},
set w+

e := w+
ij(−,−). Notice that ω+

e = −2φij ≤ 0. Define also µ+
i := µ+

i (−1).
Expanding the product over edges leads to the following expression

Zr =
∑

G∈GΛ
1(V (G))

∏

e∈E(G)

(e−βw
+
e − 1)

∏

i∈V (G)

e−βµ
+
i , (5.11)

where 1(V ) := 1(σΛ(V )), and σΛ(V ) ∈ ΩΛ is defined by σΛ(V )i = −1 if i ∈ V , +1
otherwise. With this formulation in terms of graphs, the constraint 1(V (G)) = 1
is satisfied if and only if

∑

e={i,j}
j∈V (G)∪B

|w+
e | ≤ δ ∀i ∈ [Λ]R . (5.12)

Moreover, the fact that the boundary condition ηΛc is +-admissible reduces to
∑

e={i,j}
j∈B

|w+
e | ≤ δ̃ . (5.13)

A sum over trees. Suppose we are given an algorithm that assigns to each
connected graph G0 a deterministic spanning tree T (G0), in a translation invari-
ant way. That is if G′0 is obtained from G0 by translation then T (G′0) is obtained
from T (G0) by the same translation. To be precise, we consider the Penrose al-
gorithm considered in Chapter 3 of [Pf] 1. We apply the Penrose algorithm to

1The Penrose algorithm requires the choice of an origin among the vertices of the graph. We
choose this origin as the smallest vertex of the graph with respect to the lexicographical order.
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each component of each graph G appearing in the partition function (5.11). Let
TΛ ⊂ GΛ denote the set of all forests. We have

Zr =
∑

T∈TΛ
1(V (T ))

∏

t∈T
ω+(t) , (5.14)

where the product is over the trees of T , and the weight of each tree is defined
by

ω+(t) :=
∑

G∈GΛ:
T (G)=t

∏

e∈E(G)

(e−βw
+
e − 1)

∏

i∈V (G)

e−βµ
+
i . (5.15)

Isolated sites {i} ⊂ Λ are also considered as trees. In this case, ω+({i}) = e−βµ
+
i .

The following lemma shows how the re-formulation in terms of trees allows to
take advantage of the constraint.

Lemma 5.1. Let T ∈ TΛ be a forest such that 1(V (T )) = 1. Then for each tree
t ∈ T ,

‖ω+(t)‖H+ ≤
∏

e∈E(t)

(e−βw
+
e − 1)

∏

i∈V (t)

e−
1
4
β . (5.16)

Proof. For each t ∈ T , let E∗(t) denote the set of edges of the maximal connected
graph of {G ∈ GΛ : T (G) = t} (see [Pf]). We can express the weight as follows:

ω+(t) =
∏

e∈E(t)

(e−βw
+
e − 1)

∏

i∈V (t)

e−βµ
+
i

∑

G∈GΛ:
T (G)=t

∏

e∈E(G)\E(t)

(e−βw
+
e − 1)

=
∏

e∈E(t)

(e−βw
+
e − 1)

∏

i∈V (t)

e−βµ
+
i

∏

e∈E∗(t)\E(t)

e−βw
+
e .

Since 1(V (T )) = 1, the constraint (5.12) is satisfied, and the last product can be
bounded by:

∏

e∈E∗(t)\E(t)

eβ|w
+
e | ≤

∏

i∈V (t)

∏

e={i,j}
j∈V (t)

eβ|w
+
e | (5.17)

=
∏

i∈V (t)

exp β
∑

e={i,j}
j∈V (t)

|w+
e | ≤

∏

i∈V (t)

eβδ . (5.18)

This gives the result, since Reµ+
i ≥ 1

2
by (5.10), and δ ≤ 2−d ≤ 1

4
.

Notice that to obtain (5.18), we only needed that the bound
∑

e={i,j}
j∈V (t)

|w+
e | ≤ δ ∀ i ∈ V (t) (5.19)
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be satisfied. This is weaker than (5.12) and clearly 1(V (T )) = 1 only if (5.19)
is satisfied for all t ∈ T . In the sequel we can thus assume that the trees we
consider always satisfy (5.19), independently of each other. So the bound (5.16)
can always be used. A direct consequence of the last lemma is the following result,
which shows that trees and their weights satisfy the main condition ensuring
convergence of cluster expansions (see Appendix C for notations and main results
on the cluster expansion).

Corollary 5.1. Let 0 < c ≤ 1
8
β, ǫ > 0. There exists γ0 > 0 and β1 = β1(ǫ) such

that for all γ ∈ (0, γ0), β ≥ β1, the following bound holds:

∑

t:V (t)∋0
‖ω+(t)‖H+e

c|V (t)| ≤ ǫ . (5.20)

Proof. Using Lemma 5.1,

‖ω+(t)‖H+e
c|V (t)| ≤

∏

e∈E(t)

(e−βw
+
e − 1)

∏

i∈V (t)

e−
1
8
β . (5.21)

When t is a single isolated point (the origin), then we have a factor e−
1
8
β. When

V (t) ∋ 0, E(t) 6= ∅, we define the generation of t, gen(t), as the number of edges
of the longest self avoiding path in t starting at the origin. The sum in (5.20) is
bounded by

e−
1
8
β +

∑

g≥1

∑

t:V (t)∋0
gen(t)=g

∏

e∈E(t)

(e−βw
+
e − 1)

∏

i∈V (t)

e−
1
8
β

≤ e−
1
8
β +

∑

g≥1

e−
1
16
βg

∑

t:V (t)∋0
gen(t)=g

∏

e∈E(t)

(e−βw
+
e − 1)

∏

i∈V (t)

e−
1
16
β

≤ e−
1
8
β +

∑

g≥1

e−
1
16
βgαg ,

where we defined (Vl(t) is the set of leaves of the tree t):

αg :=
∑

t:V (t)∋0
gen(t)=g

∏

e∈E(t)

(e−βw
+
e − 1)

∏

i∈V (t)\Vl(t)

e−
1
16
β
∏

i∈Vl(t)

e−
1
32
β (5.22)

We are going to show that αg+1 ≤ αg for all g ≥ 1. Before going further, we
define

γ0 := sup
{
γ > 0 : 2cγγ

d sup
s

J(s) ≤ 1
64

}
. (5.23)
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Since e−βw
+
e − 1 ≤ β|w+

e |eβ|w
+
e | and |w+

e | = 2φij we can bound, when γ ≤ γ0,

∑

e∋0

(
e−βw

+
e − 1

)
e−

1
32
β ≤ βe−

1
64
β
∑

e∋0
|ω+
e | ≤ 2βe−

1
64
β ≡ βζ(β) . (5.24)

Clearly, a tree t of generation g + 1 can be obtained from a sub-tree t′ ⊂ t of
generation g by attaching edges to leaves of t′. Let x be a leaf of t′. The sum
over all possible edges (if any) attached at x is bounded by

1 +
∑

k≥1

1

k!

∑

e1∋x
· · ·
∑

ek∋x

k∏

i=1

(
e−βw

+
ei − 1

)
e−

1
32
β ≤ 1 +

∑

k≥1

1

k!
(βζ(β))k = eβζ(β) .

Assuming β is large enough so that ζ(β) ≤ 1
32

, the weight of the leaf x changes

into e−
1
16
βeβζ(β) ≤ e−

1
32
β, which is exactly what appears in αg. This shows that

αg+1 ≤ αg. We then have αg+1 ≤ αg ≤ · · · ≤ α1. Like we just did, it is easy to

see that α1 ≤ e−
1
32
β. This proves the result.

A sum over polymers. After the partial re-summation over the graphs having
the same spanning tree, the constraint 1(V (T )) in (5.14) still depends on the
relative positions of the trees. This “multi-body interaction” can be worked out
by expanding

1(V (T )) =
∏

i∈[Λ]R

1i(V (T )) =
∏

i∈[Λ]R

(
1 + 1ci(V (T ))

)
=

∑

M⊂[Λ]R

∏

i∈M
1ci(V (T )) ,

where 1ci(V (T )) := 1i(V (T )) − 1. This yields

Zr =
∑

T∈TΛ

∑

M⊂[Λ]R

(∏

i∈M
1ci(V (T ))

)(∏

t∈T
ω+(t)

)
. (5.25)

Consider a pair (T,M) in (5.25). Let i ∈ M . The function 1ci(V (T )) is non-zero
only when i is not (δ,+)-correct; it depends on the presence of trees of T in the
R-neighbourhood of i and possibly on the points of B(ηΛc) if BR(i)∩Λc 6= ∅. To
make these dependencies only local, we are going to link the R-neighbourhood of
points of M with the trees of T .

Consider the graph N = N(M) defined as follows. The vertices of N are given
by

V (N) :=
⋃

i∈M
BR(i) , (5.26)

and N has an edge between x and y if and only if 〈x, y〉 is a pair of nearest neigh-
bours of the same box BR(i) for some i ∈M . The graph N decomposes naturally



74 CHAPTER 5. RESTRICTED PHASES

into connected components (in the sense of graph theory) N1, N2, . . . , NK . Some
of these components can intersect Λc.

We then link trees ti ∈ T with components Nj ∈ N . To this end, we define

an abstract graph Ĝ: to each tree ti ∈ T , associate an abstract vertex wi and
to each component Nj an abstract vertex zj . The edges of Ĝ are defined as

follows: Ĝ has only edges between vertices wi and zj , and this occurs if and only

if V (ti) ∩ V (Nj) 6= ∅. Consider a connected component of Ĝ, whose vertices
{wi1, . . . , wil, zj1, . . . , zjl} correspond to a set P ′l = {ti1 , . . . , til, Nj1, . . . , Njl}. We
change P ′l into a set Pl, using the following decimation procedure: if P ′l = {ti1} is
a single tree then Pl := P ′l . Otherwise,
1) delete from P ′l all trees tik that have no edges,
2) for all tree tik containing at least one edge, delete all edges e ∈ E(tik) whose
both end-points lie in the same component Njm .
The resulting set is of the form Pl = {ts1 , . . . , tsl

, Nj1, . . . , Njl}, where each tree
tsi

is a sub-tree of one of the trees {ti1 , . . . , til}. Pl is called a polymer. The
decimation procedure P ′l ⇒ Pl is depicted on Figure 5.1.

t1

t3
t4

t2

t5

t6

N1

N2

⇒

ts1

ts2

ts3

ts4

N1

N2

ts5

Figure 5.1: The decimation procedure P ′
l ⇒ Pl. The hatched polygons represent the

body B(Pl) and the legs are the trees {ts1
, ts2

, ts3
, ts4

, ts5
}. Each tsj

is a sub-tree of
some ti.

The body of Pl is B(Pl) := V (Nj1) ∪ · · · ∪ V (Njl). The legs of Pl, L(Pl), are the
trees {ts1 , . . . , tsl

}.

A polymer can have no body (in which case it is a tree of TΛ), or no legs (in which
case it is a single component Nj1). We define the support V (P ) as the total set
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of sites:

V (P ) :=
⋃

t∈L(P )

V (t) ∪
⋃

i

V (Ni) . (5.27)

Often we denote V (P ) also by P . Two polymers are compatible if and only if
V (P1) ∩ V (P2) = ∅, denoted P1 ∼ P2. We have thus associated to each pair
(T,M) a family of pairwise compatible polymers {P} := ϕ(T,M). The set of all
possible polymers constructed in this way is denoted P+

Λ (ηΛc). The representation
of Zr in terms of polymers is then

Zr =
∑

{P}⊂P+
Λ (ηΛc )

compat.

∏

P∈{P}
ω+(P ) , (5.28)

where the weight of a polymer P is defined by

ω+(P ) :=
∑

(T,M):
ϕ(T,M)=P

(∏

i∈M
1ci(V (T ))

)(∏

t∈T
ω+(t)

)
. (5.29)

We should have in mind that ω+(P ) depends on the position of P inside the
volume Λ, via the boundary condition ηΛc : more precisely if B(P ) ∩ Λc 6= ∅ or
if there exists a leg t ∈ L(P ) such that d(t,Λc) ≤ R. Therefore, we define the
family P+ of free polymers of type + whose weights depends only on the intrinsic
structure of P , and not on the boundary condition. The family P+ is translation
invariant, as well as the weight of each of its polymers. To any finite family P,
we associate the partition function

Zr(P) :=
∑

{P}⊂P
compat.

∏

P∈{P}
ω+(P ) , (5.30)

where the product equals 1 when {P} = ∅. For instance,

Zr
+(Λ; ηΛc) = eβh|Λ|Zr(P+

Λ (ηΛc)) . (5.31)

Everything we have done until now can be done for a −-admissible boundary
condition τΛc , yielding a family of polymers P−Λ (τΛc), with weights ω−(P ). In

this case, sites get a factor e−βµ
−
i . In particular, if we consider the spin-flipped

boundary condition −ηΛc defined by (−ηΛc)i := −(ηΛc)i, which is −-admissible,
we have when h is purely imaginary 2,

Zr(P+
Λ (ηΛc)) = Zr(P−Λ (−ηΛc)) . (5.32)

2Here, z denotes the complex conjugate of z.
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5.2 Analyticity of the Restricted Phases

Define the restricted pressure by

p+
r,γ := lim

ΛրZd

1

β|Λ| logZr
+(Λ; +Λc) , (5.33)

where the thermodynamic limit is taken along a sequence of cubes. A result of
the present section is that the restricted pressure, unlike the total pressure pγ,
behaves analytically at h = 0.

The point is that we linked trees with the R-neighbourhood of points of the set
M , and we must now see that this thickening does not destroy, from the point of
view of entropy, the uniformity we have been able to obtain with respect to the
scaling parameter γ. Moreover, the body of polymers can intersect Λc. At this
point we will see that δ− δ̃ > 0 is crucial. We study the weight ω+(P ) (ω−(P ) is
similar by symmetry).

Lemma 5.2. There exists β2 and τ0 > 0 such that for all β ≥ β2 and for all
γ ∈ (0, γ0), the following holds: each polymer P ∈ P+

Λ (ηΛc) satisfies

‖ω+(P )‖H+ ≤ e−τ0β|B(P )|
∏

e∈L(P )

(e−βw
+
e − 1)

∏

i∈L(P )

e−
1
12
β . (5.34)

Proof. Remember that the bound (5.16) holds for each tree under consideration.
If B(P ) = ∅, then P is a tree and the result follows from Lemma 5.1. Otherwise,
‖ω+(P )‖H+ is bounded by

∑

(T,M):
ϕ(T,M)=P

(∏

i∈M
|1ci(V (T ))|

)∏

t∈T

( ∏

e∈E(t)

(e−βw
+
e − 1)

∏

i∈V (t)

e−
1
4
β
)
.

Consider a pair (T,M) such that ϕ(T,M) = P . Let i0 ∈ M , and assume
1ci0(V (T )) 6= 0. This implies, with regard to (5.12),

∑

e={i0,j}
j∈V (T )∪B

|w+
e | > δ . (5.35)

But, according to (5.13), we have

∑

e={i0,j}
j∈B

|w+
e | ≤ δ̃ . (5.36)
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This implies the crucial lower bound

∑

e={i0,j}
j∈V (T )

|w+
e | ≥ δ − δ̃ > 0 . (5.37)

Since |w+
e | = 2φij ≤ 2cγγ

d sups J(s), we can find a constant c3 such that

|V (T ) ∩B•R(i0)| > (δ − δ̃)c3|BR(i0)| . (5.38)

In this sense, the forests that contribute to ω+(P ) accumulate in the neighbour-
hood of each point i0 ∈ M . See Figure 5.2. Let M0 be any 2R-approximant of

P

Λ Λc

Figure 5.2: The re-summation of Lemma 5.2. We emphasised the fact that the forest
T must have many points in B(P ) ∩ Λ, as was shown in (5.39).

M . Then we have |B(P )| ≤ |M0||B3R(0)| and so

|V (T ) ∩ B(P )| ≥
∑

i0∈M0

|V (T ) ∩ BR(i0)| ≥ (δ − δ̃)c4|B(P )| (5.39)

where c4 is a constant. Now, each i ∈ V (T ) gets a factor e−
1
4
β = e−3 1

12
β. One

factor e−
1
12
β contributes to extract a term decreasing exponentially fast with the

size of B(P ), using (5.39):

e−
1
12

(δ−δ̃)c4β|B(P )| . (5.40)

A second factor e−
1
12
β contributes to the weight of the legs. Extracting this

contribution gives

∏

e∈L(P )

(e−βw
+
e − 1)

∏

i∈L(P )

e−
1
12
β , (5.41)
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The last factor e−
1
12
β is used to re-sum over all the possible configurations of T

inside the body B(P ) (see Figure 5.2), that is over all forests T ′, V (T ′) ⊂ B(P ),
where each tree t′ ∈ T ′ gets a weight bounded by

ω0(t
′) :=

∏

e∈E(t′)

(e−βw
+
e − 1)

∏

i∈V (t′)

e−
1
12
β . (5.42)

The remaining sum is thus bounded by

∑

T ′:V (T ′)⊂B(P )

∏

t′∈T ′

ω0(t
′) ≡ Θ0(B(P )) . (5.43)

This partition function can be studied with a convergent cluster expansion (see
Appendix C). Proceeding as we did in Corollary 5.1, we can take β sufficiently
large so that the weight ω0(t

′) satisfies (5.20). We can then guarantee that

|Θ0(B(P ))| ≤ e|B(P )| . (5.44)

The sum over all possible sets M such that N(M) has a set of vertices given by
B(P ) is bounded by 2|B(P )|. Altogether these bounds give

e−
1
12

(δ−δ̃)c4β|B(P )|2|B(P )|e|B(P )| ≡ e−τ0β|B(P )| ,

which finishes the proof.

We now give the consequence of this lemma, namely that polymers satisfy the
main criterion needed for having a convergent cluster expansion.

Corollary 5.2. Let 0 < c ≤ min( τ0
2
, 1

24
)β, ǫ > 0. There exists β3 = β3(ǫ), such

that for all β ≥ β3 and for all γ ∈ (0, γ0), the following holds:

∑

P :V (P )∋0
‖ω+(P )‖H+e

c|V (P )| ≤ ǫ . (5.45)

Proof. Lemma 5.2 allows to bound

‖ω+(P )‖H+ ≤
( ∏

N∈P
ω0(N)

)( ∏

t∈L(P )

ω0(t)
)
≡ ω0(P ) , (5.46)

where the weight of each component of the body N is ω0(N) := e−τ0β|V (N)| and
the weight of each leg t was defined in (5.42). Fix ǫ > 0 small. It is easy to show
that when β is large enough,

∑

N :V (N)∋0
ω0(N)e(c+ǫ)|V (N)| ≤ 1

2
ǫ , (5.47)
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and, proceeding like in Corollary 5.1,

∑

t:V (t)∋0
ω0(t)e

(c+ǫ)|V (t)| ≤ 1
2
ǫ . (5.48)

Let n(P ) denote the number of objects (components N and trees t) contained in
P . That is, if P = {t1, . . . , tL, N1, . . . , NK}, then n(P ) = L +K. We will show
by induction on N = 1, 2, . . . that

λN :=
∑

P :V (P )∋0
n(P )≤N

ω0(P )ec|V (P )| ≤ ǫ , (5.49)

which will finish the proof. If N = 1 then P can be either a single component N
or a tree t. The bound then follows from (5.47) and (5.48). Suppose β is large and
that the bound holds for N . If P satisfies V (P ) ∋ 0, n(P ) ≤ N +1, we choose an
object of P that contains the origin (which can be a tree t0 or a component N0),
and decompose P as follows: either P = {N0} ∪ {P1, . . . , Pk} with V (N0) ∋ 0,
V (Pi) ∩ V (N0) 6= ∅, n(Pi) ≤ N , Pi ∼ Pj for i 6= j, or P = {t0} ∪ {P1, . . . , Pk}
with V (t0) ∋ 0, and V (Pi) ∩ V (t0) 6= ∅, n(Pi) ≤ N , Pi ∼ Pj for i 6= j. In the
first case, we have, using the induction hypothesis and (5.47),

∑

N0:V (N0)∋0
ω0(N0)e

c|V (N0)|
∑

k≥0

1

k!

( ∑

P :V (P )∩V (N0)6=∅
n(P )≤N

ω0(P )ec|V (P )|
)k

(5.50)

≤
∑

N0:V (N0)∋0
ω0(N0)e

c|V (N0)|
∑

k≥0

1

k!

(
|V (N0)|λN

)k
(5.51)

≤
∑

N0:V (N0)∋0
ω0(N0)e

c|V (N0)|eǫ|V (N0)| ≤ 1
2
ǫ . (5.52)

In the second case the same computation yields, using (5.48),

∑

t0:V (t0)∋0
ω0(t0)e

c|V (t0)|
∑

k≥0

1

k!

( ∑

P :V (P )∩V (t0)6=∅
n(P )≤N

ω0(P )ec|V (P )|
)k

≤
∑

t0:V (t0)∋0
ω0(t0)e

c|V (t0)|eǫ|V (t0)| ≤ 1
2
ǫ . (5.53)

This shows that λN+1 ≤ ǫ and finishes the proof.

We now state the main result concerning restricted phases and their analyticity
properties. We refer to Appendix C for notations. Here polymers play the role
of animals. We know that if two polymers P1, P2 are incompatible then V (P1) ∩
V (P2) 6= ∅. Clusters of polymers associated to P+

Λ (ηΛc) are denoted P̂ ∈ P̂+
Λ (ηΛc).
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The bound (5.45) implies that the main condition (C.4) is satisfied. By Lemma
C.1, we have

sup
x∈Λ

∑

P̂∋x

‖ω+(P̂ )‖H+ ≤ sup
x∈Λ

∑

P̂∋x

|ω0(P̂ )| ≤ η(ǫ) , (5.54)

where the weights ω+(P̂ ) and ω0(P̂ ) are defined like in (C.3). Since ǫ can be made
arbitrarily small by taking β large enough, we will replace η(ǫ) by a function ǫr(β),
where the subscript r is to indicate that this function concerns the restricted
phase. We define H̃+ := {Reh > − 1

16
} ⊂ H+.

Theorem 5.1. Let β be large enough, γ ∈ (0, γ0). Let Λ ∈ C(l) and ηΛc be a +-
admissible boundary condition. Then Zr(P+

Λ (ηΛc)) has a cluster expansion that
converges normally in H+, given by

logZr(P+
Λ (ηΛc)) =

∑

P̂∈P̂+
Λ (ηΛc )

ω+(P̂ ) . (5.55)

The maps h 7→ logZr(P+
Λ (ηΛc)), h 7→ p+

r,γ(h) are analytic in H+. Moreover there
exists a function ǫr(β), limβր∞ ǫr(β) = 0, such that

∥∥ logZr(P+
Λ (ηΛc))

∥∥
H+

≤ ǫr(β)|Λ| ,
∑

P̂∈P̂+
Λ (ηΛc )

P̂∋0

‖ω+(P̂ )‖H+ ≤ ǫr(β) ,

∥∥ d

dh
logZr(P+

Λ (ηΛc))
∥∥
H̃+

≤ ǫr(β)|Λ| . (5.56)

Finally,

Zr
+(Λ; ηΛc) = eβh|Λ|Zr(P+

Λ (ηΛc)) = exp
(
βp+

r,γ|Λ| + △+
r (Λ)

)
, (5.57)

with ‖△+
r (Λ)‖H+ ≤ ǫr(β)|∂+

RΛ|.

The proof of the theorem follows easily from Lemma C.1. Analyticity follows from
the fact that the convergence is normal on H+. The bound on the first derivative
is obtained by using the Cauchy formula: any disc of radius 1

16
centered at z ∈ H̃+

is contained in H+. The same can be done for large order derivatives: there exists
a constant Cr > 0 such that for all integer k ≥ 2,

1

|Λ|

∣∣∣∣
dk

dhk
logZr

+(Λ; ηΛc)

∣∣∣∣
h=0

≤ Ck
r k! , |p+(k)

r,γ (0)| ≤ Ck
r k! . (5.58)

The last statement of the theorem follows by the usual rearrangment of the terms
of the cluster expansion.



Chapter 6

The Phase Diagram

Until now we have a notion of contour, with a Peierls constant uniform in the scal-
ing parameter, and a precise description of restricted phases in terms of graphs.
We must now bound these objects together to study the phase diagram of large
systems in a neighbourhood of h = 0. Throughout this section we assume
γ ∈ (0, γ0) is fixed, where γ0 was defined during the analysis of the restricted
phases, in (5.23).

Consider the partition function

Z+(Λ) :=
∑

σΛ∈Ω+
Λ

e−βHΛ(σΛ+Λc ) , (6.1)

where

Ω+
Λ := {σΛ ∈ ΩΛ : d(I∗(σΛ+Λc),Λc) > l} . (6.2)

For each σΛ ∈ Ω+
Λ , the decomposition of I∗(σΛ+Λc) into connected components

yields an admissible family {Γ}, such that Γ ⊂ Λ and d(Γ,Λc) > l for each
Γ ∈ {Γ}. Then, Λ is decomposed into Λ = {Γ} ∪ Λ+ ∪ Λ−, where Λ# are the
points of Λ\{Γ} that are (δ,#)-correct for the configuration σΛ+Λc .

In (6.1), we re-sum over the configurations σΛ+ (resp. σΛ+) on Λ+ (resp. Λ−) that
yield the same set of contours {Γ}. In Proposition 4.1 we characterised explicitly
the constraints satisfied by the configurations σΛ± : each point i ∈ [Λ+]R must be
(δ,+)-correct for the configuration σΛ+ +Λc σ{Γ}, where σ{Γ} is the configuration
specified by the contours on the union of their supports. Similarly, each point
i ∈ [Λ−]R must be (δ,−)-correct for the configuration σΛ−σ{Γ}. Using the re-
formulation of the hamiltonian given in Lemma 4.6 we get:

Z+(Λ) =
∑

{Γ}⊂Λ

( ∏

Γ∈{Γ}
ρ(Γ)

)
Zr

+(Λ+; +Λcσ{Γ})Zr
−(Λ−; σ{Γ}) , (6.3)

81
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where the sum is over admissible families of contours, and

ρ(Γ) := e−βHΓ(σ[Γ]) . (6.4)

Notice that when {Γ} = ∅, then Λ ≡ Λ+ and the summand of (6.3) equals
Zr

+(Λ; +Λc).

Since they are subject to boundary conditions that depend on the family of con-
tours {Γ}, the restricted phases induce interactions between the contours. Nev-
ertheless, the boundary conditions imposed by the contours and +Λc on Λ+ and
Λ− are admissible (in the sense of Definition 5.1). This implies that the results of
Chapter 5 can be used for the restricted partition functions appearing in (6.3). As
a consequence, the interactions created by the polymers of the restricted phases
decay exponentially fast with the distance.

Since we need to represent the partition function with objects whose compatibility
is purely geometrical, we need to proceed by induction, and consider systems
living in the interior of external contours. Therefore, we must study functions
similar to (6.3), with an arbitrary +-admissible boundary condition ηΛc . We thus
define

Θ+(Λ; ηΛc) :=
∑

{Γ}⊂Λ

( ∏

Γ∈{Γ}
ρ(Γ)

)
Zr

+(Λ+; ηΛcσ{Γ})Zr
−(Λ−; σ{Γ}) , (6.5)

Contours always lie at least at distance l from Λc. The external contours of {Γ}
can be subject to particular constraints, but we omit it in the notation. Notice
that for the empty family {Γ} = ∅, the summand corresponds to a pure restricted
phase Zr

+(Λ; ηΛc).

The aim, in the study of Θ+(Λ; ηΛc), is to extract from (6.5) a global contribution
of the restricted phase. In the Ising model, the same operation amounts to extract
the trivial term eβh|Λ|. Here we extract Zr

+(Λ, ηΛc) = eβh|Λ|Zr(P+
Λ (ηΛc)), and our

aim is to reach the representation (6.18). The deviations from the restricted
phase will be described by chains, i.e. contours linked by clusters of polymers.
In Section 6.1, we expose this linking procedure. In Section 6.2 we show how to
handle the entropy of chains, preserving the uniformity in the scaling parameter
γ. In Section 6.3 we study the weights of chains and their dependence on the
magnetic field near {Reh = 0}, i.e. at coexistence. In Section 6.4 we study pure
phases, i.e. {Reh > 0} and {Reh < 0}.
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6.1 The Linking Procedure

We first express Θ+(Λ; ηΛc) as a sum over external contours. By Lemma 4.5, each
external contour is of type +. Let {Γ} be a family of external contours. Then, Λ
is decomposed into

Λ = extΛ{Γ} ∪ {Γ} ∪
⋃

Γ∈{Γ}
intΓ ,

where extΛ{Γ} := Λ ∩⋂Γ∈{Γ} extΓ. For each family of admissible external con-

tours {Γ}, we re-sum over the configurations whose external contours are given
exactly by {Γ}. This induces, for all Γ, a partition function Θ−(intΓ; +σΓ), which
can be expressed as in (6.5). On extΛ{Γ}, we get a restricted partition function
Zr

+(extΛ{Γ}; ηΛcσ{Γ}). We thus have

Θ+(Λ; ηΛc) =

Zr
+(Λ; ηΛc) +

∑

{Γ}⊂Λ
ext.

Zr
+(extΛ{Γ}; ηΛcσ{Γ})

∏

Γ

ρ(Γ)Θ−(intΓ; σΓ) , (6.6)

where the sum is over non-empty families of external contours. Consider the
configuration −σΓ obtained by spin-flipping σΓ, i.e. (−σΓ)i := −(σΓ)i for all i ∈ Γ.
We introduce the functions Zr

+(intΓ;−σΓ) and Θ+(intΓ;−σΓ) and consider, for
a while, the ratio

Zr
+(extΛ{Γ}; ηΛcσ{Γ})

∏
Γ Zr

+(intΓ;−σΓ)

Zr
+(Λ; ηΛc)

. (6.7)

Using the polymer representation of Chapter 5, we consider the family of poly-
mers P+

ext := P+
extΛ{Γ}(ηΛcσ{Γ}) associated to Zr

+(extΛ{Γ}; ηΛcσ{Γ}), the families

P+
intΓ := P+

intΓ(−σΓ) associated to each of the Zr
+(intΓ;−σΓ), as well as the family

P+
Λ := P+

Λ (ηΛc) associated to Zr
+(Λ; ηΛc). Since the expansions of these functions

are absolutely convergent, we can rearrange the terms. The volume contributions
from extΛ{Γ} and

⋃
Γ intΓ cancel, and we get

Zr(P+
ext)
∏

Γ Zr(P+
intΓ)

Zr(P+
Λ )

= exp
(∑

P̂

±ω+(P̂ ) +
∑

Γ

E+
Γ

)
,

where we used the abbreviation

∑

P̂

±ω+(P̂ ) ≡
∑

P̂∈P̂+
ext

d(P̂ ,{Γ})≤R

ω+(P̂ ) −
∑

P̂∈P̂+
Λ

d(P̂ ,{Γ})≤R
P̂∩extΛ{Γ}6=∅

ω+(P̂ ) . (6.8)
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The sign ± in front of ω+(P̂ ) is chosen in function of the sum to which P̂ belongs.

Define λ+(P̂ ) := e±ω
+(P̂ ) − 1 and expand

e
∑

P̂
±ω+(P̂ ) =

∏

P̂

(1 + λ+(P̂ )) =
∑

{P̂1,...,P̂n}

n∏

i=1

λ+(P̂i) . (6.9)

The function E+
Γ depends only on the structure of Γ, and is given by

E+
Γ =

∑

P̂∈P̂+
intΓ

d(P̂ ,Γ)≤R

ω+(P̂ ) −
∑

P̂∈P̂+

P̂∩extΓ=∅
d(P̂ ,Γ)≤R

ω+(P̂ ) , (6.10)

where P̂+ denotes the family of clusters associated to free polymers of type +.
Notice that E+

Γ is analytic in H+. Since |[Γ]R| ≤ 3d|Γ| we have, if β is large
enough (see Theorem 5.1)

‖E+
Γ ‖H+ ≤ 1

3
|Γ| , ‖ d

dh
E+

Γ ‖H̃+
≤ 1

3
|Γ| . (6.11)

If we define the weight (we denote +σΓ ≡ σΓ)

ω+(Γ) := ρ1(Γ)
Θ−(intΓ; +σΓ)

Θ+(intΓ;−σΓ)
, (6.12)

where

ρ1(Γ) := ρ(Γ)e−βh|Γ|eE
+
Γ , (6.13)

we have

Θ+(Λ; ηΛc)

Zr
+(Λ; ηΛc)

= 1 +
∑

{Γ}⊂Λ
ext.

∑

{P̂1,...,P̂n}

( n∏

i=1

λ+(P̂i)
)(∏

Γ

ω+(Γ)
Θ+(intΓ;−σΓ)

Zr
+(intΓ;−σΓ)

)
.

We can then repeat the same procedure of summing inside external contours
of Θ+(intΓ;−σΓ), etc. This procedure continues until we reach contours whose
interior can’t contain any contour. At the end,

Θ+(Λ; ηΛc)

Zr
+(Λ; ηΛc)

= 1 +
∑

{Γ}⊂Λ

∑

{P̂}

(∏

P̂

λ+(P̂ )
)(∏

Γ

ω+(Γ)
)
, (6.14)

where the sum over {Γ} ⊂ Λ contains contours of type +, and each cluster P̂
lies at distance at most R from one or several contours of {Γ}. For this reason,
the weight of polymers can depend on the configuration σΓ of the contours Γ
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that lie in their neighbourhood (or on ηΛc). We get rid of these dependencies by
linking polymers to contours. Like we did in Section 5.1 (when linking trees with
components of the graph N), we associate to each pair ({Γ}, {P̂}) an abstract
graph Ĝ as follows: each contour Γj ∈ {Γ} is represented by an abstract vertex

zj , each cluster P̂k ∈ {P̂} is represented by an abstract vertex wk. This defines

V (Ĝ). Then, we put an edge between zj and wk if and only if d(Γj, P̂k) ≤ R. We

also put an edge between wk1 and wk2 if and only if V (P̂k1) ∩ V (P̂k2) 6= ∅.
Each connected component of Ĝ, with vertices, say, {zj1, . . . , zjl, wk1, . . . , wkl

},
represents a subset of {Γ} ∪ {P̂} given by X = {Γj1, . . . ,Γjl, P̂k1 , . . . , P̂kl

}. X is
called a chain of contours, or simply a chain. We denote by {X} the family of
chains associated to the pair ({Γ}, {P̂}). The chains of {X} are of type +, and
pairwise compatible by definition. The support of X, also written X, denotes the
union

⋃
Γ∈X Γ ∪ ⋃P̂∈X P̂ . Notice that if two chains X,X ′ are not compatible,

then b(X) ∩ b(X ′) 6= ∅, where

b(X) :=
⋃

Γ∈X
[Γ]l ∪

⋃

P̂∈X

P̂ . (6.15)

The weight of a chain is defined by

ω+(X) :=
( ∏

P̂∈X

λ+(P̂ )
)( ∏

Γ∈X
ω+(Γ)

)
, (6.16)

and depends only on the intrinsic structure of the chain X (except, maybe, if
d(X,Λc) ≤ R). The final representation of the partition function is thus

Θ+(Λ; ηΛc) = Zr
+(Λ; ηΛc)

∑

{X}

∏

X∈{X}
ω+(X) (6.17)

≡ Zr
+(Λ; ηΛc)Ξ+(Λ; ηΛc) . (6.18)

In (6.17), the product is defined to be equal to 1 when {X} = ∅. This last
expression nicely expresses the fact that chains of contours describe deviations
from a restricted phase. For the restricted phase, there corresponds a family
P+

Λ (ηΛc) associated to Zr
+(Λ; ηΛc). Similarly, there corresponds a family of chains

X+
Λ (ηΛc) associated to Ξ+(Λ; ηΛc). The partition function can be written in terms

of these families as

Θ+(Λ; ηΛc) = eβh|Λ|Zr(P+
Λ (ηΛc))Ξ(X+

Λ (ηΛc)) . (6.19)

By definition, Ξ(X+
Λ (ηΛc)) := 1 when X+

Λ (ηΛc) = ∅. Everything that was done
until now can be applied also to the case where ηΛc is −-admissible, yielding
chains of type −.
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6.2 The Entropy of Chains

Before starting the analysis of the weights, we show how a priori bounds on the
weights λ+(P̂ ) and ω+(Γ) allow to handle the summation of weights of chains.
In this section we assume that |λ+(P̂ )| ≤ λ0(P̂ ), |ω+(Γ)| ≤ ρ0(Γ), i.e.

|ω+(X)| ≤
( ∏

P̂∈X

λ0(P̂ )
)( ∏

Γ∈X
ρ0(Γ)

)
≡ ω0(X) . (6.20)

Convention: Now and in the sequel we will always use a subscript “0” in the
weight of an object to specify that it depends only on the geometric structure of
the object (as we did in (5.46), Section 5.2). That is, such weights will always be
translation invariant. When a weight is defined for an object, we use the same
letter for the weight of the clusters of such objects (see Appendix C).

The proof of the following lemma is essentially the same as the one of Corollary
5.2. We use the notations |P̂ | := |⋃P∈P̂ V (P )|, |X| :=

∑
Γ∈X |Γ| +∑P̂∈X |P̂ |.

Lemma 6.1. Let c > 0, ǫ > 0, and assume the weights λ0(P̂ ), ρ0(Γ) satisfy the
bounds

∑

P̂∋0

λ0(P̂ )e(c+ǫ(2
d+1))|P̂ | ≤ ǫ

2
,

∑

Γ:[Γ]l∋0
ρ0(Γ)e(c+ǫ)|[Γ]l| ≤ ǫ

2
. (6.21)

Then the weight ω0(X) satisfies the condition (C.4) of Lemma C.1. Namely,
∑

X:b(X)∋0
ω0(X)ec|b(X)| ≤ ǫ . (6.22)

Proof. For a chain X = {Γ1, . . . ,ΓL, P̂1, . . . , P̂M}, let n(X) := L+M denote the
number of objects composing X (a cluster P̂i is considered as a single object).
We show by induction on N = 1, 2, . . . that 1

ξN :=
∑

X:b(X)∋0
n(X)≤N

ω0(X)ec|b(X)| ≤ ǫ . (6.23)

If n(X) = 1 then X contains a single object, i.e. a contour. Then ξ1 ≤ ǫ follows
from (6.21). So suppose (6.23) holds for N , and consider ξN+1; this sum can be
bounded by a sum in which each chain X is decomposed into [Γ0]l ∋ 0, X ∋ Γ0,
or into P̂0 ∋ 0, X ∋ P̂0. This means:
1) in the first case, X decomposes into X = {Γ0}∪{X1, . . . , XK} 2 with [Γ0]l ∋ 0,

1We thank Daniel Ueltschi for pointing out this method of demonstration.
2The chains Xi are obtained as follows: consider the abstract connected graph Ĝ associated

to the chain X . Then, remove all the edges of Ĝ that are adjacent to the vertex z0 represent-
ing Γ0 and z0 itself, and consider the decomposition of the remaining graph into connected
components. These components are exactly the representatives of X1, . . . , XK .
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d(Xi,Γ0) ≤ R, n(Xi) ≤ N for all i = 1, . . . , K, Xi ∩ Xj = ∅ for all i 6= j. The
contribution to ξN+1 is thus bounded by

∑

Γ0:[Γ0]l∋0
ρ0(Γ0)e

c|[Γ0]l|
∑

K≥0

1

K!

K∏

i=1

∑

Xi:d(Xi,Γ0)≤R
n(Xi)≤N

ω0(Xi)e
c|b(Xi)| (6.24)

≤
∑

Γ0:[Γ0]l∋0
ρ0(Γ0)e

c|[Γ0]l|
∑

K≥0

1

K!

(
|[Γ0]R|ξN

)K

≤
∑

Γ0:[Γ0]l∋0
ρ0(Γ0)e

(c+ǫ)|[Γ0]l| ≤ ǫ

2
,

where we used the induction hypothesis ξN ≤ ǫ.
2) in the second case, X = {P̂0} ∪ {X1, . . . , XK} with P̂0 ∋ 0, d(Xi, P̂0) ≤ R,
n(Xi) ≤ N for all i = 1, . . . , K, Xi ∩ Xj = ∅ for all i 6= j. A chain Xi of this

decomposition can be of two types: i) there exists a cluster P̂ ∈ Xi such that
P̂ ∩ P̂0 6= ∅. Then the contribution from these chains is at most

|P̂0|
∑

Xi:b(Xi)∋0
n(Xi)≤N

ω0(Xi)e
c|b(Xi)| = |P̂0|ξN ≤ |P̂0|ǫ. (6.25)

ii) there exists Γ ∈ Xi, Γ ∩ {[P̂0]R}l 6= ∅, where the thickening {·}l was defined
in (4.15). Notice that the set {[P̂0]R}l ∈ C(l) contains at most 2d|P̂0| cubes C(l).
Since contours are composed of cubes C(l), the contribution from these chains
can be bounded by

2d|P̂0|ξN ≤ 2dǫ|P̂0| . (6.26)

We can then proceed like in (6.24), and get a contribution to ξN+1 bounded by

∑

P̂0∋0

λ0(P̂0)e
c|P̂0|eǫ(2

d+1)|P̂0| ≤ ǫ

2
. (6.27)

Altogether, this shows that ξN+1 ≤ ǫ.

6.3 Domains of Analyticity

In this section we consider the dependence of the weights ω+(X) on the magnetic
field h ∈ C, in a neighbourhood of {Reh = 0}. For obvious reasons, the domain
in which ω+(X) can be shown to be analytic depends on the contour Γ ∈ X that
has the largest interior. For the sake of simplicity, statements will be given only
for chains of type +.
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The domains of analyticity depend on the isoperimetric constants K(N) defined
in (4.56). Consider the reals

R(N) :=
θ

2K(N)N
1
d

, (6.28)

where θ ∈ (0, 1) will play an important role later in the study of the derivatives.

We know from Lemma 4.10 that R(N)N
1
d is increasing and that

lim
N→∞

R(N)N
1
d =

θ

2K(∞)
. (6.29)

Since we want the domains of analyticity to be decreasing with the size of the
contours, we define

R∗(N) := min {R(N ′) : 1 ≤ N ′ ≤ N} . (6.30)

The sequences R∗(N) and R(N) have the same asymptotic behaviour, as the
following lemma shows.

Lemma 6.2.

lim
N→∞

R∗(N)N
1
d =

θ

2K(∞)
. (6.31)

Proof. First notice that there exists an unbounded increasing sequence N1, N2, . . . ,
such that R∗(Ni) = R(Ni). This is a direct consequence of the bounds

R∗(N) ≤ R(N) ≤ θ

2K(∞)N
1
d

. (6.32)

Since R(N)N
1
d increases, it is sufficient to show that R∗(N)N

1
d is increasing.

Consider the interval [N,N + 1]. We have two possibilities: 1) R(N + 1) ≥
R∗(N). In this case, R∗(N + 1)(N + 1)

1
d = R∗(N)(N + 1)

1
d ≥ R∗(N)N

1
d . 2)

R(N + 1) ≤ R∗(N). In this case, R∗(N + 1)(N + 1)
1
d = R(N + 1)(N + 1)

1
d ≥

R(N)N
1
d ≥ R∗(N)N

1
d .

For r > 0, consider the strip

U(r) := {z ∈ C : |Re z| < r} . (6.33)

Generally, we will restrict our attention to small magnetic fields, that is h ∈ U0 :=
U(h0) where h0 will be taken small enough. For instance, h0 <

1
16

so that the
results on the restricted phases can be used in U0.
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We define the domain of analyticity for a contour:

UΓ := U(R∗(V (Γ))) ∩ U0 , (6.34)

and for a chain X:

UX :=
⋂

Γ∈X
UΓ . (6.35)

That is, UX = UΓmax , where Γmax ∈ X has the largest interior. Notice that the
domains UΓ, UX depend on θ. Set V (X) := V (Γmax) = max{V (Γ) : Γ ∈ X}. The
main result of this section is the following.

Proposition 6.1. Let θ ∈ (0, 1), ǫ > 0, c > 0 small enough. There exists
β1 = β1(θ, ǫ) such that for all β ≥ β1, the following holds. For each chain X,
h 7→ ω+(X) is analytic in UX . Moreover,

‖ω+(X)‖UX
< ω0(X) ,

∥∥ d

dh
ω+(X)

∥∥
UX

< ω0(X) , (6.36)

where ω0(X) is defined via the weights λ0(P̂ ) and ρ0(Γ) given in (6.38)-(6.39)
hereafter, and satisfies (6.22).

Before starting the proof of Proposition 6.1, we give explicitly the weights λ0(P̂ )
and ρ0(Γ). These weights are defined such that they can be used throughout the
section, also when bounding the first derivative of ω+(X). As will be seen, the
non-trivial part of ω+(Γ) will be bounded by:

∥∥∥
Θ−(intΓ; +σΓ)

Θ+(intΓ;−σΓ)

∥∥∥
UΓ

≤ eβθ‖Γ‖e
2
3
|Γ| . (6.37)

Using (6.13) and (6.11), ‖ρ1(Γ)‖U0 ≤ e−β‖Γ‖e2βh0|Γ|e
1
3
|Γ|. This suggests defining

the weight ρ0(Γ) in the following way:

ρ0(Γ) := D1β|Γ|
d

d−1e−(1−θ)β‖Γ‖e2βh0|Γ|e|Γ| . (6.38)

The term D1β|Γ|
d

d−1 has been added to take into account other contributions,
especially when studying the first derivative. For clusters we get, using the defi-
nition of λ+(P̂ ) and (5.54),

‖λ+(P̂ )‖H+ ≤ ‖ω+(P̂ )‖H+e
‖ω+(P̂ )‖H+

≤ |ω0(P̂ )|e|ω0(P̂ )| ≤ |ω0(P̂ )|eǫr < D2|ω0(P̂ )| ≡ λ0(P̂ ) . (6.39)

The numerical constants D1, D2 are assumed to be fixed and sufficiently large, in
order to cover all the cases that will appear in the sequel.
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Lemma 6.3. Let θ ∈ (0, 1), c > 0, and ǫ > 0 be small enough. Assume 2h0 ≤
1
2
(1 − θ)ρ (ρ is the Peierls constant). There exists β1 = β1(θ, ǫ) such that for all
β ≥ β1, the hypothesis (6.21) of Lemma 6.1 are satisfied.

Proof. Define a new weight for polymers (see (5.46)):

ω̃0(P ) := ω0(P )e(c+ǫ(2
d+1))|P | . (6.40)

If β is large enough, we can proceed as in (5.54) and get
∑

P̂∋0

λ0(P̂ )e(c+ǫ(2
d+1))|P̂ | = D2

∑

P̂∋0

|ω0(P̂ )|e(c+ǫ(2d+1))|P̂ |

≤ D2

∑

P̂∋0

|ω̃0(P̂ )| ≤ ǫ

2
. (6.41)

This shows the first inequality of (6.21). For the second, we use the Peierls
condition ‖Γ‖ ≥ ρ|Γ| (Proposition 4.2). This gives

∑

Γ:[Γ]l∋0
ρ0(Γ)e(c+ǫ)|[Γ]l| ≤ D1β

∑

Γ:[Γ]l∋0
|Γ| d

d−1 e−(1−θ)βρ|Γ|e2βh0|Γ|e|Γ|e(c+ǫ)|[Γ]l|

≤ D1β
∑

Γ:[Γ]l∋0
|Γ| d

d−1 e−
1
2
(1−θ)βρ|Γ|e|Γ|e(c+ǫ)|[Γ]l| .

Since |[Γ]l| ≤ 3d|Γ|, a standard Peierls estimate allows to bound this sum by ǫ
2

as
soon as β is large enough.

Until now we have denoted by ǫr = ǫr(β) the small function appearing in the
study of the restricted phases. Similarly, we denote by ǫc = ǫc(β) the small func-
tion appearing in the study of chains. These two parameters are assumed to have
a common bound max{ǫr, ǫc} ≤ ǫ, which is small.

Consider the weight ω+(Γ) given (6.12). We can use the linking procedure for
the partition functions Θ±(intΓ;∓σΓ), yielding

ω+(Γ) = ρ1(Γ)
e−βhV (Γ)Zr(P−intΓ(+σΓ))Ξ(X−intΓ(+σΓ))

e+βhV (Γ)Zr(P+
intΓ(−σΓ))Ξ(X+

intΓ(−σΓ))
. (6.42)

Proof of Proposition 6.1: The proof will be done by induction, in the same spirit
as in [Pf]. We say a contour Γ is of class n if V (Γ) = n. A chain is of class n if
V (X) = n.

Consider a contour Γ of small class (say, of class smaller than ld). Then the last
ratio appearing in (6.42) equals 1. We bound ω+(Γ) at h = x+ iy ∈ UΓ. First,

|e−2βhV (Γ)| ≤ e2β|x|V (Γ) ≤ e2βR
∗(V (Γ))V (Γ) ≤ e2βR(V (Γ))V (Γ) ≤ eθβ‖Γ‖ , (6.43)
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where we used the definition of the isoperimetric constants K(·) given in (4.56).
Then, write

Zr(P−intΓ(+σΓ))h
Zr(P+

intΓ(−σΓ))h
=

Zr(P−intΓ(+σΓ))h
Zr(P−intΓ(+σΓ))iy

Zr(P−intΓ(+σΓ))iy
Zr(P+

intΓ(−σΓ))iy

Zr(P+
intΓ(−σΓ))iy

Zr(P+
intΓ(−σΓ))h

(6.44)

The middle term has modulus 1 by symmetry (see (5.32)). The two other terms
can be treated as follows:

∣∣∣ log
Zr(P−intΓ(+σΓ))h
Zr(P−intΓ(+σΓ))iy

∣∣∣ =
∣∣∣
∫ x

0

ds
d

ds
logZr(P−intΓ(+σΓ))s+iy

∣∣∣ ≤ |x|ǫrV (Γ) .

(6.45)

We used Theorem 5.1. Proceeding as in (6.43), we get

∥∥∥
Zr(P−intΓ(+σΓ))

Zr(P+
intΓ(−σΓ))

∥∥∥
UΓ

≤ eθǫr‖Γ‖ ≤ e
1
3
|Γ| , (6.46)

when β is large enough. Altogether this gives

‖ω+(Γ)‖UΓ
≤ ‖ρ1(Γ)‖UΓ

eθβ‖Γ‖e
1
3
|Γ| ≤ e−(1−θ)β‖Γ‖e2βh0|Γ|e2

1
3
|Γ| < ρ0(Γ) . (6.47)

Since ‖λ+(P̂ )‖U0 < λ0(P̂ ), we have shown the first inequality of (6.36) for chains
of small class. For the derivative, a Cauchy estimate (any disc centered at h ∈ U0

with radius 1
16

is contained in H+) gives

∥∥ d

dh
λ+(P̂ )

∥∥
U0

≤ 16‖λ+(P̂ )‖H+ . (6.48)

For contours,

d

dh
ω+(Γ) = ω+(Γ)

d

dh
logω+(Γ) =

ω+(Γ)
(
−β d

dh
HΓ(σ[Γ]) − β|Γ| + d

dh
E+

Γ − 2βV (Γ) +
d

dh
log

Zr(P−intΓ(+σΓ))

Zr(P+
intΓ(−σΓ))

)

Using V (Γ) ≤ |Γ| d
d−1 (this is a consequence of Lemma 4.9) and

∥∥∥
d

dh
log

Zr(P−intΓ(+σΓ))

Zr(P+
intΓ(−σΓ))

∥∥∥
UΓ

≤ 2ǫrV (Γ) , (6.49)

this gives the upper bound

∥∥∥
d

dh
ω+(Γ)

∥∥∥
UΓ

≤ 6β|Γ| d
d−1‖ω+(Γ)‖UΓ

, (6.50)
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which implies, as can be seen easily, that

∥∥∥
d

dh
ω+(X)

∥∥∥
UX

< ω0(X) . (6.51)

With Lemma 6.1, this shows the proposition for chains of small class. Suppose it
has been shown for chains of class ≤ n. By this induction hypothesis, (6.22) and
Lemma C.1, a cluster expansion can be used for the partition functions containing
chains. Let X be a chain of class n + 1, and consider Γ ∈ X. The treatment of
the restricted phases is the same, and we must study the ratio

Ξ(X−intΓ(+σΓ))h
Ξ(X+

intΓ(−σΓ))h
=

Ξ(X−intΓ(+σΓ))h
Ξ(X−intΓ(+σΓ))iy

Ξ(X−intΓ(+σΓ))iy
Ξ(X+

intΓ(−σΓ))iy

Ξ(X+
intΓ(−σΓ))iy

Ξ(X+
intΓ(−σΓ))h

. (6.52)

Again the middle term has modulus 1 and the rest is treated using the induction
hypothesis.

∣∣∣ log
Ξ(X−intΓ(+σΓ))h
Ξ(X−intΓ(+σΓ))iy

∣∣∣ =
∣∣∣
∫ x

0

ds
d

ds
log Ξ(X−intΓ(+σΓ))s+iy

∣∣∣ ≤ |x|ǫcV (Γ) . (6.53)

This implies

∥∥∥
Ξ(X−intΓ(+σΓ))

Ξ(X+
intΓ(−σΓ))

∥∥∥
UΓ

≤ eθǫc‖Γ‖ ≤ e
1
3
|Γ| . (6.54)

For the weight of Γ, we thus have (compare with (6.47)):

‖ω+(Γ)‖UΓ
≤ e−(1−θ)β‖Γ‖e2βh0|Γ|e3

1
3
|Γ| < ρ0(Γ) . (6.55)

For the derivative, use again the induction hypothesis, and bound

∥∥∥
d

dh
log

Ξ(X−intΓ(+σΓ))

Ξ(X+
intΓ(−σΓ))

∥∥∥
UΓ

≤ 2ǫcV (Γ) . (6.56)

It is easy to check that (6.50) still holds which, in turn, implies (6.51). This shows
the proposition.

6.4 Pure Phases

In the last section we gave for each chain X a domain UX in which the weight
ω+(X) behaves analytically. The size of the domain UX shrinks to {Reh = 0}
when the size of the largest contour of X increases. In the present section we
show that the weights ω+(X) can actually be controlled when 0 < Reh < h+

where h+ is fixed, independently of the size of X.
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We consider only chains of type +, the case − being similar by symmetry. Define

U+ := {z ∈ C : 0 < Reh < h+} , (6.57)

where 0 < h+ ≤ min{ 1
16
, ρ

2
} is fixed (ρ is the Peierls constant). In Chapter 7,

domains will have to be made optimal, with θ close to 1, but here we choose
θ := 1

2
. The main result of this section is the following

Proposition 6.2. Let ǫ, c > 0 be small enough. There exists β2 = β2(ǫ) such
that for all β ≥ β2, the following holds. For each chain X of type +, h 7→ ω+(X)
is analytic in U+, and

‖ω+(X)‖U+ ≤ ω0(X) , (6.58)

where ω0(X) satisfies (6.22).

Proof. Since U+ ⊂ H+, clusters P̂ and restricted phases are under control. For
each Γ, we use the representation (6.12) (rather than (6.42)). The main ingredient
of the proof is the following lemma, whose proof is standard (see [Z] or Appendix
A, with minor modifications due to the fact that we are working with analytic
restricted phases rather than ground states).

Lemma 6.4. Let β be large enough. Then for each contour Γ of type +, we have
Θ+(intΓ;−σΓ) 6= 0 on U+ and

∥∥∥
Θ−(intΓ; +σΓ)

Θ+(intΓ;−σΓ)

∥∥∥
U+

≤ e
2
3
|Γ| . (6.59)

Proof. For contours of small enough class, we can proceed as in (6.44)-(6.45):

∥∥∥
Θ−(intΓ; +σΓ)

Θ+(intΓ;−σΓ)

∥∥∥
U+

=
∥∥∥e−2βhV (Γ)Zr(P−intΓ(+σΓ))

Zr(P+
intΓ(−σΓ))

∥∥∥
U+

(6.60)

≤ sup
h∈U+

e−2βRehV (Γ)e2β|Reh|V (Γ) ≤ 1. (6.61)

This shows (6.59). Suppose (6.59) has been shown for all contours of class ≤ n.
In particular, for each such contour,

‖ω+(Γ)‖U+ ≤ e−β‖Γ‖eβh+|Γ|e|Γ| < ρ0(Γ) . (6.62)

Consider a contour Γ of class n + 1. For ease of notation we denote for a while
Λ ≡ intΓ. Until the end of the proof, we fix h̃ = x+ iy ∈ U+, and show that

∣∣∣
Θ−(Λ; +σΓ)

Θ+(Λ;−σΓ)

∣∣∣
h̃
≤ e

2
3
|Γ| . (6.63)
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Notice that if h̃ ∈ UΓ then (6.63) follows from (6.46) and (6.54), so we assume
that h̃ 6∈ UΓ.

We start with Θ+(Λ;−σΓ). Since (6.62) holds for all contour Γ of class ≤ n, we
can apply the linking procedure:

Θ+(Λ;−σΓ) = eβh|Λ|Zr(P+
Λ (−σΓ))Ξ(X+

Λ (−σΓ)) . (6.64)

We expand the partition function Zr(P+
Λ (−σΓ)), and use (5.57). The same can

be done for the partition function containing chains:

Ξ(X+
Λ (−σΓ)) = eβg

+
n |Λ|e△

+
c (Λ) , (6.65)

where g+
n is defined by

g+
n := lim

M→∞

1

β|ΛM | log Ξ+
n (ΛM) , (6.66)

and Ξ+
n (ΛM) is restricted to contain only chains in which each contour is of class

at most n. We thus have

Θ+(Λ;−σΓ) =
(
eβp

+
r,γ |Λ|e△

+
r (Λ)

)(
eβg

+
n |Λ|e△

+
c (Λ)

)
≡ eβp

+
n |Λ|e△

+(Λ) , (6.67)

where p+
n := p+

r,γ + g+
n . The function △+(Λ) depends on −σΓ but satisfies

|△+(Λ)| ≤ ε0|Γ| with ε0 ≤ 2
9

when β is large enough.

We turn to Θ−(Λ; +σΓ). An external contour Γ′ appearing in Θ−(Λ; +σΓ) is
called stable if UΓ′ ∋ h̃, and unstable if UΓ′ 6∋ h̃. Following Zahradńık, we re-sum
over external stable contours, yielding

Θ−(Λ; +σΓ) =
∑

{Γ′}⊂Λ
ext., unst.

Θ−s (ext; σΓσ{Γ′})
∏

Γ′

ρ(Γ′)Θ+(intΓ′; σΓ′) , (6.68)

where ext = Λ ∩ ⋂Γ′ extΓ′, and Θ−s (ext; σΓσ{Γ′}) contains only stable contours.
Applying the linking procedure and expanding, we have

Θ−s (ext; σΓσ{Γ′}) =
(
eβp

−
r,γ |ext|e△

−
r (ext)

)(
eβg

−
s |ext|e△

−
c (ext)

)
(6.69)

≡ eβp
−
s |ext|e△

−(ext) , (6.70)

where p−s := p−r,γ + g−s , and |△−(ext)| ≤ ε0|Γ| + ε0

∑
Γ′ |Γ′|. The function g−s is

defined like in (6.66), containing only stable contours (of type −). The partition
functions Θ+(intΓ′; σΓ′) can be treated like Θ+(Λ;−σΓ), yielding

Θ+(intΓ′; σΓ′) = eβp
+
n |intΓ′|e△

+(intΓ′) , (6.71)
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with |△+(intΓ′)| ≤ ε0|Γ′|. Altogether, the ratio (6.63) equals

∣∣∣e−△+(Λ)
∑

{Γ′}⊂Λ
ext., unst.

eβ(p−s −p+n )|ext|e△
−(ext)

∏

Γ′

ρ(Γ′)e−βp
+
n |Γ|e△

+(intΓ′)
∣∣∣
h̃

(6.72)

≤ e2ε0|Γ|
∑

{Γ′}⊂Λ
ext., unst.

eβRe (p−s −p+n )|ext|
∏

Γ′

|ρ(Γ′)|e−βRe p+n |Γ|e2ε0|Γ
′| . (6.73)

If we use the bounds |g+
n | ≤ ε0, h+ ≤ ρ

2
we get

∣∣∣
Θ−(Λ; +σΓ)

Θ+(Λ;−σΓ)

∣∣∣
h̃
≤ e2ε0|Γ|

∑

{Γ′}⊂Λ
ext., unst.

eβRe (p−s −p+n )|ext|
∏

Γ′

e−β(ρ′+2ε0)|Γ′| , (6.74)

where ρ′ := ρ

2
− 6ε0. Our aim is to show that Re (p−s − p+

n ) ≤ −eρ′ , where eρ′ is
the pressure of an auxiliary model.

An auxiliary contour model. Consider the weight η(·) defined by η(Γ′) = e−βρ
′|Γ′|

if Γ′ is unstable, 0 otherwise. Define its associated partition function

Ξ′(Λ) :=
∑

{Γ′}⊂Λ

∏

Γ′

η(Γ′) , (6.75)

where the sum is over all families of contours {Γ′1, . . . ,Γ′k} of type +, such that
d(Γ′i,Γ

′
j) > l for all i 6= j, d(Γ′i,Λ

c) > l for all i. Consider the associated function

eρ′ := lim
M→∞

1

β|ΛM | log Ξ′(ΛM) . (6.76)

Remember that Γ′ is unstable if and only if UΓ′ 6∋ h̃ = x+iy, i.e. if R∗(V (Γ′)) < x.
This implies

|Γ′| > V (Γ′)
d−1

d ≥
( 1

4K(1)x

)d ≡ L(x) . (6.77)

We thus have a constant C1 such that

|eρ′| ≤ C1e
−βρ′L(x) < ε0 . (6.78)

Moreover for any Λ we have

Ξ′(Λ) = eβeρ′ |Λ|e△ρ′(Λ) , (6.79)

with |△ρ′(Λ)| ≤ ε0|∂−l Λ|.
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Study of the difference p−s − p+
n . In the same way as we defined g−s , we define g+

s ,
which is constructed with stable contours, of type +. Let p+

s := p+
r,γ + g+

s , and
write

p−s − p+
n = (p−s − p+

s ) + (p+
s − p+

n )

= (p−r,γ − p+
r,γ) + (g−s − g+

s ) + (g+
s − g+

n ) . (6.80)

Notice that the definition of the functions g±s depends on h̃, but the maps h 7→
g±s (h) are analytic in the strip {h ∈ C : |Reh| < Re h̃}. Using Proposition 6.1,
we have, uniformly on this strip,

∣∣ d

dh
g±s
∣∣ ≤ ǫc . (6.81)

Moreover, symmetry implies g+
s (iy) = g−s (iy). This gives

|Re (g−s − g+
s )(h̃)| = |Re (g−s (h̃) − g−s (iy)) + Re (g+

s (iy) − g+
s (h̃))|

=
∣∣
∫ x

0

d

ds
Re g−s (s+ iy)ds+

∫ 0

x

d

ds
Re g+

s (s+ iy)ds
∣∣ ≤ 2ǫcx (6.82)

The same can be done for the restricted pressures. Extracting from each p±r,γ the

linear term ±h̃, we get

Re (p−r,γ − p+
r,γ)(h̃) ≤ −2x+ 2ǫrx . (6.83)

Consider the difference g+
s − g+

n . Each cluster of chains contributing to this
difference contains at least one chain X such that there exists an unstable contour
Γ ∈ X. By (6.77) this implies the existence of two constants C2, C3, such that

|g+
s − g+

n | ≤ C2e
−βC3L(x) . (6.84)

Altogether we get (once β is large enough):

Re (p−s − p+
n ) + eρ′ ≤ −2x+ 2ǫrx+ 2ǫcx+ C2e

−βC3L(x) + C1e
−βρ′L(x) < 0 .

The final step is then to bound (6.74) by

e2ε0|Γ|e−βeρ′ |Λ|
∑

{Γ′}⊂Λ
ext., unst.

∏

Γ′

e−β(ρ′+2ε0)|Γ′|e+βeρ′(|Γ
′|+V (Γ′))

≤ e2ε0|Γ|e−βeρ′ |Λ|
∑

{Γ′}⊂Λ
ext., unst.

∏

Γ′

e−βρ
′|Γ′|Ξ′(intΓ′) (6.85)

= e2ε0|Γ|e−βeρ′ |Λ|Ξ′(Λ) ≤ e2ε0|Γ|e−βeρ′ |Λ|e+βeρ′ |Λ|e△ρ′(Λ) ≤ e3ε0|Γ| ≤ e
2
3
|Γ| .

In (6.85), we used eβeρ′V (Γ′) ≤ Ξ′(intΓ′)eε0|Γ
′|. This shows (6.63). The same can

be done for any h̃ ∈ U+, yielding (6.59) for contours of class n+ 1.

The proof of Proposition 6.2 finishes by using Lemma 6.1.



Chapter 7

Derivatives of the Pressure

In this section we adapt the mechanism used by Isakov to obtain lower bounds on
the derivatives of the pressure (which was briefly presented in the Introduction),
and prove Theorem 3.4. Although estimates of Theorem 3.4 were given for the
pressure density pγ, we will always work in a finite volume Λ, and obtain bounds
on the derivatives that are uniform in the volume. Like in the preceding section,
we assume γ ∈ (0, γ0) is fixed.

We consider a box Λ = [−M,+M ]d ∩ Zd, with M large, chosen so that Λ ∈ C(l).
Outside Λ we fix the spins to the value +1, i.e. we consider the set Ω+

Λ , defined
in (6.2) and the associated partition function Z+(Λ) defined in (6.1). The finite
volume pressure p+

γ,Λ is defined by

p+
γ,Λ :=

1

β|Λ| logZ+(Λ) . (7.1)

Clearly, this function equals the density pressure of (3.5) in the thermodynamic
limit. Consider the set C+(Λ) of all possible external contours of type + associ-
ated to the set Ω+

Λ . Remember that V (Γ) = |intΓ|, where intΓ denotes the union
of all components of Γc with label −. The family C+(Λ) can be totally ordered,
with an order relation denoted �, such that V (Γ′) ≤ V (Γ) when Γ′ � Γ. When
Γ is not the smallest contour we denote its predecessor (w.r.t. �) by i(Γ).

For a given external contour Γ ∈ C+(Λ), consider the set

Ω+
Λ(Γ) := {σΛ ∈ Ω+

Λ : Γ′ � Γ for all external contour Γ′ of σΛ+Λc} ,

and define the partition function

Θ+
Γ (Λ) :=

∑

σΛ∈Ω+
Λ (Γ)

exp
(
− βHΛ(σΛ+Λc)

)
. (7.2)

97
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When Γ is the largest contour then clearly Θ+
Γ (Λ) = Z+(Λ) and when Γ is the

smallest contour, we define Θ+
i(Γ)(Λ) := Z+

r (Λ). We also introduce the following
set in which the presence of Γ is forced :

Ω+
Λ [Γ] := {σΛ ∈ Ω+

Λ : Γ′ � Γ for all external contour Γ′ of σΛ+Λc,

and Γ is a contour of σΛ+Λc} . (7.3)

We have Ω+
Λ [Γ] ⊂ Ω+

Λ(Γ). The partition function Θ+
[Γ](Λ) is defined as (7.2), with

Ω+
Λ [Γ] in place of Ω+

Λ(Γ). We have the following fundamental identity:

Θ+
Γ (Λ) = Θ+

i(Γ)(Λ) + Θ+
[Γ](Λ) . (7.4)

A crucial idea of Isakov is to consider the following identity.

Z+(Λ) = Z+
r (Λ)

∏

Γ∈C+(Λ)

Θ+
Γ (Λ)

Θ+
i(Γ)(Λ)

. (7.5)

Then, the logarithm is written as a finite sum:

logZ+(Λ) = logZ+
r (Λ) +

∑

Γ∈C+(Λ)

u+
Λ(Γ) , (7.6)

where

u+
Λ(Γ) := log

Θ+
Γ (Λ)

Θ+
i(Γ)(Λ)

. (7.7)

Using (7.4) we can write u+
Λ(Γ) = log(1 + ϕ+

Λ(Γ)), where

ϕ+
Λ(Γ) :=

Θ+
[Γ](Λ)

Θ+
i(Γ)(Λ)

. (7.8)

Non-analyticity of the pressure is examined by studying high order derivatives of
the functions ϕ+

Λ(Γ) at h = 0, using Cauchy’s Formula

ϕ+
Λ(Γ)

(k)
(0) =

k!

2πi

∫

C

ϕ+
Λ(Γ)(z)

zk+1
dz . (7.9)

To obtain bounds on ϕ+
Λ(Γ)

(k)
(0), we exponentiate ϕ+

Λ(Γ) and use a stationary
phase analysis to estimate the integral. The contour C will be chosen in a k-
dependent way. If the domain UΓ ∋ 0 in which ϕ+

Λ(Γ) is analytic is too small,

then no information (not even the sign!) can be given about ϕ+
Λ(Γ)

(k)
(0).
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+

−

ρ(Γ)

Γ

Λ
Λc

Θ−(intΓ; σΓ)
+Λc

Θ+
i(Γ)(extΛΓ; +ΛcσΓ)

Figure 7.1: The decomposition (7.10) of the partition function Θ+
[Γ](Λ).

For a while, consider the structure of the partition function Θ+
[Γ](Λ). We write

Λ = extΛΓ ∪ Γ ∪ intΓ, where extΛΓ := extΓ ∩ Λ. By construction, extΛΓ and
intΓ are at distance at least l > 2R. We will therefore consider extΛΓ and intΓ
as independent systems (see Figure 7.1). The sums over configurations on extΛΓ
and intΓ can be done separately, yielding

Θ+
[Γ](Λ) = ρ(Γ)Θ+

i(Γ)(extΛΓ; +ΛcσΓ)Θ−(intΓ; σΓ) . (7.10)

All the contours of these partition functions are at distance larger than l from Γ,
and have an interior smaller than V (Γ). The point is that we control these func-
tions for h ∈ UΓ, where UΓ ⊂ C is a domain that depends only on the volume of Γ.

The program for the rest of the section is the following. In Section 7.1 we show
that ϕ+

Λ(Γ) can be exponentiated, using the results of Chapter 6. We then use a
stationary phase analysis and obtain upper and lower bounds on some derivatives
of ϕ+

Λ(Γ) and u+
Λ(Γ) at h = 0. In Section 7.2 we fix k and take the box Λ large

enough. For a class of contours called k-large and thin, the k-th derivative of
u+

Λ(Γ) can be estimated from below, using the results of Section 7.1. This gives

a lower bound on p
+(k)
γ,Λ (0). In Section 7.3 we show that for p+

γ,Λ, the operations

limΛ and (·)(k),←(0) commute, leading to the proof of our main results.

7.1 Study of the Functions ϕ+
Λ(Γ)

The proof of the following lemma requires the main results of Chapter 5 and 6.
After that, the proof of non-analyticity of the pressure will essentially follow the
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argument of Isakov (see [Isakov1], [Isakov2] or Appendix A).

Lemma 7.1. Let θ ∈ (0, 1), β large enough. Then the following holds. For all
contour Γ ∈ C+(Λ) with V (Γ) 6= 0 there exists a map h 7→ g+

Λ (Γ)(h) analytic in
the strip UΓ, such that for all h ∈ UΓ, ϕ

+
Λ(Γ) can be exponentiated:

ϕ+
Λ(Γ) = exp

(
− β‖Γ‖ − 2βhV (Γ) + 2βV (Γ)g+

Λ (Γ)
)
. (7.11)

Moreover, we have the following local estimate

2βV (Γ)|g+
Λ (Γ)(0)| ≤ δ1(β)β‖Γ‖ , (7.12)

and a uniform bound on the first derivative

∥∥∥
d

dh
g+
Λ (Γ)

∥∥∥
UΓ

≤ δ2(β) + 2
|Γ|
V (Γ)

. (7.13)

The functions δi are such that limβր∞ δi = 0.

Proof. Consider Θ+
[Γ](Λ). We have seen how to re-sum over configurations on

extΛΓ and intΓ. We write

ϕ+
Λ(Γ) = ρ(Γ)

Θ+
i(Γ)(extΛΓ; +ΛcσΓ)Θ+(intΓ;−σΓ)

Θ+
i(Γ)(Λ)

Θ−(intΓ; +σΓ)

Θ+(intΓ;−σΓ)
. (7.14)

All the volume contributions coming from the first quotient will be shown to van-
ish. The partition functions Θ+

i(Γ)(extΛΓ; +ΛcσΓ) and Θ±(intΓ;∓σΓ) are of the

type (6.5). We can therefore apply the linking procedure and obtain a represen-
tation of the form (6.19) for each of them:

Θ+
i(Γ)(extΛΓ; +ΛcσΓ) = eβh|extΛΓ|Zr(P+

extΛΓ)Ξ(X+
extΛΓ) (7.15)

Θ±(intΓ;∓σΓ) = e±βhV (Γ)Zr(P±intΓ)Ξ(X±intΓ) , (7.16)

where we omitted, in the notation, to mention that the families of polymers
and chains always depend on the boundary conditions specified by +Λc and σΓ.
Moreover, the family X+

extΛΓ contains chains X that satisfy V (X) ≤ V (Γ). In the
same way:

Θ+
i(Γ)(Λ) = eβh|Λ|Zr(P+

Λ )Ξ(X+
Λ ) , (7.17)

where the families P+
Λ and X+

Λ depend only on the boundary condition +Λc .
Using the definition of ρ(Γ), it is easy to see that ϕ+

Λ(Γ) has the form (7.11),
where g+

Λ (Γ) is defined by

2βV (Γ)g+
Λ (Γ) := −β

∑

i∈Γ
u((σΓ)i) − βh|Γ| + logQr + logQc , (7.18)
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where u(σi) = −hσi, and the quotients Qr, Qc are defined by

Qr(h) :=
Zr(P+

extΛΓ)Zr(P+
intΓ)

Zr(P+
Λ )

Zr(P−intΓ)

Zr(P+
intΓ)

, (7.19)

Qc(h) :=
Ξ(X+

extΛΓ)Ξ(X+
intΓ)

Ξ(X+
Λ )

Ξ(X−intΓ)

Ξ(X+
intΓ)

. (7.20)

Since all the families of chains involved contain contours with an interior smaller
than Γ, h 7→ g+

Λ (Γ) is analytic in the strip UΓ (by Proposition 6.1). Rearranging
the terms of the cluster expansions for Qr leads to

logQr = log
Zr(P−intΓ)

Zr(P+
intΓ)

+
∑

P̂∈P̂+
extΛΓ

P̂∩[Γ]R 6=∅

ω+(P̂ ) +
∑

P̂∈P̂+
intΓ

P̂∩[Γ]R 6=∅

ω+(P̂ ) −
∑

P̂∈P̂+
Λ

P̂∩[Γ]R 6=∅

ω+(P̂ ) .

Notice that the volume contributions from extΛΓ cancelled, and that the three
sums are boundary terms. By symmetry, the quotient equals 1 at h = 0, and so

| logQr(0)| ≤ 3ǫr|[Γ]R| . (7.21)

For the derivative, using (5.56) gives

∥∥∥
d

dh
logQr

∥∥∥
H̃+

≤ 2ǫrV (Γ) + 3ǫr|[Γ]R| . (7.22)

The same computations can be done for Qc. Clusters of chains are denoted X̂.
The contributions from extΛΓ also cancel. Indeed, consider the difference

∑

X̂∈X̂+
extΛΓ

ω+(X̂) −
∑

X̂∈X̂+
Λ

ω+(X̂) . (7.23)

Using Lemma 4.5, there exists for all X̂1 ∈ X̂+
extΛΓ with d(X̂1,Γ) > R, a cluster

X̂2 ∈ X̂+
Λ , X̂2 ∩ extΛΓ 6= ∅, d(X̂2,Γ) > R, such that ω+(X̂1) = ω+(X̂2). We are

thus left with

logQc = log
Ξ(X−intΓ)

Ξ(X+
intΓ)

+
∑

X̂∈X̂+
extΛΓ

X̂∩[Γ]R 6=∅

ω+(X̂) +
∑

X̂∈X̂+
intΓ

X̂∩[Γ]R 6=∅

ω+(X̂) −
∑

X̂∈X̂+
Λ

X̂∩[Γ]R 6=∅

ω+(X̂) .

Using symmetry,

| logQc(0)| ≤ 3ǫc|[Γ]R| . (7.24)



102 CHAPTER 7. DERIVATIVES OF THE PRESSURE

For the derivative, a similar treatment gives

∥∥∥
d

dh
logQc

∥∥∥
UΓ

≤ 2ǫcV (Γ) + 3ǫc|[Γ]R| . (7.25)

Estimates (7.21) and (7.24) yield

2βV (Γ)|g+
Λ (Γ)(0)| ≤ 3(ǫr + ǫc)|[Γ]R| ≤ δ1(β)β‖Γ‖ (7.26)

where δ1(β) := 3d+1β−1(ǫr + ǫe)ρ
−1 (ρ is the Peierls constant). We get (7.13) by

setting δ2(β) := β−1(ǫr + ǫe).

We are now in position of computing derivatives of the functions ϕ+
Λ(Γ) and u+

Λ(Γ).
The main ingredient is the following theorem, which appeared, in this form, in
[Isakov2]. It is nothing but a stationary phase analysis applied to the Cauchy
integral giving the k-th derivative at z = 0 of a function of the type e−cz+bf(z).
The proof can be found in Appendix B.

Theorem 7.1. Let r > 0, F (z) = exp(−cz + bf(z)) where 1 ≤ b ≤ c, and f is
analytic in a disc {|z| < r}, taking real values on the real line, with a uniformly
bounded derivative:

sup
|z|<r

|f ′(z)| ≤ A <
1

25
. (7.27)

There exists k0 = k0(A) such that the following holds: define k+ = r(c− 2b
√
A).

For all integer k ∈ [k0, k+] there exists rk ∈ (0, r) and ck > 0 satisfying

k

c+ bA
≤ rk ≤

k

c− bA
,

3

10

1√
2πcrk

< ck <
1√
crk

, (7.28)

such that

F (k)(0) =
k!

2πi

∫

|z|=rk

F (z)

zk+1
dz = k!

ck
(−rk)k

F (−rk) . (7.29)

In particular, (−1)kF (k)(0) > 0. Moreover, if f satisfies the local condition

bf(0) ≤ −αrc , (7.30)

with α ∈ (log 2, 1), then for all k ∈ [k0, k+] and A sufficiently small,

(
log(1 + F )

)(k)
(0) = (1 + a · e− 1

2
ζk)F (k)(0) , (7.31)

where a is a bounded function of k, c, b and ζ = ζ(α) > 0.
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In Lemma 7.1, we have put ϕ+
Λ(Γ) in the form e−cz+bf(z). In order to satisfy (7.27),

we must introduce a distinction among the contours. Consider the function δ2(β)
of (7.13).

Definition 7.1. A contour Γ ∈ C+(Λ) is thin if |Γ| ≤ δ2(β)
2
V (Γ), and fat if it is

not thin.

Now, any thin contour Γ satisfies, when β is large enough,

∥∥∥
d

dh
g+
Λ (Γ)

∥∥∥
UΓ

≤ 2δ2(β) ≡ A(β) <
1

25
. (7.32)

Lemma 7.2. There exists k0 such that when β is sufficiently large, the following
holds. For all thin contour Γ, define

k+(Γ) := 2βV (Γ)R∗(V (Γ))(1 − 2
√
A) . (7.33)

Then for all integer k ∈ [k0, k+(Γ)], we have

(−1)ku+
Λ(Γ)(k)(0) ≥ 1

10

(
2βV (Γ)D−

)k
e−(1+δ1(β))‖Γ‖ (7.34)

(−1)ku+
Λ(Γ)(k)(0) ≤ 20

(
2βV (Γ)D+

)k
e−(1−δ1(β))‖Γ‖ , (7.35)

where limβ→∞D± = 1.

Proof. Let Γ be a thin contour. Consider ϕ+
Λ(Γ) in its exponentiated form (7.11).

We apply Theorem 7.1 with c = b = 2βV (Γ), f = g+
Λ (Γ) − 1

2
‖Γ‖
V (Γ)

, r = R∗(V (Γ)),

and A = A(β). (7.32) guarantees (7.27). There exists rk = rk(Γ) and ck = ck(Γ)
such that

(−1)kϕ+
Λ(Γ)

(k)
(0) = k!

ck
(rk)k

ϕ+
Λ(Γ)(−rk) . (7.36)

Using the analyticity of g+
Λ (Γ) in UΓ, we have with (7.28)

ϕ+
Λ(Γ)(−rk) = e−β‖Γ‖ecrkecg

+
Λ (Γ)(0)ec(g

+
Λ (Γ)(−rk)−g+Λ (Γ)(0))

≥ e−β‖Γ‖e
k

1+A e−δ1β‖Γ‖e−
A

1−A
k

= e−(1+δ1)β‖Γ‖eke−
2A

1−A2 k .

Using Stirling’s Formula and the estimates for rk, ck, we get

(−1)kϕ+
Λ(Γ)

(k)
(0) ≥ 1

5

(
2βV (Γ)D−

)k
e−(1+δ1)β‖Γ‖ , (7.37)

where

D−(β) = (1 −A)e
− 2A

1−A2 . (7.38)
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Using (7.12) we can satisfy (7.30):

bf(0) = 2βV (Γ)g+
Λ (Γ)(0) − β‖Γ‖ ≤ −(1 − δ1)β‖Γ‖

≤ −(1 − δ1)2βV (Γ)R∗(V (Γ)) (7.39)

= −(1 − δ1)rc . (7.40)

In (7.39) we used

‖Γ‖ ≥ 1

K(V (Γ))
V (Γ)

d
d−1 ≥ 2V (Γ)

θ

2K(V (Γ))V (Γ)
1
d

≥ 2V (Γ)R∗(V (Γ)) .

We can thus use (7.31) once β is large enough. This gives the lower bound (7.34).
The upper bound is obtained similarly.

7.2 Derivatives in a Finite Volume

In this section, we fix k large enough. When a thin contour satisfies [k0, k+(Γ)] ∋ k
then u+

Λ(Γ)(k)(0) can be estimated with Lemma 7.2. To characterise this class of
contours, we introduce a k-dependent notion of size.

Definition 7.2. Let k ∈ N, ǫ′ > 0 small enough. A contour Γ is k-large if
V (Γ) ≥ V0(k) where

V0(k) :=
(K(∞)(1 + ǫ′)

θβ(1 − 2
√
A)

k
) d

d−1

, (7.41)

where K(∞) was defined in Lemma 4.10. Γ is k-small if V (Γ) < V0(k).

Let N0(ǫ
′) be such that for all N ≥ N0(ǫ

′) (see Lemma 6.2),

1

(1 + ǫ′)

θ

2K(∞)N
1
d

≤ R∗(N) ≤ θ

2K(∞)N
1
d

. (7.42)

Let k− = k−(ǫ′, γ) be such that when k ≥ k− then V0(k) ≥ N0(ǫ
′). This definition

implies that when k ≥ k−, we have for all k-large contour Γ

k+(Γ) = 2βV (Γ)(1 − 2
√
A)R∗(V (Γ)) ≥ θβ(1 − 2

√
A)

K(∞)(1 + ǫ′)
V (Γ)

d−1
d ≥ k . (7.43)

That is, the k-th derivative of a k-large thin contour can be studied with Lemma
7.2. The dependence of k− on γ comes from the bound K(∞) ≥ c−γ. We
therefore have limγց0 k− = +∞.
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Proposition 7.1. Let θ be close to 1, β large enough. There exists a constant
C1 > 0 and an unbounded increasing sequence of integers k1, k2, . . . such that for
large N , we have whenever Λ is sufficiently large,

(−1)kN

|Λ|
dkN

dhkN

∑

Γ∈C+(Λ)

u+
Λ(Γ)

∣∣∣
h=0

≥
(
C1K(∞)

d
d−1β−

1
d−1

)kNkN !
d

d−1 . (7.44)

Proof. Fix ǫ > 0 small and consider the sequence (ΓN)N≥1 of Lemma 4.10. We
have limN→∞ V (ΓN) = +∞ and when N is large enough,

(1 − ǫ)K(∞) ≤ V (ΓN)
d−1

d

‖ΓN‖
≤ (1 + ǫ)K(∞) . (7.45)

The sequence (kN)N≥1 is defined such that the contribution from the contour ΓN
to p

+(kN )
γ,Λ (0) is close to maximal. Let

kN :=
⌊d− 1

d
β‖ΓN‖

⌋
. (7.46)

Since limN→∞ V (ΓN) = +∞, we have limN→∞ kN = +∞. From now on we
consider N large enough so that (7.45) and (7.48) hold and kN ≥ max{k0, k−}.
When considering the kN -th derivative, we use the following decomposition:

∑

Γ∈C+(Λ)

=
∑

Γ∈C+(Λ)
kN−large, thin

+
∑

Γ∈C+(Λ)
kN−small, thin

+
∑

Γ∈C+(Λ)
fat

(7.47)

We show that the dominant term comes from ΓN , which belongs to the first sum,
and that the two other sums are negligible. To see that ΓN appears in the first
sum, we first show that ΓN is kN -large. Indeed, if θ is close to 1 and ǫ, ǫ′, A(β)
are small,

V0(kN) ≤
(K(∞)(1 + ǫ′)

θ(1 − 2
√
A)

d− 1

d
‖ΓN‖

) d
d−1

≤
( 1

θ(1 − 2
√
A)

1 + ǫ′

1 − ǫ

d− 1

d

) d
d−1

V (ΓN) ≤ V (ΓN) .

Then we show that ΓN is thin:

|ΓN |
V (ΓN)

≤ 1

ρ

‖ΓN‖
V (ΓN)

≤ 1

ρK(∞)(1 − ǫ)

1

V0(kN)
1
d

≤ 1

2
δ2(β) . (7.48)
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Finally, we assume Λ is large enough in order to contain at least a|Λ| translates
of ΓN , a > 0. Then we apply Lemma 7.2 to u+

Λ(ΓN). Using (7.45),

V (ΓN )kNe−(1+δ1)β‖ΓN‖ ≥
(
(1 − ǫ)K(∞)‖ΓN‖

) d
d−1

kN e−(1+δ1)β‖ΓN‖

≥
(
(1 − ǫ)K(∞)

d

d− 1

1

β
kN

) d
d−1

kN

e−(1+δ1) d
d−1

(kN+1)

≥ c(kN)K(∞)
d

d−1
kNβ−

d
d−1

kN

[ d

d− 1
(1 − ǫ)e−δ1

] d
d−1

kN

kN !
d

d−1 , (7.49)

where c(kN) ≥ C3k
− 1

2
N and we used Stirling’s Formula. Since

(−1)kNu+
Λ(Γ)(kN )(0) ≥ 0 (7.50)

for all kN -large thin contour, we can obtain a lower bound on the first sum of
(7.47) by using only the contributions coming from the translates of ΓN . We get

(−1)kN

|Λ|
dkN

dhkN

∑

Γ∈C+(Λ)
kN−large, thin

u+
Λ(Γ)

∣∣∣
h=0

≥

ac(kN)

20
2kNK(∞)

d
d−1

kNβ−
1

d−1
kN

[ d

d− 1
(1 − ǫ)e−δ1D−

] d
d−1

kN

kN !
d

d−1 . (7.51)

Consider now a kN -small thin contour, i.e. R∗(V (Γ)) ≥ R∗(V0(kN)). Using
Cauchy’s Formula with a disc of radius R∗(V0(kN)) centered at h = 0,

|u+
Λ(Γ)(kN )(0)| ≤ kN !

( 1

R∗(V0(kN))

)kN

‖u+
Λ(Γ)‖UΓ

. (7.52)

Lemma 7.3. Setting α1 = α1(θ, β) := ρ−1(1− θ(1+A(β))− δ1(β)). If β is large
enough, we have α1 > 0 and the bound

‖u+
Λ(Γ)‖UΓ

≤ e−βα1|Γ|

1 − e−βα1|Γ| . (7.53)

Proof. Using (7.11), (7.12) and (7.32),

‖ϕ+
Λ(Γ)‖UΓ

≤ sup
h∈UΓ

e−β(1−δ1)‖Γ‖e2β(1+A)|Re h|V (Γ) ≤ e−α1β|Γ| < 1 , (7.54)

where we used the definition of the radius of analyticity:

sup
h∈UΓ

|h|V (Γ) ≤ R∗(V (Γ))V (Γ) ≤ R(V (Γ))V (Γ) ≤ θ

2
‖Γ‖ . (7.55)

The proof finishes by using the Taylor expansion of log(1 + x).



7.2. DERIVATIVES IN A FINITE VOLUME 107

A standard Peierls estimate implies, when β is large, the existence of a number
C4 such that

∑

Γ∈C+(Λ)

e−βα1|Γ| ≤ C4|Λ| . (7.56)

Using Stirling’s Formula, it easy to see that kN !k
1

d−1
kN

N ≤ kN !
d

d−1 e
1

d−1
kN . The

contribution from the kN -small contours is then bounded by

1

|Λ|
∣∣∣

dkN

dhkN

∑

Γ∈C+(Λ)
kN−small, thin

u+
Λ(Γ)

∣∣∣
h=0

≤

C52
kNK(∞)

d
d−1

kNβ−
1

d−1
kN

[
e

1
d−1

(1 + ǫ′

θ

) d
d−1
( 1

1 − 2
√
A

) 1
d−1
]kN

kN !
d

d−1 (7.57)

Now, compare (7.57) with (7.51). Comparing the square brackets in each of
these equations shows that the lower bound obtained with the kN -large contours
is dominant once θ is close to 1, ǫ, ǫ′ are small, and if β is large enough. This
follows from the inequality

d

d− 1
> e

1
d , ∀ d ≥ 2 , (7.58)

which follows from the following computation:

d
(
e

1
d − 1

)
= d
(
e

1
d − 1 − 1

d
+

1

d

)
=
∑

n≥2

1

n!

(1

d

)n−1

+ 1

= 1 +
∑

n≥1

1

(n + 1)!

(1

d

)n

< 1 − 1

2d
+
∑

n≥1

1

n!

(1

d

)n
= e

1
d − 1

2d
.

We are then left with the contribution of the fat contours. We can use a Cauchy
bound

∣∣∣
dk

dhk
u+

Λ(Γ)
∣∣∣
h=0

≤ k!
( 1

R∗(V (Γ))

)k
‖u+

Λ(Γ)‖UΓ

≤ k!
(2K(1)

θ

)k
V (Γ)

k
d

e−βα1|Γ|

1 − e−βα1|Γ|

≤ k!
(2K(1)

θ

( 2

δ2

) 1
d
)k

|Γ| k
d

e−βα1|Γ|

1 − e−βα1|Γ| .
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Then a Peierls estimate leads to

∑

Γ∈C+(Λ)

|Γ| k
d e−α1β|Γ| ≤ |Λ|

∑

L≥1

L
k
d e−α

′
1βL ≤ |Λ|(α′1β)−

k
d Γ
(k
d

+ 1
)
, (7.59)

where Γ(x) is the Gamma-function. Using Stirling’s Formula, it is then easy to
show that the contribution from the fat contours is bounded by

1

|Λ|
∣∣∣

dk

dhk

∑

Γ∈C+(Λ)
fat

u+
Λ(Γ)

∣∣∣
h=0

≤
(
K(1)β−

1
dD(k)

)k
k!

d
d−1 , (7.60)

where limk→∞D(k) = 0. The fat contours can thus always be ignored. This
finishes the proof of Proposition 7.1

With (5.58), we get the lower bound, for a large enough box Λ,

|p+(kN )
γ,Λ (0)| ≥

(
C1K(∞)

d
d−1β−

1
d−1

)kNkN !
d

d−1 − CkN
r kN ! (7.61)

≥
(
C−γ

d
d−1β−

1
d−1

)kNkN !
d

d−1 − CkN
r kN ! . (7.62)

We used the lower bound K(∞) ≥ c−γ from Lemma 4.10. Notice that we could

extract the contribution of the translates of ΓN to p
+(kN )
γ,Λ (0) without knowing

its explicit shape. This is where our formulation of the isoperimetric problems
differs from the one of Isakov. Notice also that the lower bound (7.62) shows how
non-analyticity is detected in finite volumes.

7.3 Proof of Theorem 3.4

To extend the bounds we have on p
+(kN )
γ,Λ (0) to the infinite volume limit, we first

show that in the strip U+ the derivatives of the pressure are uniformly bounded.

Lemma 7.4. Let β be large enough. There exists C+ > 0 such that for all k ≥ 2,

sup
Λ

‖p+(k)
γ,Λ ‖U+ ≤

(
C+γ

d
d−1β−

1
d−1

)k
k!

d
d−1 + Ck

r k! . (7.63)

Proof. Like in Section 6.4, we can fix θ := 1
2
. The term Ck

r k! comes from (5.58).
Consider u+

Λ(Γ) and the representation (7.14) of ϕ+
Λ(Γ). From Lemma 7.1, ϕ+

Λ(Γ)
is analytic in UΓ. From Proposition 6.2 and Lemma 6.4, it is also analytic in U+,
i.e. in U+ ∪ UΓ. Proceeding like in the proof of Lemma 7.1, we get

∥∥∥
Θ+
i(Γ)(extΛΓ; σΓ)Θ+(intΓ;−σΓ)

Θ+
i(Γ)(Λ)

∥∥∥
U+

≤ sup
h∈U+

e−βReh|Γ|e3(ǫr+ǫc)|[Γ]R|

= e3(ǫr+ǫc)|[Γ]R| .
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Assume 3d+1(ǫr + ǫc) ≤ 1
3
. Using (6.59),

‖ϕ+
Λ(Γ)‖U+ ≤ e−β‖Γ‖eβh+|Γ|e|Γ| ≤ e−α2β|Γ| < 1 . (7.64)

Notice that unlike in (7.54), α2 in independent of θ. This implies that u+
Λ(Γ) is

also analytic in U+ ∪UΓ. Set α3 = min{α1, α2}. Using a disc of radius R∗(V (Γ))
around each h ∈ U+, we have

‖u+
Λ(Γ)(k)‖U+ ≤ k!

( 1

R∗(V (Γ))

)k
‖u+

Λ(Γ)‖U+∪UΓ

≤ k!
(2K(1)

θ

)k
V (Γ)

k
d

e−βα3|Γ|

1 − e−βα3|Γ|

≤ k!
(2K(1)

θl
1

d−1

)k
|Γ| k

d−1
e−βα3|Γ|

1 − e−βα3|Γ| .

We used the isoperimetric inequality of Lemma 4.9. Remember that K(1) ≤ c+γ
(Lemma 4.10), and that l = νγ−1. The proof finishes like for the upper bound
on fat contours:

∑

Γ∈C+(Λ)

|Γ| k
d−1 e−βα3|Γ| ≤ |Λ|

∑

L≥1

L
k

d−1 e−βα
′
3L . (7.65)

Let p
(k),←
γ (h) denote the k-th right directional derivative of pγ at h.

Corollary 7.1. For all h′ ∈ U+ ∪ {Reh = 0} and for all k ∈ N,

p(k),←
γ (h′) = lim

ΛրZd
p

+(k)
γ,Λ (h′) = lim

hցh′
p(k)
γ (h) . (7.66)

Proof. We show (7.66) for k = 1. By definition,

p(1),←
γ (h′) = lim

δց0

pγ(h
′ + δ) − pγ(h

′)

δ

= lim
δց0

lim
ΛրZd

p+
γ,Λ(h′ + δ) − p+

γ,Λ(h′)

δ

= lim
δց0

lim
ΛրZd

(
p

+(1)
γ,Λ (h′) +

1

2!
p

+(2)
γ,Λ (h(δ))δ

)
,

where limδց0 h(δ) = h′. The following lemma will allow to permute the limits
limδց0 and limΛրZd.

Lemma 7.5. Let, for all N ∈ N, δ > 0, bN (δ) = aN + cN(δ), such that |cN(δ)| ≤
Dδ uniformly in N , and limN→∞ bN (δ) = b(δ) exists. Then limN→∞ aN and
limδց0 b(δ) exist and are equal.
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Proof. We first show that limδց0 b(δ) exists. Let (δk) be any sequence δk > 0
such that limk→∞ δk = 0. Then we have

|b(δk) − b(δk′)| = | lim
N→∞

(cN(δk) − cN(δk′))| ≤ D(δk + δk′) , (7.67)

and so limk→∞ b(δk) exists. Fix ǫ > 0. There exists Nǫ,δ such that if N ≥ Nǫ,δ

then |bN(δ) − b(δ)| ≤ ǫ. We then have

b(δ) − ǫ−Dδ ≤ lim inf
N→∞

aN ≤ lim sup
N→∞

aN ≤ b(δ) + ǫ+Dδ , (7.68)

which finishes the proof, once we take ǫ→ 0, δ → 0.

Using the fact that the second derivative is uniformly bounded on U+ (Lemma
7.4) shows the first equality in (7.66). For the second, we only need to consider
the case where h′ = 0.

p(1),←
γ (0) = lim

δց0

pγ(δ) − pγ(0)

δ

= lim
δց0

[pγ(δ) − pγ(
δ
2
)

δ
+

pγ(
δ
2
) − pγ(0)

δ

]

=
(

lim
δց0

1

2
p(1)
γ (h(δ))

)
+

1

2
p(1),←
γ (0) ,

where h(δ) ∈ [ δ
2
, δ] and limδց0 h(δ) = 0. This shows

p(1),←
γ (0) = lim

δց0
p(1)
γ (h(δ)) , (7.69)

which extends easily to any sequence h ց 0, since derivatives of any order are
uniformly bounded on U+.

We can then complete the proof of Theorem 3.4:

Proof of Theorem 3.4: The bounds on p
(k)
γ,Λ(0) of (7.62) and Lemma 7.4 extend

to the thermodynamic limit using Corollary 7.1.

7.4 Conclusion

Our analysis has lead to the following representation of the pressure for h ≥ 0:

pγ(h) = p+
r,γ(h) + s+

γ (h) . (7.70)

As we have seen in Chapter 5, the restricted pressure p+
r,γ, which describes a ho-

mogeneous phase with positive magnetisation, behaves analytically at h = 0. On
the other hand, s+

γ is the singular contribution to the pressure: it contains the
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contributions from contours (droplets) of any possible sizes, and is responsible for
the non-analytic behaviour of the pressure at h = 0. Nevertheless, the contribu-
tion of s+

γ to the pressure is essentially zero when γ is small. Indeed, s+
γ can be

expressed as a sum over clusters of chains, and each chain contains at least one
contour. Since the length of a contour is bounded below by the size of a cube
C(l), we have

‖s+
γ ‖U+ ≤ ae−bβγ

−d

, (7.71)

where a, b > 0 are constants. Combined with the Lebowitz-Penrose Theorem (see
Chapter 3), the bound (7.71) implies, for h ≥ 0,

p0(h) = lim
γց0

p+
r,γ(h) = sup

m≥0

(
hm− fMF (m)

)
. (7.72)

From this last expression, the analytic continuation of the pressure, in the van
der Waals Limit, can be understood easily: for h > 0, hm− fMF (m) has a unique
global maxima at m∗(h, β) > 0. When h < 0 this maxima is only local, but pro-
vides the analytic continuation of p0 at h = 0. The identity (7.72) shows that the
constraint on the local magnetisation, in p+

r,γ, has the effect of always selecting
the maxima m∗(h, β), which is global when h > 0 and local when h < 0.

When γ > 0, this scenario breaks down: s+
γ 6= 0 and large droplets of the −

phase are stable at h = 0. This yields a contribution k!
d

d−1 to the k-th derivative
of the pressure. This shows that the analytic continuation, as obtained in van
der Waals and mean field theories, is possible only when the system is assumed
to be homogeneous in space. On the other hand, when the system is allowed
to condense, there is creation of a non-analytic singularity at the condensation
point.
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Chapter 8

Discussion and Open Problems

This chapter contains concluding remarks and an account of some open problems
that deserve further attention in the future. In Section 8.1, we also mention a
few other results, stated without proof, obtained during our work.

8.1 Overview

The results we have obtained in this thesis can be summarized as follows:

We have successfully extended the technique of [Isakov1] to the class of general
two phase models of Pirogov-Sinai Theory (Theorem 1.2), and made a precise link
with the mean field behaviour, using Kac potentials and the van der Waals Limit
(Theorem 1.3). Our analysis shows that the finiteness of the range of interaction
is a sufficient condition for creating a singularity at which no analytic continuation
is possible. This confirms the droplet mechanism proposed by Andreev, Fisher
and Langer, which we presented in Section 1.2.2. Configurations of finite range
models - as opposed to the mean field approximation in which the geometry of the
system plays no role - can always be described with contours. At the transition

point, contours of all sizes are stable, yielding the behaviour ∼ k!
d

d−1 for the large
derivatives of the pressure.

8.1.1 Generic Features of First Order Phase Transitions

The analysis of large order derivatives of the pressure reveals other features of
first order phase transitions, which we briefly describe.

A Signature of Non-Analyticity in Finite Volumes. It is known that
phase transitions occur only in the thermodynamic limit. The meaning of this
statement can be understood via the study of the derivatives of the pressure. Let
pΛ denote the pressure of a lattice system with finite range interactions, in a finite

113
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box Λ. Consider the Ising Model for simplicity. Since this system is finite, pΛ is
analytic at h = 0. On the other hand, the analysis shows that for a fixed integer
k, the box Λ can be taken sufficiently large so that

|p(k)
Λ (0)| ≥ Ckk!

d
d−1 , (8.1)

where the constant C is uniform in the volume. We have then seen that (8.1)
implies the same bound in the thermodynamic limit:

|p(k)(0+)| ≥ Ckk!
d

d−1 . (8.2)

Clearly, the thermodynamic limit is essential to create a real singularity, i.e. to
obtain (8.2) for an unbounded increasing sequence k1, k2, . . . , yielding a Taylor
expansion of the pressure with radius of convergence equal to zero. Nevertheless,

the behaviour ∼ k!
d

d−1 can already be detected in finite systems, as (8.1) shows.
In this sense, the study of large finite systems suffices to predict the singularity
which occurs in the thermodynamic limit.

A Signature of Non-Analyticity Outside the Transition Point. In the
same spirit, we wish to emphasize another point. Namely, the lower bound (8.2)
holds for an infinite number of integers k only if the derivative is evaluated at the
point h = 0; we want to show that this behaviour can actually be detected in a
neighbourhood of h = 0.

We have seen that the pressure is analytic outside the transition point. For the
Ising Model, this is a consequence of Lee and Yang’s theorem. Application of the
Cauchy Formula then yields, for all h 6= 0,

|p(k)(h)| ≤ B0
kk! , B0 = B0(h) > 0 . (8.3)

An interesting question is to know if, for a fixed integer k, a crossover between
the two behaviours - (8.3) at h 6= 0 and (8.2) at h = 0 - can be explicited. We
state a theorem which answers partially the question.

Theorem 8.1. Consider the pressure of the Ising Model, p = p(h). Let β be
large enough. Then, for all large enough integer k, there exists h(k) > 0 such
that for all h ∈ [0, h(k)], (h(k) ց 0 when k ր +∞)

|p(k),←(h)| ≥ Ckk!
d

d−1 . (8.4)

The bounds (8.3) and (8.4) thus allow, to a certain extent, “measuring” the
distance from a point h 6= 0 to the transition point h = 0. The proof of Theorem
8.1 follows the same lines as the proofs given in the rest of the thesis. In particular,
one must apply Corollary B.1 with t 6= 0. Combined with the remarks of the
previous paragraph, we conclude that the phase transition can, in principle, be
detected for finite volumes, outside the transition point.
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Borel-Summability at the Transition Point. We have obtained bounds on
the derivatives of the pressure that are uniform in the strip 0 < Reh < ǫ (these
hold for the Ising model as well as for the Kac model):

sup
0<Reh<ǫ

|p(k)(h)| ≤ Ckk!
d

d−1 , ∀k ∈ N . (8.5)

We will now see that this uniformity guarantees that the coefficients 1
k!

p(k)(0+)
provide an asymptotic expansion of the pressure at h = 0, and, moreover, that
this asymptotic expansion allows to reconstruct the function via Borel summation.

By the Theorem of Yang-Lee, the pressure is analytic in Reh > 0 1. Consider
any real h0 > 0, and express the pressure as a finite Taylor expansion around h0:
for h ∈ C with Reh > 0,

p(h) =

N−1∑

k=0

1

k!
p(k)(h0)(h− h0)

k +RN (h; h0) , (8.6)

where the rest RN(h; h0) is given by

RN (h; h0) =
1

N !
p(N)(h̃)(h− h0)

N , h̃ = h̃(h, h0) ∈ [h0, h] . (8.7)

Using the uniform bound (8.5), we have

∣∣∣p(h) −
N−1∑

k=0

1

k!
p(k)(h0)(h− h0)

k
∣∣∣ = |RN(h; h0)| ≤ CNN !

1
d−1 |h− h0|N (8.8)

We can then take the limit h0 ց 0 in this last inequality, and get

∣∣∣p(h) −
N−1∑

k=0

1

k!
p(k)(0+)hk

∣∣∣ ≤ CNN !
1

d−1 |h|N . (8.9)

This shows that
∑

k
1
k!

p(k)(0+)hk provides an asymptotic expansion of the pressure
(see [Rem1], p.296). Moreover, the hypotheses of the Watson-Sokal Lemma [So]
are satisfied, and the pressure p can be reconstructed with the coefficients p(k)(0+).
Namely, the Borel sum

B(t) :=
∑

k≥0

1

k!2
p(k)(0+)tk (8.10)

converges in the disc |t| < C−1, has analytic continuation to the strip-like region
{t ∈ C : d(t,R+) ≤ C−1}, and p can be represented by the absolutely convergent
integral

p(h) =
1

h

∫ ∞

0

e−
t
hB(t)dt , Reh > 0 . (8.11)

1In the general case of two phase models, analyticity in a half space can be obtained via the
methods presented in Appendix A.
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Temperature Driven Transition in the Potts Model. The proofs of our
results have always used a contour representation of the underlying spin system.
In fact, any two phase model that can be represented with contours is expected to
present the same non-analytic behaviour. A typical example is the temperature
driven transition of the Potts Model at large q. This model is defined as follows:
for each i ∈ Zd, let σi be a spin taking values in the set {1, 2, . . . , q}. Define the
(formal) hamiltonian

H = −
∑

〈i,j〉
δσi,σj

, (8.12)

where δx,y = 1 if x = y and otherwise equals zero (the sum is over nearest neigh-
bours). Consider the pressure p = p(β) of this model, seen as a function of the
inverse temperature β.

Often, the Potts Model is studied via its Fortuin-Kasteleyn representation, in
which critical properties can be studied with percolation arguments [FK]. Using
the contour representation of the Fortuin-Kasteleyn representation [LMMRS], the
Pirogov-Sinai Theory allows, when q is sufficiently large, to study the system in
a neighbourhood of its transition temperature βc(q). Our technique also applies
to this case, and following the same proof as for Theorem 1.2, we can show:

Theorem 8.2. For sufficiently large q, the free energy f(β) of the Potts model
has a first order phase transition at βc(q); it is analytic in β on {β < βc(q)} and
{β > βc(q)}, but has no analytic continuation from {β < βc(q)} to {β > βc(q)}
accross βc(q) (or vice-versa).

More than Two Phases. An interesting situation is when more than two
phases are present. The Blume-Capel Model is the prototype of a three phase
model, in which each spin can take three values, si ∈ {−1, 0,+1}. The hamilto-
nian has the form

H =
∑

〈i,j〉
(si − sj)

2 − µ1

∑

i

s2
i − µ2

∑

i

si . (8.13)

We have depicted the phase diagram of this model on Figure 8.1. The Pirogov-
Sinai Theory allows to obtain analyticity of the pressure p = p(µ), µ = (µ1, µ2),
with respect to either of the fields µ1, µ2, in the pure phase regions U+, U0, U−.
Far from the triple point, the system effectively behaves as a two phase model
when moving along a path that crosses a coexistence line. Theorem 1.2 thus
shows that the pressure has no analytic continuation along such paths (see Fig-
ure 8.1). A weakness of this result is that the range of temperature for which the
result holds decreases when the path approaches the triple point.
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U+

U−

U0

µ1

µ2

µ∗

α1

α2

α3

Figure 8.1: The low temperature phase diagram of the Blume-Capel Model. The
triple point µ∗ = (µ∗

2, 0) is the point of maximal coexistence. The regions U+, U0, U−

are regions of pure phases, and the lines U+ ∩ U0, U0 ∩ U−, U+ ∩ U− are the lines of
coexistence. The paths α1, α2, α3 are the paths along which Theorem 1.2 applies.

For paths that go through the triple point, a different analysis must be done,
treating the three phases equivalently. Our result for a particular class of paths
is the following 2:

Theorem 8.3. Let β be sufficiently large. Then the pressure p = p(µ) has no
analytic continuation along any straight path approaching the triple point µ∗, con-
tained in the shaded regions of Figure 8.2. The same holds for the two paths ap-
proaching the triple point along µ1 = 0: along µ2 ց µ∗2 on the line of coexistence
U+ ∩ U− or along µ2 ր µ∗2 in the pure 0 phase.

The difference with two phase models is that one must consider, in the con-
struction of the phase diagram as well as in the study of the derivatives, three
isoperimetric problems that depend on the chosen path. It is during the study of
the solutions of these problems that the restriction on the path appears.

8.2 Open Problems

Our results, which hold for finite range lattice systems at low temperature, give a
good picture of how non-analyticity emerges from the first principles of statistical
mechanics. Yet, some points still deserve to be studied more precisely, and some
other questions, more difficult, remain open.

2Originally, this result was obtained for a three phase model of percolation [Fr], along the
paths µ2 = µ∗

2, µ1 ց 0 and µ1 = 0, µ2 ր µ∗
2.
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π
4

α

Figure 8.2: Non-Analyticity at the triple point: the pressure has no analytic continua-
tion along any of the paths α approaching the triple point µ∗, contained in the shaded
region. The same holds for the paths approaching the triple point along µ1 = 0.

8.2.1 A Different Method

Isakov’s technique remains the unique rigorous method for studying non-analy-
ticity. The method imposes to consider two classes of contours. On one hand,
the k-large contours are those for which the stationary phase analysis allows to
estimate the k-th derivative of the function u+

Λ(Γ), with high accuracy. On the
other hand, the k-small contours are those for which nothing can be said, even
about the sign of the derivative. We then made a particular choice of a k-large
contour having a good isoperimetric ratio, and showed that the contribution from
the translates of this single contour dominated the contribution from all the k-
small contours.

This mechanism suggests that the k-th derivative is concentrated on a class of
contours, but we extracted the contribution from a single one (with its translates).
A new proof, including a better understanding of this concentration property,
would be very valuable, and would allow, hopefully, to give a meaning to the
limit

lim
k→∞

(
p(k)(0+)k!−

d
d−1

)−k
. (8.14)

This was studied partly by Isakov [Isakov3] for the two dimensional Ising Model;
he could relate the limit (8.14) to the asymptotic behaviour of the two point
function. Pursuing this analysis, we can hope to relate more accurately the
phenomenon of non-analyticity to a basic physical quantity, such as the surface
tension (see the review [BIV]).
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8.2.2 A General Result for Multiple Phase Systems

The results for models with more than two phases are only partial. As our dis-
cussion on the Blume-Capel Model suggests (Section 8.1), it is reasonable to
conjecture that there exists a result of the following kind:

In the general framework of Pirogov-Sinai Theory, the pressure is non-analytic
along any path crossing a coexistence strata, of arbitrary dimension.

The problem is to obtain uniformity in the temperature. The first step towards
such a general theorem is to understand the study of paths, in the Blume-Capel
Model, from µ1 > 0 to µ1 < 0 with µ2 fixed, µ2 − µ∗2 > 0; the point is to obtain
non-analyticity along each of these paths for a range of temperatures which is
uniform in µ2 − µ∗2. To this end, one must understand the role played by the
unstable phase 0 in the transition +\−, arbitrarily close to the triple point.

8.2.3 Analytic Continuation Around the Singularity

In the two phase models we investigated, we have always considered paths along
the real axis. A challenging problem which remains is to show whether the ana-
lytic continuation can be done along paths that go around the singularity. Such
continuations were studied by Langer [L] and Fisher [F], in the simple case of the
droplet model. The imaginary part of the analytically continued pressure was
interpreted, by Langer, as inversely proportional to the lifetime of a metastable
state.

For the Ising Model, the problem amounts to showing the existence of analytic
continuation along paths such as the one depicted on Figure 8.3. In [NS], New-
man and Schulman conjectured that such continuation exists. However, it is not
clear, in this case, whether the predictions made by the droplet model are correct.

Im h

Re h

Figure 8.3: An open problem: the analytic continuation in the complex plane, around
the singularity h = 0 of the Ising Model.

To illustrate the different possible scenarios, let us go back to the model considered
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in the Introduction, with d = 2 for simplicity (see (1.26)):

pD(z) :=
∑

n≥1

e−τ
√
nzn . (8.15)

We saw that the series (8.15) has a radius of convergence equal to one, and that
z = 1 is a singular point at which derivatives behave like k!2. Since the coefficients
of the series are given explicitly, exact computations can be done. Indeed, it can
be shown that pD has an analytic continuation to the whole star-shaped domain
C\[1,+∞), given by

p̃D(z) =

∫ +∞

0

z

et − z
f(t)dt , (8.16)

where

f(t) =
1

2πi

∫ 1
2
+i∞

1
2
−i∞

e−τ
√
ωeωtdω . (8.17)

That is, p̃D is analytic on C\[1,+∞), and coincides with pD on {|z| < 1}. The
interval [1,+∞) is a branch cut of p̃D.

The droplet singularity at z = 1 was the guiding mechanism for the proofs pre-
sented in the bulk of this thesis. A reasonable guess is thus to infer that the Ising
Model can be continued analytically around h = 0. Nevertheless, we will now see
that a slight modification of the coefficients of the pressure leads to important
changes in the analytic behaviour on the boundary of the disc {|z| < 1}.

In [Br], Bricmont 3 considered the following series:

pB(z) :=
∑

n≥1

e−τ⌊
√
n⌋zn , (8.18)

where ⌊x⌋ denotes the largest integer smaller than x. This series provides a dif-
ferent reasonable approximation of the pressure of a lattice gas and it also has
a singularity at z = 1. Nevertheless, as Bricmont noted, the series (8.18) has a
lacunary structure, which implies that it has {|z| = 1} as a natural boundary 4:
pB(z) has no analytic continuation outside the disc {|z| < 1}, across any point
z0 ∈ {|z| = 1}. Since (8.15) and (8.18) have very different analytic structures,
and since neither of them is a priori better for approximating the free energy in

3The same remark was made by Borgs in [Bo].
4A series

∑
n anzλn is lacunary if limn

n
λn

= 0. For example 1 + z + z4 + z9 + z16 + . . . .
A theorem of Fabry states that any lacunary series has its disc of convergence as a natural
boundary (see [Rem2]).
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the formation of droplets in a condensing system, it is hard to make a precise
guess concerning the continuation of the free energy of the Ising Model around
h = 0. The first scenario suggests that analytic continuation exists; the second
suggests that {Reh = 0} is a natural boundary.

Actually, there exists no simple model - other than those of Langer and Fisher - in
which this problem can be solved. For example, the exact asymptotic behaviour
of the coefficients of the model of Kunz and Souillard (see (1.31)) is known 5, but
nothing can be said about the analytic properties on the boundary of the disc of
convergence (!). The problem is that the analytic behaviour of a series on the
boundary of its disc of convergence is so sensitive to the value of the coefficients 6,
that any kind of approximation can be misleading regarding analytic properties.
This was emphasized by Penrose [Pe]:

Langer’s derivation, however, uses the approximation of replacing an
infinite series formula for the free energy of an Ising ferromagnet by
the corresponding integral. Since analytic continuation is a form of
extrapolation, the uncontrolled errors introduced by this approximation
might have a profound effect on the analytically continued free energy.

Concerning more realistic models, our technique does not answer the question, al-
though most of our analysis goes through also when considering purely imaginary
magnetic fields (the phase diagram, for instance, is constructed in a neighbour-
hood of the imaginary axis). Namely, the fact that we have always considered
paths hց 0 along the real axis has had the crucial consequence, in the final part
of the argument giving the lower bound on the k-th derivative of the pressure,
that the contribution from each k-large contour, besides being real, had the same
sign. For purely imaginary magnetic fields, k-large and k-small contours can be
defined, but each term of the sum over k-large contours is a complex number,
and nothing can be said about the value of the sum.

It can be concluded with relative certainty that the study of this problem requires
a different technique, with a better understanding of the properties of the Ising
Model in a purely imaginary magnetic field.

5In [ACC], the asymptotic behaviour of the cluster size distribution was computed exactly,
and related to the Wulff construction.

6In [Po], Polyá emphasised the sensivity to the coefficients by comparing the set S of series
that have a radius of convergence equal to one, with the subset S′ ⊂ S of series that have
{|z| = 1} as a natural boundary. By introducing a suitable topology on S, Polyá showed that
S′ is open and dense in S.
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8.2.4 Long Range Models |i− j|−α

Our results hold for any finite long but finite range potential, in dimension d ≥ 2.
In fact our technique certainly applies to any system to which the Pirogov-Sinai
Theory applies. For instance, with infinite range interactions decaying exponen-
tially fast. Namely, we have seen that the restricted phases, in the study of the
Kac model, introduced a long range interaction between the contours, decaying
exponentially fast. This interaction was treated via a linking procedure.

We can also expect our results to extend to systems with interactions of the type
|i− j|−α, with α sufficiently large 7. A situation which deserves special attention
is the one dimensional case, with α = 2. It was shown by Fröhlich and Spencer
[FS] that this model exhibits a first order phase transition, and an interesting
problem would be to study the analytic properties of this model at the transition
point. It is not clear whether the droplet mechanism, which we used in dimensions
greater or equal to two, can be used to exhibit a non-analytic behaviour for a
one dimensional system. The analysis seems more delicate, and might require a
completely different approach.

7The Pirogov-Sinai Theory of such potentials was developed by Park [Pa].



Appendix A

General Two phases Models

This appendix contains the proof of Theorem 1.2. We have left it in the same
form in which it was when submitted for publication. Therefore, notations and
terminology differ slightly from the rest of the text, and repetitions might occur
at a few places.

A.1 Introduction

We study a lattice model with finite state space on Zd, d ≥ 2. Let H0 be a
Hamiltonian with finite-range periodic interaction, having two periodic ground-
states ψ1 and ψ2, and so that Peierls condition is verified. LetH1 be a Hamiltonian
with periodic and finite range interaction, so that the perturbed Hamiltonian

Hµ = H0 + µH1

splits the degeneracy of the ground-states of H0: if µ < 0, then Hµ has a unique
ground-state ψ2, and if µ > 0, then Hµ has a unique ground-state ψ1. The free
energy of the model with Hamiltonian Hµ, at inverse temperature β, is denoted
by f(µ, β). Our main result is

Theorem A.1. Under the above setting, there exist an open interval U0 ∋ 0,
β∗ ∈ R+ and, for all β ≥ β∗, µ∗(β) ∈ U0 with the following properties.

1. There is a first-order phase transition at µ∗(β).

2. The free energy f(µ, β) is analytic in µ in {µ ∈ U0 : µ < µ∗(β)}; it has a
C∞ continuation in {µ ∈ U0 : µ ≤ µ∗(β)}.

3. The free energy f(µ, β) is analytic in µ in {µ ∈ U0 : µ > µ∗(β)}; it has a
C∞ continuation in {µ ∈ U0 : µ ≥ µ∗(β)}.

4. There is no analytic continuation of f from µ < µ∗(β) to µ > µ∗(β) across
µ∗(β), or vice-versa.

123
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This theorem answers a fundamental theoretical question: does the free energy,
which is analytic in the region of a single phase, have an analytic continuation
beyond a first-order phase transition point? The answer is yes for the theory of a
simple fluid of van der Waals or for mean-field theories. The analytic continuation
of the free energy beyond the transition point was interpreted as the free energy
of a metastable phase. The answer is no for models with finite range interaction,
under very general conditions, as Theorem A.1 shows. This contrasted behavior
has its origin in the fact that for models with finite range interaction there is
spatial phase separation at first order phase transition, contrary to what happens
in a mean-field model. Theorem A.1 and its proof confirm the prediction of the
droplet model [F].
Theorem A.1 generalizes the works of Isakov [Isakov1] for the Ising model and
[Isakov2], where a similar theorem is proven under additional assumptions, which
are not easy to verify in a concrete model. Our version of Theorem A.1, which re-
lies uniquely on Peierls condition, is therefore a genuine improvement of [Isakov2].
The first result of this kind was proven by Kunz and Souillard [KuS]; it concerns
the non-analytic behavior of the generating function of the cluster size distribu-
tion in percolation, which plays the role of a free energy in that model. The first
statement of Theorem A.1 is a particular case of the theory of Pirogov and Sinai
(see [S]). We give a proof of this result, as far as it concerns the free energy, since
we need detailed informations about the phase diagram in the complex plane of
the parameter µ.
The obstruction to an analytic continuation of the free energy in the variable
µ is due to the stability of the droplets of both phases in a neighborhood of
µ∗. Our proof follows for the essential that of Isakov in [Isakov1]. We give a
detailed proof of Theorem A.1, and do not assume any familiarity with [Isakov1]
or [Isakov2]. On the other hand we assume that the reader is familiar with the
cluster expansion technique.
The results presented here are true for a much larger class of systems, but for the
sake of simplicity we restrict our discussion in that paper to the above setting,
which is already quite general. For example, Theorem A.1 is true for Potts model
with high number q of components at the first order phase transition point βc,
where the q ordered phases coexist with the disordered phase. Here µ = β, the
inverse temperature, and the statement is that the free energy, which is analytic
for β > βc, or for β < βc, does not have an analytic continuation across βc.
Theorem A.1 is also true when the model has more than two ground-states. For
example, for the Blume-Capel model, whose Hamiltonian is

∑

i,j

(si − sj)
2 − h

∑

i

si − λ
∑

i

s2
i with si ∈ {−1, 0, 1} ,

the free energy is an analytic function of h and λ in the single phase regions. At
low temperature, at the triple point occurring at h = 0 and λ = λ∗(β) there is



A.1. INTRODUCTION 125

no analytic continuation of the free energy in λ, along the path h = 0, or in the
variable h, along the path λ = λ∗. The case of coexistence of more than two
phases will be treated in a separate paper.
In the rest of the section we fix the main notations following chapter two of Sinai’s
book [S], so that the reader may easily find more information if necessary. We
also state Lemma A.1 which contains all estimates on partition functions or free
energies. We omit the proof, which relies on the cluster expansion method.
The model is defined on the lattice Zd, d ≥ 2. The spin variables ϕ(x), x ∈ Zd,
take values in a finite state space. If ϕ, ψ are two spin configurations, then ϕ = ψ
(a.s.) means that ϕ(x) 6= ψ(x) holds only on a finite subset of Zd. The restriction
of ϕ to a subset A ⊂ Zd is denoted by ϕ(A). The cardinality of a subset S is
denoted by |S|. If x, y ∈ Zd, then |x − y| := maxdi=1 |xi − yi|; if W ⊂ Zd and
x ∈ Zd, then d(x,W ) := miny∈W |x − y| and if W,W ′ are subsets of Zd, then
d(W,W ′) = minx∈W d(x,W ′). We define for W ⊂ Zd

∂W := {x ∈W : d(x,Zd\W ) = 1} .

A subset W ⊂ Zd is connected if any two points x, y ∈W are connected by a path
{x0, x1, . . . , xn} ⊂W , with x0 = x, xn = y and |xi−xi+1| = 1, i = 0, 1, . . . , n−1.
A component is a maximally connected subset.
Let H be a Hamiltonian with finite-range and periodic bounded interaction. By
introducing an equivalent model on a sublattice, with a larger state space, we can
assume that the model is translation invariant with interaction between neigh-
boring spins ϕ(x) and ϕ(y), |x− y| = 1, only. Therefore, without restricting the
generality, we assume that this is the case and that the interaction is Zd-invariant.
The Hamiltonian is written

Hµ = H0 + µH1 , µ ∈ R .

H0 has two Zd-invariant ground-states ψ1 and ψ2, and the perturbation H1 splits
the degeneracy of the ground-states of H0. We assume that the energy (per unit
spin) of the ground-states of H0 is 0. Uµ

x (ϕ) ≡ U0,x + µU1,x is the interaction
energy of the spin located at x for the configuration ϕ, so that by definition

Hµ(ϕ) =
∑

x∈Zd

Uµ
x (ϕ) (formal sum) .

U1,x is an order parameter for the phase transition. If ϕ and ψ are two configu-
rations and ϕ = ψ (a.s.), then

Hµ(ϕ|ψ) :=
∑

x∈Zd

(
Uµ
x (ϕ) − Uµ

x (ψ)
)
.

This last sum is finite since only finitely many terms are non-zero. The main
condition, which we impose on H0, is Peierls condition for the ground-states ψ1
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and ψ2. Let x ∈ Zd and

W1(x) := {y ∈ Zd : |y − x| ≤ 1} .

The boundary ∂ϕ of the configuration ϕ is the subset of Zd defined by

∂ϕ :=
⋃

x∈Zd

{
W1(x) : ϕ(W1(x)) 6= ψm(W1(x)) , m = 1, 2

}
.

Peierls condition means that there exists a positive constant ρ such that for
m = 1, 2

H0(ϕ|ψm) ≥ ρ|∂ϕ| ∀ ϕ such that ϕ = ψm (a.s.) .

We shall not write usually the µ-dependence of some quantity; we write for ex-
ample H or Ux instead of Hµ or Uµ

x .

Definition A.1. Let M denote a finite connected subset of Zd, and let ϕ be a
configuration. Then a couple Γ = (M,ϕ(M)) is called a contour of ϕ if M is
a component of the boundary ∂ϕ of ϕ. A couple Γ = (M,ϕ(M)) of this type
is called a contour if there exists at least one configuration ϕ such that Γ is a
contour of ϕ.

If Γ = (M,ϕ(M)) is a contour, then M is the support of Γ, which we also
denote by supp Γ. Suppose that Γ = (M,ϕ(M)) is a contour and consider the
components Aα of Zd\M . Then for each component Aα there exists a unique
ground-state ψq(α), such that for each x ∈ ∂Aα one has ϕ(W1(x)) = ψq(α)(W1(x)).
The index q(α) is the label of the component Aα. For any contour Γ there exists a
unique infinite component of Zd\supp Γ, Ext Γ, called the exterior of Γ; all other
components are called internal components of Γ. The ground-state corresponding
to the label of Ext Γ is the boundary condition of Γ; the superscript q in Γq

indicates that Γ is a contour with boundary condition ψq. Intm Γ is the union of
all internal components of Γ with label m; Int Γ :=

⋃
m=1,2 Intm Γ is the interior

of Γ. We use the abbreviations |Γ| := |supp Γ| and Vm(Γ) := |Intm Γ|. We define1

V (Γq) := Vm(Γq) m 6= q . (A.1)

For x ∈ Zd, let

c(x) :=
{
y ∈ R

d :
d

max
i=1

|xi − yi| ≤ 1/2
}

be the unit cube of center x in Rd. If Λ ⊂ Zd, then |Λ| is equal to the d-volume
of

⋃

x∈Λ
c(x) ⊂ R

d . (A.2)

1Here our convention differs from [S].
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The (d−1)-volume of the boundary of the set (A.2) is denoted by ∂|Λ|. We have

2d |Λ| d−1
d ≤ ∂|Λ| . (A.3)

The equality in (A.3) is true for cubes only. When Λ = Intm Γq, m 6= q, V (Γq) ≡
|Λ| and ∂V (Γq) ≡ ∂|Λ|; there exists a positive constant C0 such that

∂V (Γq) ≤ C0|Γq| q = 1, 2 . (A.4)

For each contour Γ = (M,ϕ(M)) there corresponds a unique configuration ϕΓ

with the properties: ϕΓ = ψq on Ext Γ, where q is the label of Ext Γ, ϕΓ(M) =
ϕ(M), ϕΓ = ψm on Intm Γ, m = 1, 2. Γ is the only contour of ϕΓ. Let Λ ⊂ Zd;
the notation Γ ⊂ Λ means that supp Γ ⊂ Λ, Int Γ ⊂ Λ and d(supp Γ,Λc) > 1. A
contour Γ of a configuration ϕ is an external contour of ϕ if and only if Γ ⊂ Ext Γ′

for any contour Γ′ of ϕ.

Definition A.2. Let Ω(Γq) be the set of configurations ϕ = ψq (a.s.) such that
Γq is the only external contour of ϕ. Then

Θ(Γq) :=
∑

ϕ∈Ω(Γq)

exp
[
− βH(ϕ|ψq)

]
.

Let Λ ⊂ Zd be a finite subset; let Ωq(Λ) be the set of configurations ϕ = ψq (a.s.)
such that Γ ⊂ Λ whenever Γ is a contour of ϕ. Then

Θq(Λ) :=
∑

ϕ∈Ωq(Λ)

exp
[
− βH(ϕ|ψq)

]
.

Two fundamental identities relate the partition functions Θ(Γq) and Θq(Λ).

Θq(Λ) =
∑ n∏

i=1

Θ(Γqi ) , (A.5)

where the sum is over the set of all families {Γq1, . . . ,Γqn} of external contours in
Λ, and

Θ(Γq) = exp
[
− βH(ϕΓq |ψq)

] 2∏

m=1

Θm(Intm Γq) . (A.6)

We define (limit in the sense of van Hove)

gq := lim
Λ↑Zd

− 1

β|Λ| log Θq(Λ) .

The energy (per unit volume) of ψm for the Hamiltonian H1 is

h(ψm) := U1,x(ψm) .
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By definition of H1, h(ψ2) − h(ψ1) 6= 0, and we assume that

∆ := h(ψ2) − h(ψ1) > 0 .

The free energy in the thermodynamical limit is

f = lim
Λ↑Zd

− 1

β|Λ| log Θq(Λ) + lim
Λ↑Zd

1

|Λ|
∑

x∈Λ
Ux(ψq) = gq + µ h(ψq) . (A.7)

It is independent of the boundary condition ψq.

Definition A.3. Let Γq be a contour with boundary condition ψq. The weight
ω(Γq) of Γq is

ω(Γq) := exp
[
− βH(ϕΓq |ψq)

] ∏

m:m6=q

Θm(Intm Γq)

Θq(Intm Γq)
.

The (bare) surface energy of a contour Γq is

‖Γq‖ := H0(ϕΓq |ψq) .

For a contour Γq we set

a(ϕΓq) :=
∑

x∈supp Γq

U1,x(ϕΓq) − U1,x(ψq) .

Since the interaction is bounded, there exists a constant C1 so that

|a(ϕΓq)| ≤ C1|Γq| . (A.8)

Using these notations we have

H(ϕΓq |ψq) =
∑

x∈supp Γq

(
Ux(ϕΓq) − Ux(ψq)

)
+

∑

x∈Int Γq

(
Ux(ϕΓq) − Ux(ψq)

)

= H0(ϕΓq |ψq) + µa(ϕΓq) + µ(h(ψm) − h(ψq))V (Γq)

= ‖Γq‖ + µa(ϕΓq) + µ(h(ψm) − h(ψq))V (Γq) (m 6= q) . (A.9)

The surface energy ‖Γq‖ is always strictly positive since Peierls condition holds,
and there exists a constant C2, independent of q = 1, 2, such that

ρ|Γq| ≤ ‖Γq‖ ≤ C2|Γq| . (A.10)

Definition A.4. The weight ω(Γq) is τ -stable for Γq if

|ω(Γq)| ≤ exp(−τ |Γq|) .
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For finite subset Λ ⊂ Zd, using (A.5) and (A.6), one obtains easily the following
identity for the partition function Θq(Λ),

Θq(Λ) = 1 +
∑ n∏

i=1

ω(Γqi ) , (A.11)

where the sum is over all families of compatible contours {Γq1, . . . ,Γqn} with
boundary condition ψq, that is, Γqi ⊂ Λ and d(supp Γqi , supp Γqj) > 1 for all i 6= j,
i, j = 1, . . . , n, n ≥ 1. If the weights of all contours with boundary condition ψq
are τ -stable and if τ is large enough, then one can express the logarithm of Θq(Λ)
as an absolutely convergent sum,

log Θq(Λ) =
∑

m≥1

1

m!

∑

Γq
1⊂Λ

· · ·
∑

Γq
m⊂Λ

ϕTm(Γq1, . . . ,Γ
q
m)

m∏

i=1

ω(Γqi ) . (A.12)

In (A.12) ϕTm(Γq1, . . . ,Γ
q
m) is a purely combinatorial factor. This is the basic

formula which is used for controlling Θq(Λ). We also introduce restricted partition
functions and free energies. For each n = 0, 1, . . . , we define new weights ωn(Γ

q)

ωn(Γ
q) :=

{
ω(Γq) if V (Γq) ≤ n,

0 otherwise.

For q = 1, 2, we define Θn
q by equation (A.11), replacing ω(Γq) by ωn(Γ

q), and we
set (provided that Θn

q (Λ) 6= 0 for all Λ)

gnq := − lim
Λ↑Zd

1

β|Λ| log Θn
q (Λ) and fnq := gnq + z h(ψq) . (A.13)

fnq is the restricted free energy of order n and boundary condition ψq. Let

l(n) := C−1
0

⌈
2dn

d−1
d

⌉
n ≥ 1 . (A.14)

Notice that Θn
q (Λ) = Θq(Λ) if |Λ| ≤ n, and that V (Γq) ≥ n implies that |Γq| ≥

l(n) since (A.3) and (A.4) hold.

Lemma A.1. Suppose that the weights ω(Γq) are τ -stable for all Γq. Then there
exists K0 <∞ and τ ∗0 <∞, so that for all τ ≥ τ ∗0 , (A.12) is absolutely convergent
and

β|gq| ≤ K0e
−τ .

For all subsets Λ ⊂ Zd,

∣∣ log Θq(Λ) + βgq |Λ|
∣∣ ≤ K0e

−τ ∂|Λ| .
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If ω(Γq) = 0 for all Γq such that |Γq| ≤ m, then

β|gq| ≤
(
K0e

−τ)m .

For n ≥ 1 and m ≥ n,

β|gmq − gn−1
q | ≤

(
K0e

−τ)l(n)
.

Furthermore, if ω(Γq) depends on a parameter t and

∣∣ d
dt
ω(Γq)

∣∣ ≤ D1e
−τ |Γq| and

∣∣ d
2

dt2
ω(Γq)

∣∣ ≤ D2e
−τ |Γq| ,

then there exists Kk < ∞ and τ ∗k < ∞, k = 1, 2, so that for all τ ≥ τ ∗k ,
dk

dtk
gq

exists and

β
∣∣ d
dt
gq
∣∣ ≤ D1K1e

−τ and β
∣∣ d

2

dt2
gq
∣∣ ≤ max{D2, D

2
1}K2e

−τ .

For all subsets Λ ⊂ Zd,

∣∣ d
dt

log Θq(Λ) + β
d

dt
gq |Λ|

∣∣ ≤ D1K1e
−τ ∂|Λ|

and ∣∣ d
2

dt2
log Θq(Λ) + β

d2

dt2
gq |Λ|

∣∣ ≤ max{D2, D
2
1}K2e

−τ ∂|Λ| .

Lemma A.1 is proved by the cluster expansion method. It follows from (A.12)
and arguments similar to those of the proof of Lemma 3.5. in section 3.3 in [Pf].
The proof of Theorem A.1 is given in the next five subsections. In subsection
A.2 we construct the phase diagram and in subsection A.3 we study the analytic
continuation of the weights of contours in a neighborhood of the point of phase
coexistence µ∗. The results about the analytic continuation are crucial for the
rest of the analysis. Construction of the phase diagram in the complex plane has
been done by Isakov [Isakov2]. We follow partly this reference and Zahradnik [Z].
In subsection A.4 we derive an expression of the derivatives of the free energy
at finite volume. We prove a lower bound for a restricted class of terms of this
expression. This is an improved version of a similar analysis of Isakov [Isakov1].
From these results we obtain a lower bound for the derivatives of the free energy
fΛ in a finite box Λ. We show in subsection A.4.1 that for large β, there exists an
increasing diverging sequence {kn}, so that the kthn -derivative of fΛ with respect

to µ, evaluated at µ∗, behaves as kn!
d

d−1 (provided that Λ is large enough). In the
last subsection we end the proof of the impossibility of an analytic continuation of
the free energy across µ∗, by showing that the results of subsection A.4.1 remain
true in the thermodynamical limit.
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A.2 Construction of the Phase Diagram

We construct the phase diagram for complex values of the parameter µ, by con-
structing iteratively the phase diagram for the restricted free energies fnq (see
(A.13)). We set z := µ + iν. The method consists in finding a sequence of
intervals for each ν ∈ R,

Un(ν; β) := (µ∗n(ν; β) − b1n, µ
∗
n(ν; β) + b2n) ,

with the properties

(µ∗n(ν; β) − b1n, µ
∗
n(ν; β) + b2n) ⊂ (µ∗n−1(ν; β) − b1n−1, µ

∗
n−1(ν; β) + b2n−1) (A.15)

and limn b
q
n = 0, q = 1, 2. By construction of the intervals Un−1(ν; β) the re-

stricted free energies fn−1
q of order n− 1, q = 1, 2, are well-defined and analytic

on
Un−1 := {z ∈ C : Rez ∈ Un−1(Imz; β)} .

The point µ∗n(ν; β), n ≥ 1, is solution of the equation

Re
(
fn−1

2 (µ∗n(ν; β) + iν) − fn−1
1 (µ∗n(ν; β) + iν)

)
= 0 .

µ∗n(0; β) is the point of phase coexistence for the restricted free energies of order
n − 1, and the point of phase coexistence of the model is given by µ∗(0; β) =
limn µ

∗
n(0; β). This iterative procedure also gives the necessary results needed in

subsection A.2 about the analytic continuation of the weights ω(Γq) around the
point of phase coexistence µ∗. Since we need sharp results about the analytic
continuation of the weights ω(Γq), we must choose carefully the two sequences
{bqn}, q = 1, 2. In order to ease the exposition we first describe the iterative
procedure with a specific choice of {bqn}, based on the isoperimetric inequality

V (Γq)
d−1

d ≤ χ−1‖Γq‖ ∀ Γq , q = 1, 2 . (A.16)

Existence of χ in (A.16) follows from (A.3), (A.4) and (A.10). Then, in subsection
A.3, we make another choice for {bqn}. This iterative construction is given in
details in the proof of the Proposition A.1, which is the main result of subsection
A.2.

Proposition A.1. Let 0 < ε < ρ and 0 < δ < 1 so that ∆ − 2δ > 0. Set

U0 := (−C−1
1 ε, C−1

1 ε) and U0 := {z ∈ C : Rez ∈ U0}

and
τ(β) := β(ρ− ε) − 3C0δ .

There exists β0 ∈ R
+ such that for all β ≥ β0 the following holds.

A) There exists a continuous real-valued function on R, ν 7→ µ∗(ν; β), so that
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µ∗(ν; β) + iν ∈ U0.
B) If µ + iν ∈ U0 and µ ≤ µ∗(ν; β), then the weight ω(Γ2) is τ(β)-stable for all
contours Γ2 with boundary condition ψ2, and analytic in z = µ+iν if µ < µ∗(ν; β).
C) If µ + iν ∈ U0 and µ ≥ µ∗(ν; β), then the weight ω(Γ1) is τ(β)-stable for all
contours Γ1 with boundary condition ψ1, and analytic in z = µ+iν if µ > µ∗(ν; β).

Remark A.1. ρ is the constant of the Peierls condition and ∆ = h(ψ2)−h(ψ1) >
0. We may choose δ in such a way that δ = δ(β) and limβ→∞ δ(β) = 0, without
changing the theorem. Indeed, the only condition which we need to satisfy is
(A.20). So, whenever we need it, we consider δ as function of β, so that by taking
β large enough, we have δ as small as we wish.

Proof. The iterative method depends on a free parameter θ′, 0 < θ′ < 1. On the
interval U0(ν; β) := (−b0, b0) with b0 = εC−1

1 , f 0
q (µ + iν) is defined and we set

µ∗0(ν; β) := 0. The two decreasing sequences {bqn}, q = 1, 2 and n ≥ 1, are defined
in (A.22). The iterative construction is possible whenever the sequences {bqn},
q = 1, 2, verify (A.21), (A.27) and (A.28). We prove iteratively the following
statements.

A. fnq (µ + iν; β) is defined for all µ ∈ Un−1(ν; β), and ν 7→ µ∗n(ν; β) is a
continuous solution of the equation

Re
(
fn−1

2 (µ∗n(ν; β) + iν) − fn−1
1 (µ∗n(ν; β) + iν)

)
= 0 ,

so that (A.15) holds.

B. On Un, ωn(Γ
q) is analytic for any contour Γq, q = 1, 2, and ωn(Γ

q) is τ1(β)-
stable (see (A.17)).

C. On Un,
∣∣ d
dz
ωn(Γ

q)
∣∣ ≤ βC3e

−τ2(β)|Γq | (see (A.18) and (A.19)).

D. For each n ≥ 1, if µ ≤ µ∗n(ν; β) − b1n, then ω(Γ2) is τ(β)-stable for any Γ2

with boundary condition ψ2. Similarly, for each n ≥ 1, if µ ≥ µ∗n(ν; β)+ b2n,
then ω(Γ1) is τ(β)-stable for any Γ1 with boundary condition ψ1.

From these results the proposition follows with

µ∗(ν; β) = lim
n→∞

µ∗n(ν; β) .

The analyticity of the weights ω(Γq) is an immediate consequence of their stability
since Θm(Intm Γq) and Θq(Intm Γq) 6= 0 are analytic.
Let 0 < θ′ < 1 be given, as well as ε and δ as in the proposition. We introduce
all constants used in the proof below.

τ1(β; θ′) := β
(
ρ(1 − θ′) − ε

)
− 2δC0 , (A.17)
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τ2(β; θ′) := τ1(β; θ′) − d

d− 1
, (A.18)

and

C3 := C1 + 2δC0 + (∆ + 2δ)(χ−1C2)
d

d−1 . (A.19)

We assume that β0 is large enough so that2 τ2(β) > max{τ ∗0 , τ ∗1 , τ ∗2 }, (A.32) holds,

Ke−τ1(β) ≤ δ and C3Ke−τ2(β) ≤ δ , (A.20)

where K = max{K0, K1}, and K0, K1 are the constants of Lemma A.1. We
assume that for q = 1, 2,

bqn − bqn+1 >
2δl(n)

β(∆ − 2δ)
, ∀n ≥ 1 . (A.21)

If we define

b1n ≡ b2n :=
χθ′

(∆ + 2δ)n
1
d

, n ≥ 1 , (A.22)

then it is immediate to verify (A.21) when β is large enough or δ small enough.
On U0 all contours Γ with empty interior are β(ρ− ε)-stable (see (A.8)), and

∣∣∣
d

dz
ω(Γ)

∣∣∣ ≤ βC1|Γ|e−β(ρ−ε)|Γ| ≤ βC1e
−[β(ρ−ε)−1]|Γ| ≤ βC3e

−τ2(β)|Γ| .

Assume that the construction has been done for all m ≤ n− 1. By Lemma A.1,
if z ∈ Un−1, then

∣∣ d
dz
gmq
∣∣ ≤ C3Ke−τ2(β) ≤ δ m ≤ n− 1 . (A.23)

A. We prove the existence of µ∗n(ν; β) ∈ Un−1. µ
∗
n(ν; β) is solution of the equation

Re
(
fn−1

2 (µ∗n(ν; β) + iν) − fn−1
1 (µ∗n(ν; β) + iν)

)
= 0 .

Let Fm(z) := fm2 (z) − fm1 (z). Then, for µ′ + iν ∈ Un−1,

F n−1(µ′ + iν) = F n−1(µ′ + iν) − F n−2(µ∗n−1 + iν) (A.24)

= F n−1(µ′ + iν) − F n−1(µ∗n−1 + iν) + F n−1(µ∗n−1 + iν)

− F n−2(µ∗n−1 + iν)

=

∫ µ′

µ∗n−1

d

dµ
F n−1(µ+ iν) dµ+

(
gn−1
2 − gn−2

2

)
(µ∗n−1 + iν)

−
(
gn−1
1 − gn−2

1

)
(µ∗n−1 + iν) .

2τ∗
k , k = 0, 1, 2, are defined in Lemma A.1. Condition τ2(β) > τ∗

2 is needed only in Lemma
A.3. We have stated Lemma A.3 separately in order to simplify the proof of Proposition A.1.
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If V (Γ) = n− 1, then |Γ| ≥ l(n− 1). Therefore, by Lemma A.1,

|
(
gn−1
q − gn−2

q

)
(µ∗n−1 + iν)| ≤ β−1δl(n−1) . (A.25)

If z′ = µ′ + iν ∈ Un−1, then (A.24), (A.23) and (A.25) imply

∆(µ′ − µ∗n−1) + 2δ|µ′ − µ∗n−1| + 2β−1δl(n−1) ≥ ReF n−1(z′)

≥ ∆(µ′ − µ∗n−1) − 2δ|µ′ − µ∗n−1| − 2β−1δl(n−1) .

(A.21) implies

bqn−1 > bqn−1 − bqn >
2δl(n−1)

β(∆ − 2δ)
,

so that ReF n−1(µ∗n−1 − b1n−1 + iν) < 0 and ReF n−1(µ∗n−1 + b2n−1 + iν) > 0. This
proves the existence of µ∗n and its uniqueness, since µ 7→ ReF n−1(µ+iν) is strictly
increasing. Moreover, by putting µ′ = µ∗n(ν; β) in (A.24), we get

|µ∗n(ν; β) − µ∗n−1(ν; β)| ≤ 2δl(n−1)

β(∆ − 2δ)
.

Therefore Un ⊂ Un−1. The implicit function theorem implies that ν 7→ µ∗n(ν; β)
is continuous (even C∞).

B. We prove that ωn(Γ
q) is τ1-stable for all contours Γq, q = 1, 2. Let Γq be a con-

tour with V (Γq) = n. All contours contributing to Θm(Intm Γq) and Θq(Intm Γq)
have volumes smaller than n − 1, so that for these contours ω(Γ) = ωn−1(Γ). If
z ∈ Un−1 (use (A.8), (A.4) and the definition of U0), then

|ω(Γq)| = exp
[
− βReH(ϕΓq |ψq)

] ∣∣∣
∏

m:m6=q

Θm(Intm Γq)

Θq(Intm Γq)

∣∣∣ (A.26)

≤ exp
[
− β‖Γq‖ +

(
βε+ 2C0δ

)
|Γq| − βRe

(
fn−1
m − fn−1

q

)
V (Γq)

]

= exp
[
− β‖Γq‖ +

(
βε+ 2C0δ

)
|Γq| − βRe

(
fn−1
m − fn−1

q

)V (Γq)

‖Γq‖ ‖Γq‖
]
.

Let µ ∈ Un−1(ν; β). We prove that bqn verify the following conditions, which imply
the τ1-stability.

−Re
(
fn−1

1 − fn−1
2

)V (Γ2)

‖Γ2‖ ≤ θ′ if µ ≤ µ∗n + b2n and V (Γ2) = n, (A.27)

−Re
(
fn−1

2 − fn−1
1

)V (Γ1)

‖Γ1‖ ≤ θ′ if µ ≥ µ∗n − b1n and V (Γ1) = n. (A.28)

For the present choice of {bqn}, the isoperimetric inequality (A.16) implies

V (Γq)

‖Γq‖ ≤ V (Γq)
1
d

χ
∀ q = 1, 2 ,
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and therefore

∣∣Re
(
fn−1
m − fn−1

q

)∣∣V (Γq)

‖Γq‖ =
∣∣∣Re

∫ µ

µ∗n

d

dµ

(
fn−1
m − fn−1

q

)
dµ
∣∣∣
V (Γq)

‖Γq‖

≤ |µ− µ∗n|(∆ + 2δ)
V (Γq)

‖Γq‖ ≤ θ′ .

Conditions (A.27) and (A.28) ensure that on Un

|ω(Γq)| ≤ exp
[
− β

(
ρ(1 − θ′) − ε− 2β−1C0δ

)
|Γq|
]
.

C. We prove that on Un

∣∣ d
dz
ωn(Γ)

∣∣ ≤ βC3e
−τ2(β)|Γ| .

Let V (Γq) = n; from (A.9)

d

dz
ωn(Γ

q) = ωn(Γ
q)
(
− βa(ϕΓq) − β

(
h(ψm) − h(ψq)

)
V (Γq)

+
d

dz

(
log Θm(Intm Γq) − log Θq(Intm Γq)

))
.

By Lemma A.1 and the isoperimetric inequality (A.3) we get

∣∣ d
dz
ωn(Γ

q)
∣∣ ≤ β|ωn(Γq)|

(
|Γq|(C1 + 2δC0) + V (Γq)(∆ + 2δ)

)
(A.29)

≤ βC3|ωn(Γq)||Γq|
d

d−1

≤ βC3e
−τ2(β)|Γq | .

D. We prove that ω(Γ2)(z) is τ(β)-stable for any contour Γ2 with boundary condi-
tion ψ2, if µ ≤ µ∗n(ν; β)−b1n. Using the induction hypothesis it is sufficient to prove
this statement for z = µ+ iν ∈ Un−1 and µ ≤ µ∗n(ν; β)− b1n. If z = µ+ iν ∈ Un−1,
then all contours with volume V (Γ) ≤ n − 1 are τ1(β)-stable, and for µ ≤ µ∗n,
µ 7→ Re(fn−1

1 − fn−1
2 )(µ + iν) is strictly decreasing. If µ ≤ µ∗n(ν; β) − b1n, then

(see (A.22) and (A.21))

βRe(fn−1
1 − fn−1

2 )(µ+ iν) = −β
∫ µ∗n

µ

d

dµ
Re(fn−1

1 − fn−1
2 )(µ+ iν) dµ

≥ −β
∫ µ∗n

µ∗n−b1n

d

dµ
Re(fn−1

1 − fn−1
2 )(µ+ iν) dµ

≥ βb1n(∆ − 2δ) ≥ 2δl(n) . (A.30)
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First suppose that V (Γ2) ≤ n. From (A.30) and (A.26) it follows that ω(Γ2) is
β(ρ− ε− 2β−1C0δ)-stable, in particular τ(β)-stable. Moreover, if |Λ| ≤ n, then

∣∣∣ exp
[
− βz(h(ψ1) − h(ψ2))|Λ|

]Θ1(Λ)

Θ2(Λ)

∣∣∣ ≤ e3δ∂|Λ| . (A.31)

Indeed, all contours inside Λ are τ1(β)-stable. By Lemma A.1

∣∣∣e−βz(h(ψ1)−h(ψ2))|Λ|Θ1(Λ)

Θ2(Λ)

∣∣∣ ≤
∣∣e−β(zh(ψ1)−zh(ψ2)+gn−1

1 −gn−1
2 )|Λ|∣∣ e2δ∂|Λ|

= e−βRe(fn−1
1 (z)−fn−1

2 (z))|Λ|e2δ∂|Λ|

≤ e2δ∂|Λ| .

To prove point D, we prove by induction on |Λ| that (A.31) holds for any Λ.
Indeed, if (A.31) is true and if we set Λ := Int1Γ

2, then it follows easily from the
definition of ω(Γ2) and from (A.9) that ω(Γ2) is τ(β)-stable.
The argument to prove (A.31) is due to Zahradnik [Z]. The statement is true for
|Λ| ≤ n. Suppose that it is true for |Λ| ≤ m, m > n, and let |Λ| = m + 1. The
induction hypothesis implies that ω(Γ2)(z) is τ(β)-stable if V (Γ2) ≤ m. Therefore

∣∣∣e−βz(h(ψ1)−h(ψ2))|Λ|Θ1(Λ)

Θ2(Λ)

∣∣∣ ≤
∣∣e−β(zh(ψ1)−zh(ψ2)−gm

2 )|Λ|Θ1(Λ)
∣∣eδ∂|Λ| .

From (A.5)

Θ1(Λ) =
∑ r∏

j=1

Θ(Γ1
j) ,

where the sum is over all families {Γ1
1, . . . ,Γ

1
r} of compatible external contours

in Λ. We say that an external contour Γ1
j is large if V (Γ1

j) ≥ n. Suppose that the
contours Γ1

1, . . .Γ
1
p are large and all other contours Γ1

p+1, . . .Γ
1
r not large. We set

Extp1(Λ) :=
( p⋂

j=1

ExtΓ1
j

)
∩ Λ .

Summing over all contours which are not large, and using (A.6), we get

Θ1(Λ) =
∑

Θn−1
1

(
Extp1(Λ)

) p∏

j=1

exp
[
− βH(ϕΓ1

j
|ψ1)

]
Θ1(Int1Γ

1
j)Θ2(Int2Γ

1
j )

=
∑

Θn−1
1

(
Extp1(Λ)

) p∏

j=1

e
−β‖Γ1

j‖−βza(ϕΓ1
j
)+βz(h(ψ1)−h(ψ2))|Int2Γ1

j |

· Θ1(Int1Γ
1
j)

Θ2(Int1Γ
1
j)

Θ2(Int1Γ
1
j )Θ2(Int2Γ

1
j) ;
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the sums are over all families {Γ1
1, . . .Γ

1
p} of compatible external large contours

in Λ. All contours which are not large are τ1(β)-stable, and we use the cluster
expansion to control Θn−1

1

(
Extp1(Λ)

)
, Θ2(Int1Γ

1
j ) and Θ2(Int2Γ

1
j ). Notice that

∂|Extp1(Λ)| ≤ ∂|Λ| +∑p
j=1C0|Γ1

j |. By Lemma A.1 and the induction hypothesis,

∣∣∣e−βz(h(ψ1)−h(ψ2))|Λ|Θ1(Λ)

Θ2(Λ)

∣∣∣ ≤ e2δ∂|Λ|
∑

e−βRe(fn−1
1 −fn−1

2 −gm
2 +gn−1

2 )|Extp
1(Λ)|

·
p∏

j=1

e−(βρ−βε−6C0δ)|Γ1
j |e−βRe(fn−1

1 −fn−1
2 −gm

2 +gn−1
2 )|Γ1

j | .

We define
τ̂(β) := β(ρ− ε) − 6C0δ .

From (A.30) and Lemma A.1 we have

β(fn−1
1 − fn−1

2 − gm2 + gn−1
2 ) ≥ δl(n) .

Hence,

∣∣∣e−βz(h(ψ1)−h(ψ2))|Λ|Θ1(Λ)

Θ2(Λ)

∣∣∣ ≤ e2δ∂|Λ|
∑

e−δ
l(n)|Extp

1(Λ)|
p∏

j=1

e−(δl(n)+τ̂(β))|Γ1
j | .

We define

ω̂(Γ) :=

{
e−(τ̂ (β)−C0δ)|Γ| if |Γ| ≥ l(n);

0 otherwise.

Let Θ̂(Λ) be defined by (A.11), replacing ω(Γq) by ω̂(Γ), and let

ĝ := lim
Λ↑Zd

− 1

β|Λ| log Θ̂(Λ) .

We assume that β0 is large enough so that for all β ≥ β0,

Ke−τ̂(β) ≤ δ , (A.32)

where K is the constant of Lemma A.1. Since β|ĝ| ≤ δl(n), putting into evidence
a factor eβĝ|Λ|, we get

∣∣∣e−βz(h(ψ1)−h(ψ2))|Λ|Θ1(Λ)

Θ2(Λ)

∣∣∣ ≤ e2δ∂|Λ|+βĝ|Λ|
∑ p∏

j=1

e−τ̂ (β)|Γ1
j |e−βĝ|Int Γ1

j | (A.33)

≤ e2δ∂|Λ|+βĝ|Λ|
∑ p∏

j=1

e−(τ̂ (β)−C0δ)|Γ1
j |Θ̂(Int Γ1

j) .
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In the last line of (A.33) we interpret e−βĝ|Int Γ1| as a partition function (up to a
boundary term), since by Lemma A.1,

e−βĝ|Int Γ1| ≤ Θ̂(Int Γ1) eC0δ|Γ1| .

We sum over external contours in (A.33) and get

∣∣∣e−βz(h(ψ1)−h(ψ2))|Λ|Θ1(Λ)

Θ2(Λ)

∣∣∣ ≤ e2δ∂|Λ|+βĝ|Λ|Θ̂(Λ) ≤ e3δ∂|Λ| .

It is not difficult to prove more regularity for the curve ν 7→ µ∗(ν; β). We need
below only the following result.

Lemma A.2. Let 0 < δ < 1. If β is sufficiently large, then for all n ≥ 1
d

dν
µ∗n(0; β) = 0, and

∣∣ d
2

dν2
µ∗n(ν; β)

∣∣ ≤ 2δ

∆ − 2δ

(( 2δ

∆ − 2δ

)2

+
2δ

∆ − 2δ
+ 1
)
.

Proof. Let δ be as in the proof of Proposition A.1. Because the free energies
fn−1

1 and fn−1
2 are real on the real axis, it follows that ν 7→ µ∗n(ν; β) is even, and

therefore
d

dν
µ∗n(0; β) = 0. By definition µ∗n(ν; β) is solution of

Re
(
fn−1

2 (µ∗n(ν; β) + iν) − fn−1
1 (µ∗n(ν; β) + iν)

)
= 0 ,

which implies that

∆
dµ∗n
dν

=
d

dµ
Re
(
gn−1
1 − gn−1

2

)dµ∗n
dν

+
d

dν
Re
(
gn−1
1 − gn−1

2

)

and

∆
d2µ∗n
dν2

=
d

dµ
Re
(
gn−1
1 − gn−1

2

)d2µ∗n
dν2

+
d2

dµ2
Re
(
gn−1
1 − gn−1

2

)(dµ∗n
dν

)2

+
d2

dµdν
Re
(
gn−1
1 − gn−1

2

)dµ∗n
dν

+
d2

dν2
Re
(
gn−1
1 − gn−1

2

)
.

From the proof of Proposition A.1 we have on Um,

∣∣ d
dz
ωm(Γ)

∣∣ ≤ βC3e
−τ2(β)|Γ| .

Let τ3(β) := τ1(β) − 2 d
d−1

. A similar proof shows that for β sufficiently large,
there exists C4 so that for any m

∣∣ d
2

dz2
ωm(Γ)

∣∣ ≤ β2C4e
−τ3(β)|Γ| .
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Assume that β is large enough so that

βmax{C4, C
2
3}K2e

−τ3(β)|Γ| ≤ δ .

Then Lemma A.1 gives for Gn−1 := Re
(
gn−1
1 − gn−1

2

)

∣∣ d
dµ
Gn−1

∣∣ ≤ 2δ ,
∣∣ d
dν
Gn−1

∣∣ ≤ 2δ ,

∣∣ d
2

dµ2
Gn−1

∣∣ ≤ 2δ ,
∣∣ d

2

dν2
Gn−1

∣∣ ≤ 2δ ,
∣∣ d2

dµdν
Gn−1

∣∣ ≤ 2δ .

Hence

∣∣dµ
∗
n

dν

∣∣ ≤ 2δ

∆ − 2δ
,
∣∣d

2µ∗n
dν2

∣∣ ≤ 2δ

∆ − 2δ

(( 2δ

∆ − 2δ

)2

+
2δ

∆ − 2δ
+ 1
)
.

Proposition A.2. Under the conditions of Proposition A.1, there exist β0 ∈ R+

and p ∈ N so that the following holds for all β ≥ β0. Let

τ ′(β) := τ(β) − max
{ d

d− 1
, p
}
.

A) If µ+ iν ∈ U0 and µ ≤ µ∗(ν; β), then

∣∣ d
dz
ω(Γ2)(z)

∣∣ ≤ βC3e
−τ ′(β)|Γ2| .

B) If µ+ iν ∈ U0 and µ ≥ µ∗(ν; β), then

∣∣ d
dz
ω(Γ1)(z)

∣∣ ≤ βC3e
−τ ′(β)|Γ1| .

Proof. We consider the iterative construction of the proof of Proposition A.1 with
the same choice of the sequences {bqn}. Suppose that z = µ+ iν ∈ Un−1\Un and
µ ≤ µ∗(ν; β). Suppose that V (Γ2) ≤ n. We get (see (A.29))

∣∣ d
dz
ω(Γ2)

∣∣ ≤ βC3|Γ2| d
d−1 |ω(Γ2)| .

Since by Proposition A.1 ω(Γ2) is τ(β)-stable, we get for all Γ2 such that V (Γ2) ≤
n,

∣∣ d
dz
ω(Γ2)

∣∣ ≤ βC3|Γ2| d
d−1 e−τ(β)|Γ2| ≤ βC3e

−τ ′(β)|Γ2| .

Suppose that V (Γ2) ≥ n + 1. We estimate the derivative at z of ω(Γ2) using
Cauchy’s formula with a circle of center z contained in {µ + iν : µ ≤ µ∗(ν; β)}.
We estimate from below |Rez − µ∗(ν; β)| when z ∈ Un−1\Un, uniformly in ν.

|Rez − µ∗| ≥ |Rez − µ∗n| − |µ∗n − µ∗| ≥ b2n − |µ∗n − µ∗| .
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We estimate |µ∗n − µ∗| by first estimating |µ∗m − µ∗n|. Let m > n; then, since
µ∗m ∈ Un,

0 = Re
(
fm−1

2 (µ∗m) − fm−1
1 (µ∗m)

)
− Re

(
fn−1

2 (µ∗n) − fn−1
1 (µ∗n)

)

= Re
(
fm−1

2 (µ∗m) − fn−1
2 (µ∗m)

)
− Re

(
fm−1

1 (µ∗m) − fn−1
1 (µ∗m)

)

+ Re
(
fn−1

2 (µ∗m) − fn−1
2 (µ∗n)

)
− Re

(
fn−1

1 (µ∗m) − fn−1
1 (µ∗n)

)
.

From (A.25) we get

|µ∗m(ν; β) − µ∗n(ν; β)| ≤ 2δl(n)

β(∆ − 2δ)
∀ m > n ,

so that

|µ∗(ν; β) − µ∗n(ν; β)| ≤ 2δl(n)

β(∆ − 2δ)
. (A.34)

If V (Γ2) ≥ n+ 1, then |Γ2| ≥ l(n + 1). Choose p ∈ N so that for all n ≥ 1

1

|Γ2|p ≤
( 1

2dn
d−1

d

)p
≤ χθ′

(∆ + 2δ)n
1
d

− 2δl(n)

β(∆ − 2δ)
≤ b2n − |µ∗ − µ∗n| ≤ |Rez − µ∗| .

We use Cauchy’s formula with a circle of center z and radius |Γ2|−p and get

∣∣ d
dz
ω(Γ2)

∣∣ ≤ |Γ2|pe−τ(β)|Γ2| ≤ e−τ
′(β)|Γ2| .

A.3 Analytic Continuation of the Weights at µ∗

In this subsection we consider how the weight ω(Γ2) for a contour with boundary
condition ψ2 behaves as function of z = µ+iν in the vicinity of z∗ := µ∗(ν; β)+iν.
We improve the domains of analyticity of the weights of contours, by making a
new choice of the sequences {bqn}, q = 1, 2. The main result of this subsection is
Proposition A.3. At z∗ the (complex) free energies fq, q = 1, 2, are well-defined
and can be computed by the cluster expansion method. Moreover,

Ref2(z
∗) = Ref1(z

∗) .

Therefore

Reg1(z
∗) + µ∗(ν; β)h(ψ1) = Reg2(z

∗) + µ∗(ν; β)h(ψ2) .



A.3. ANALYTIC CONTINUATION OF THE WEIGHTS AT µ∗ 141

With δ as in the proof of Proposition A.1, we get

|µ∗(ν; β)| ≤ 2δ

β∆
,

and

|ω(Γq)(z∗)| ≤ exp
[
− β‖Γq‖ +

2C1δ

∆
|Γq| + δC0|Γq|

]
, ∀ Γq .

We set
µ∗ := µ∗(0; β) ,

and adopt the following convention: if a quantity, say H or fq, is evaluated at
the transition point µ∗, we simply write H∗ or f ∗q .
The analyticity properties of ω(Γ2) near µ∗ are controlled by isoperimetric in-
equalities

V (Γ2)
d−1

d ≤ χ2(n)−1‖Γ2‖ ∀ Γ2 , V (Γ2) ≥ n . (A.35)

The difference with (A.16) is that only contours with boundary condition ψ2 and
V (Γ2) ≥ n are considered for a given n. By definition the isoperimetric constants
χ2(n) verify

χ2(n)−1 := inf
{
C :

V (Γ2)
d−1

d

‖Γ2‖ ≤ C , ∀ Γ2 such that V (Γ2) ≥ n
}
.

χ2(n) is a bounded increasing sequence; we set χ2(∞) := limn χ2(n), and define

R2(n) := inf
m:m≤n

χ2(m)

m
1
d

.

There are similar definitions for χ1(n) and R1(n). The corresponding isoperimet-
ric inequalities control the analyticity properties of ω(Γ1) around µ∗.

Lemma A.3. For any χ′q < χq(∞), there exists N(χ′q) such that for all n ≥
N(χ′q),

χ′q

n
1
d

≤ Rq(n) ≤ χq(∞)

n
1
d

.

For q = 1, 2, n 7→ naRq(n) is increasing in n, provided that a ≥ 1
d
.

Proof. Let q = 2 and suppose that

R2(n) =
χ2(m)

m
1
d

for m < n.

Then R2(m
′) = R2(n) for all m ≤ m′ ≤ n. Let n′ be the largest n ≥ m such that

R2(n) =
χ2(m)

m
1
d

.
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We have n′ <∞, otherwise

0 < R2(m) = R2(n) ≤ χ2(∞)

n
1
d

∀ n ≥ m,

which is impossible. Therefore, either

R2(n
′) =

χ2(n
′)

n′
1
d

or R2(n
′ + 1) =

χ2(n
′ + 1)

(n′ + 1)
1
d

,

and for all k ≥ n′ + 1, since χ2(m) is increasing,

R2(k) = inf
m≤k

χ2(m)

m
1
d

= inf
n′≤m≤k

χ2(m)

m
1
d

≥ inf
n′≤m≤k

χ2(n
′)

m
1
d

=
χ2(n

′)

k
1
d

. (A.36)

Inequality (A.36) is true for infinitely many n′; since there exists m such that
χ′2 ≤ χ2(m), the first statement is proved.

On an interval of constancy of R2(n), n 7→ naR2(n) is increasing. On the other
hand, if on [m1, m2]

R2(n) =
χ2(n)

n
1
d

,

then n 7→ naR2(n) is increasing on [m1, m2] since n 7→ χ2(n) and n 7→ na−
1
d are

increasing.

The next proposition gives the domains of analyticity and the stability properties
of the weights ω(Γ) needed for estimating the derivatives of the free energy.

Proposition A.3. Let 0 < θ < 1 and 0 < ε < 1 so that ρ(1 − θ) − ε > 0.
There exist 0 < δ < 1, 0 < θ′ < 1 and β0 ∈ R+, such that for all β ≥ β0 ω(Γ2) is
analytic and τ1(β; θ′)-stable in a complex neighborhood of

{
z ∈ C : Rez ≤ µ∗(Imz; β) + θ∆−1R2(V (Γ2))

}
∩ U0 .

Moreover
∣∣ d
dz
ω(Γ2)

∣∣ ≤ βC3e
−τ2(β;θ′)|Γ2| .

Similar properties hold for ω(Γ1) in a complex neighborhood of

{
z ∈ C : µ∗(Imz; β) − θ∆−1R1(V (Γ1)) ≤ Rez

}
∩ U0 .

τ1(β; θ′) and τ2(β; θ′) are defined at (A.17) and (A.18).
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Proof. If in the iterative method of the proof of Proposition A.1 we find 0 < θ′ < 1
and b1n, b

2
n, so that (A.27), (A.28) and

(
µ∗(ν; β) − θ∆−1R1(n), µ∗(ν; β) + θ∆−1R2(n)

)
⊂ Un(ν; β) (A.37)

hold, then Proposition A.3 is true. Formula (A.37) is satisfied if (see (A.34))

bqn ≥ θ∆−1Rq(n) +
2δl(n)

β(∆ − 2δ)
,

and this is the case if

bqn := θ∆−1Rq(n) +
C

β
δn

1
4 ,

with C a suitable constant, which is chosen so that (A.21) is also satisfied. If β
is large enough and δ small enough, then there exists θ′ < 1 so that (A.27) and
(A.28) hold. Indeed, let V (Γ2) = n, z = µ+ iν and µ ≤ µ∗(ν; β) + b2n; then

−Re
(
fn−1

1 (z) − fn−1
2 (z)

)V (Γ2)

‖Γ2‖ ≤ (∆ + 2δ)b2n
n

1
d

χ2(n)

≤ ∆ + 2δ

∆
θ +

C

β
δn

1
4 n

1
d

χ2(n)
≤ θ′ .

A.4 Derivatives of the Free Energy

Although non-analytic behavior of the free energy occurs only in the thermody-
namical limit, most of the analysis is done at finite volume. We write

[g]
(k)
t′ :=

dk

dtk
g(t)

∣∣∣∣
t=t′

for the kth order derivative at t′ of the function g. The method of Isakov [Isakov1]
allows to get estimates of the derivatives of the free energy at µ∗, which are
uniform in the volume. We consider the case of the boundary condition ψ2. The
other case is similar. We tacitly assume that β is large enough so that Lemma
A.1 and all results of subsections A.2 and A.3 are valid. The main tool for
estimating the derivatives of the free energy is Cauchy’s formula. However, we
need to establish several results before we can obtain the desired estimates on the
derivatives of the free energy. The preparatory work is done in this subsection,
which is divided into three subsections. In A.4 we give an expression of the
derivatives of the free energy in terms of the derivatives of a free energy of a
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contour u(Γ2) = − log(1 + φΛ(Γ2)) ≈ −φΛ(Γ2) (see (A.39)). The main work is to
estimate

k!

2πi

∮

∂Dr

φΛ(Γ2)n(z)

(z − µ∗)k+1
dz .

The boundary of the disc Dr is decomposed naturally into two parts, ∂Dg
r and

∂Dd
r , and the integral into two integrals Igk,n(Γ

2) and Idk,n(Γ
2) (see (A.41) and

(A.42)). In A.4 we prove the upper bound (A.43) for Igk,n(Γ
2), and in A.4 we

evaluate Idk,n(Γ
2) by the stationary phase method, see (A.47) and (A.48). This is

a key point in the proof of Theorem A.1, since we obtain lower and upper bounds
for Idk,n(Γ

2).

An expression for the derivatives of the free energy

Let Λ = Λ(L) be the cubic box

Λ(L) := {x ∈ Zd : |x| ≤ L} .
We introduce a linear order, denoted by ≤, among all contours Γq ⊂ Λ with
boundary condition ψq. We assume that the linear order is such that V (Γ′q) ≤
V (Γq) if Γ′q ≤ Γq. There exists a natural enumeration of the contours by the
positive integers. The predecessor of Γq in that enumeration (if Γq is not the
smallest contour) is denoted by i(Γq). We introduce the restricted partition func-
tion ΘΓq(Λ), which is computed with the contours of

CΛ(Γq) := {Γ′q ⊂ Λ : Γ′q ≤ Γq} ,
that is

ΘΓq(Λ) := 1 +
∑ n∏

i=1

ω(Γqi ) , (A.38)

where the sum is over all families of compatible contours {Γq1, . . . ,Γqn} which
belong to CΛ(Γq). The partition function Θq(Λ) is written as a finite product

Θq(Λ) =
∏

Γq⊂Λ

ΘΓq(Λ)

Θi(Γq)(Λ)
.

By convention Θi(Γq)(Λ) := 1 when Γq is the smallest contour. We set

uΛ(Γq) := − log
ΘΓq(Λ)

Θi(Γq)(Λ)
.

uΛ(Γq) is the free energy cost for introducing the new contour Γq in the restricted
model, where all contours verify Γ′q ≤ Γq. We have the identity

ΘΓq(Λ) = Θi(Γq)(Λ) + ω(Γq) Θi(Γq)(Λ(Γq))

= Θi(Γq)(Λ)

(
1 + ω(Γq)

Θi(Γq)(Λ(Γq))

Θi(Γq)(Λ)

)
.
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In this last expression Θi(Γq)(Λ(Γq)) denotes the restricted partition function

Θi(Γq)(Λ(Γq)) := 1 +
∑ n∏

i=1

ω(Γqi ) ,

where the sum is over all families of compatible contours {Γq1, . . . ,Γqn} which
belong to CΛ(i(Γq)), and such that {Γq,Γq1, . . . ,Γqn} is a compatible family. We
also set

φΛ(Γq) := ω(Γq)
Θi(Γq)(Λ(Γq))

Θi(Γq)(Λ)
.

With these notations

uΛ(Γq) = − log
(
1 + φΛ(Γq)

)
=
∑

n≥1

(−1)n

n
φΛ(Γq)n , (A.39)

and for k ≥ 2

|Λ|β[f qΛ]
(k)
µ∗ =

∑

Γq⊂Λ

[uΛ(Γq)]
(k)
µ∗ .

We consider the case of the boundary condition ψ2. [φΛ(Γ2)n]
(k)
µ∗ is computed

using Cauchy’s formula,

[φΛ(Γ2)n]
(k)
µ∗ =

k!

2πi

∮

∂Dr

φΛ(Γ2)n(z)

(z − µ∗)k+1
dz ,

where ∂Dr is the boundary of a disc Dr of radius r and center µ∗ inside the
analyticity region of Proposition A.3,

U0 ∩
{
z ∈ C : Rez ≤ µ∗(Im(z); β) + θ∆−1R2(V (Γ2))

}
.

The function z 7→ φΛ(Γ2)n(z)
(z−µ∗)k+1 is real on the real axis, so that

φΛ(Γ2)n(z)

(z − µ∗)k+1
=
φΛ(Γ2)n(z)

(z − µ∗)k+1
,

and consequently

k!

2πi

∮

∂Dr

φΛ(Γ2)n(z)

(z − µ∗)k+1
dz = Re

{ k!

2πi

∮

∂Dr

φΛ(Γ2)n(z)

(z − µ∗)k+1
dz
}
. (A.40)
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Remark A.2. From Lemma A.2, there exists C ′ independent of ν and n, so that

µ∗n(ν; β) ≥ µ∗n(0; β) − C ′ν2 .

This implies that the region {Rez ≤ µ∗ − C ′(Imz)2 + θ∆−1R2(V (Γ2))} is always
in the analyticity region of ω(Γ2), which is given in Proposition A.3. Therefore,
if

C ′ ≤ 1

2
(
θ∆−1R2(V (Γ2))

)2 ,

then the disc Dr of center µ∗ and radius r = θ∆−1R2(V (Γ2)) is inside the ana-
lyticity region of ω(Γ2). This happens as soon as V (Γ2) is large enough.

Assuming that the disc Dr is inside the analyticity region of ω(Γ2), we decompose
∂Dr into

∂Dg
r := ∂Dr ∩ {z : Rez ≤ µ∗(Im(z); β) − θ∆−1R1(V (Γ2))} ,

and
∂Dd

r := ∂Dr ∩ {z : Rez ≥ µ∗(Im(z); β) − θ∆−1R1(V (Γ2))} ,
and write (A.40) as a sum of two integrals Igk,n(Γ

2) and Idk,n(Γ
2) (see figure A.1),

Igk,n(Γ
2) := Re

{ k!

2πi

∮

∂D
g
r

φΛ(Γ2)n(z)

(z − µ∗)k+1
dz
}

(A.41)

and

Idk,n(Γ
2) := Re

{ k!

2πi

∮

∂Dd
r

φΛ(Γ2)n(z)

(z − µ∗)k+1
dz
}
. (A.42)

An upper bound for Igk,n(Γ
2)

Igk,n(Γ
2) is not the main contribution to (A.40), so that it is sufficient to get an

upper bound for this integral. Let z ∈ U0 and Rez ≤ µ∗
(
Im(z); β

)
. We set

Γ2 := {x ∈ Zd : d(x, supp Γ2) ≤ 1} .

There exists a constant C5 such that |Γ2| ≤ C5|Γ2|. From (A.31) we get

|ω(Γ2)| ≤ exp
[
− β‖Γ2‖ + β|Rez|C1|Γ2| + 3C0δ|Γ2|

]
,

and by the cluster expansion method

∣∣∣
Θi(Γ2)(Λ(Γ2))

Θi(Γ2)(Λ)

∣∣∣ ≤ eδ|Γ
2| ≤ eδC5|Γ2| .
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We set
ζ := z − µ∗ .

Therefore, there exists a constant C6 so that

|φΛ(Γ2)| ≤ e−β‖Γ
2‖(1−C6δ−|Reζ|C1ρ

−1) if Reζ ≤ µ∗
(
Im(ζ); β

)
− µ∗ .

This upper bound implies

Igk,n(Γ
2) ≤ k!

rk
e−nβ‖Γ

2‖(1−C6δ−rC1ρ
−1) . (A.43)

∂Dd
r

∂Dg
r

r

µ∗(ν; β)

ν

µ
µ∗(0; β)

θ△−1R1(V (Γ2))

θ△−1R2(V (Γ2))

Figure A.1: The decomposition of the integral into I
g
k,n(Γ2) and Id

k,n(Γ2)

Lower and upper bounds for Idk,n(Γ
2)

In order to apply the stationary phase method to evaluate Idk,n(Γ
2), we first rewrite

φΛ(Γ2) in the following form,

φΛ(Γ2)(z) = φ∗Λ(Γ2) eβ∆V (Γ2)(ζ+g(Γ2)(ζ)) ,

where g(Γ2) is an analytic function of ζ in a neighborhood of ζ = 0 and g(Γ2)(0) =
0. Let

µ∗
(
Im(z); β

)
− θ∆−1R1(V (Γ2)) ≤ Rez ≤ µ∗

(
Im(z); β

)
+ θ∆−1R2(V (Γ2)) .

In this region (see figure A.1) we control the weights of contours with boundary
conditions ψ2 and ψ1, whose volume is smaller than V (Γ2). By the cluster ex-
pansion method there exists an analytic function g(Γ2), which is real on the real
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axis, so that

φΛ(Γ2) = exp
[
− βH(ϕΓ2|ψ2) + log

Θ1(Int1 Γ2)

Θ2(Int1 Γ2)
+ log

Θi(Γ2)(Λ(Γ2))

Θi(Γ2)(Λ)︸ ︷︷ ︸
:=G(Γ2)(z)

]

= φ∗Λ(Γ2) exp
[
β∆V (Γ2)ζ +

∫ µ∗+ζ

µ∗

( d
dz

G(Γ2)(z) − βa(ϕΓ2)
)
dz

︸ ︷︷ ︸
:=β∆V (Γ2)g(Γ2)(ζ)

]
.

For large enough β, τ ′(β) ≥ τ2(β; θ′), so that we get from Lemma A.1 and Propo-
sitions A.1 to A.3

∣∣ d
dζ

g(Γ2)(ζ)
∣∣ ≤ 2C3Ke−τ2(β;θ′)

( 1

∆
+

C0|Γ2|
∆V (Γ2)

+
|Γ2|

∆V (Γ2)

)
+

C1|Γ2|
∆V (Γ2)

≤ C7 e−τ2(β;θ′) + C8
|Γ2|
V (Γ2)

, (A.44)

for suitable constants C7 and C8. Moreover, there exists a constant C9 so that

exp
[
− β‖Γ2‖(1 + C9δ)] ≤ φ∗Λ(Γ2) ≤ exp[−β‖Γ2‖(1 − C9δ)] . (A.45)

Let
c(n) := nβ∆V (Γ2) .

We parametrize ∂Dd
r by z := µ∗ + reiα, −α1 ≤ α ≤ α2, 0 < αi ≤ π.

Idk,n(Γ
2) = k!

φ∗Λ(Γ2)n

2πrk

∫ α2

−α1

ec(n)r cosα+c(n)Re g(Γ2)(ζ)
[
cos(ψ̃(α))

]
dα ,

where

ψ̃(α) := c(n)r sinα + c(n) Im g(Γ2)(ζ) − kα .

We search for a stationary phase point ζk,n = rk,ne
iαk,n defined by the equations

d

dα

(
c(n)r cosα + c(n)Re g(Γ2)

(
reiα

))
= 0 and

d

dα
ψ̃(α) = 0 .

These equations are equivalent to the equations ( ′ denotes the derivative with
respect to ζ)

c(n) sinα
(
1 + Re g(Γ2)′(ζ)

)
+ cosαIm g(Γ2)′(ζ) = 0 ;

c(n)r cosα
(
1 + Re g(Γ2)′(ζ)

)
− r sinαIm g(Γ2)′(ζ) = k .

Since g(Γ2) is real on the real axis, αk,n = 0 and rk,n is solution of

c(n)r
(
1 + g(Γ2)′(r)

)
= k . (A.46)
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Lemma A.4. Let αi ≥ π/4, i = 1, 2, A ≤ 1/25 and c(n) ≥ 1. If g(ζ) is analytic
in ζ in the disc {ζ : |ζ | ≤ R}, real on the real axis, and for all ζ in that disc

∣∣ d
dζ

g(Γ2)(ζ)
∣∣ ≤ A ,

then there exists k0(A) ∈ N, such that for all integers k,

k ∈
[
k0(A), c(n)(1 − 2

√
A)R

]
,

there is a unique solution 0 < rk,n < R of (A.46). Moreover,

ecrk,n+c(n) g(Γ2)(rk,n)

10
√
c(n)rk,n

≤ 1

2π

∫ α2

−α1

ec(n)r cosα+c(n)Re g(Γ2)
[
cos(ψ̃(α))

]
dα

≤ ec(n)rk,n+c(n) g(Γ2)(rk,n)

√
c(n)rk,n

.

Proof. Existence and uniqueness of rk,n is a consequence of the monotonicity of
r 7→ c(n)r

(
1 + g(Γ2)′(r)

)
. The last part of Lemma A.4 is proven in appendix of

[Isakov1]. The computation is relatively long, but standard 3.

Setting c(n) = nβ∆V (Γ2) and R = θ∆−1R2(V (Γ2)) in Lemma A.4 we get suffi-
cient conditions for the existence of a stationary phase point and the following
evaluation of the integral Idk,n(Γ

2) by that method. Since rk,n is solution of (A.46),
we have

k − kA

(1 + A)
=

k

(1 + A)
≤ c(n)rk,n ≤ k

(1 −A)
= k +

kA

(1 −A)
,

and

c(n)|g(Γ2)(rk,n)| = c(n)
∣∣∣
∫ rk,n

0

g(Γ2)′(ζ)dζ
∣∣∣ ≤ Ac(n)rk,n ≤ k

A

1 −A
.

Therefore Lemma A.4 implies
√

1 −A

10
√
k
ck− c(n)k

k! ek

kk
φ∗Λ(Γ2)n ≤ Idk,n(Γ

2) (A.47)

≤
√

1 + A√
k

ck+ c(n)k
k! ek

kk
φ∗Λ(Γ2)n ,

with

c+(A) := (1 + A) exp
[ 2A

1 − A

]
, c−(A) := (1 − A) exp

[
− 2A

1 −A2

]
, (A.48)

3The details can be found in Appendix B.
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If A converges to 0, then c± converges to 1. We assume that (see (A.44))

C7 e−τ2(β;θ′) ≤ A

2
and C8

|Γ2|
V (Γ2)

≤ A

2
. (A.49)

A can be chosen as small as we wish, provided that β is large enough and |Γ2|
V (Γ2)

small enough.

A.4.1 Bounds at Finite Volume

We estimate the derivative of [f 2
Λ]

(k)
µ∗ for large enough k. The main result of this

subsection is Proposition A.4.
Let 0 < θ < 1, A ≤ 1/25, and set

θ̂ := θ(1 − 2
√
A) .

Let ε′ > 0 and χ′2 so that

(1 + ε′)χ′2 > χ2(∞) . (A.50)

The whole analysis depends on the parameters θ and ε′. We fix the values of θ,
and ε′ by the following conditions, which are needed for the proof of Proposition
A.4. We choose 0 < A0 < 1/25, θ and ε′ so that

e
1
d

1

θ(1 − 2
√
A0)

<
d

d− 1

c−(A0)
d−1

d

1 + ε′
and

1 − 2
√
A0

1 + ε′
d

d− 1
> 1 . (A.51)

This is possible, since
d

(d− 1) e
1
d

> 1 .

Indeed,

d
(
e

1
d − 1

)
= d
(
e

1
d − 1 − 1

d
+

1

d

)
=
∑

n≥2

1

n!

(1

d

)n−1

+ 1

= 1 +
∑

n≥1

1

(n + 1)!

(1

d

)n

< 1 − 1

2d
+
∑

n≥1

1

n!

(1

d

)n
= e

1
d − 1

2d
.

Notice that conditions (A.51) are still verified with the same values of θ and ε′

if we replace A0 by 0 < A < A0. Given θ, the value of θ′ is fixed in Proposition
A.3. From now we assume that β is so large that all results of subsections A.2
and A.3 are valid. The value of 0 < A < A0 is fixed in the proof of Lemma A.6.
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Given k large enough, there is a natural distinction between contours Γ2 such
that θ̂βV (Γ2)R2(V (Γ2)) ≤ k and those such that θ̂βV (Γ2)R2(V (Γ2)) > k. For
the latter we can estimate Idk,n(Γ

2) by the stationary phase method. We need as
a matter of fact a finer distinction between contours. We distinguish three classes
of contours:

1. k-small contours: θ̂βV (Γ2)R2(V (Γ2)) ≤ k;

2. fat contours: for η ≥ 0, fixed later by (A.54), V (Γ2)
d−1

d ≤ η ‖Γ2‖;

3. k-large and thin contours: θ̂βV (Γ2)R2(V (Γ2)) > k, V (Γ2)
d−1

d > η ‖Γ2‖.

We make precise the meaning of k large enough. By Lemma A.3 V 7→ V R2(V )
is increasing in V , and there exists N(χ′2) such that

R2(V ) ≥ χ′2
V

1
d

if V ≥ N(χ′2) .

We assume that there is a k-small contour Γ2 such that V (Γ2) ≥ N(χ′2), and that
the maximal volume of the k-small contours is so large that remark A.2 is valid.
We also assume (see Lemma A.4) that k > k0(A) and that for a k-large and thin
contour (see (A.44) and (A.49))

C8
|Γ2|
V (Γ2)

≤ C8

ρηV (Γ2)
1
d

≤ A

2
,

so that |g(Γ2)′| ≤ A, and

C1k

ρ∆(1 − A0)ηV (Γ2)
1
d

≤ k

10
(A.52)

are verified. There exists K(A, η, β) such that if k ≥ K(A, η, β), then k is large
enough. From now on k ≥ K(A, η, β).

Contribution to [f qΛ]
(k)
µ∗ from the k-small and fat contours

Let Γ2 be a k-small contour. Since V 7→ R2(V ) is decreasing in V , uΛ(Γ2) is
analytic in the region

{z : Rez ≤ µ∗(Imz; β) + θ∆−1R2(V
∗)} ∩ U0 ,

where V ∗ is the maximal volume of k-small contours. V ∗ satisfies

V ∗
d−1

d ≤ k

θ̂βχ′2
.
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Hence
θ∆−1R2(V

∗) ≥ θ̂∆−1χ′2V
∗− 1

d ≥ ∆−1
(
θ̂χ′2
) d

d−1β
1

d−1k−
1

d−1 .

Since remark A.2 is valid, we estimate the derivative of uΛ(Γ2) by Cauchy’s

formula with a disc centered at µ∗ with radius ∆−1
(
θ̂χ′2
) d

d−1β
1

d−1k−
1

d−1 . There
exists a constant C10 such that

∣∣∣
∑

Γ2:Int Γ2∋0
V (Γ2)

d−1
d ≤ k

θ̂βχ′
2

[uΛ(Γ2)]
(k)
µ∗

∣∣∣ ≤ C10

( ∆

β
1

d−1 (θ̂χ′2)
d

d−1

)k
k! k

k
d−1 . (A.53)

Let Γ2 be a fat contour, which is not k-small. We use in Cauchy’s formula a disc
centered at µ∗ with radius

θ̂∆−1χ2(1)V (Γ2)−
1
d ≤ θ∆−1R2(V (Γ2)) .

We get (see (A.10))

∣∣[φΛ(Γ2)n]
(k)
µ∗
∣∣ ≤ k!

(
∆V (Γ2)

1
d

χ2(1)θ̂

)k

e−n[τ1(β;θ′)−C5δ]|Γ2|

≤ k!

(
∆ (C2η)

1
d−1

χ2(1)θ̂

)k

|Γ2| k
d−1 e−n[τ1(β;θ′)−C5δ]|Γ2| .

We sum over n and over Γ2 using the inequality

∑

m≥1

mp e−qm ≤ 1

qp
Γ(p+ 1) (p ≥ 2 , q ≥ 2) .

There exist C11 and C12(θ
′) > 0 so that

∑

Γ2:Int Γd∋0
V (Γ2)

d−1
d ≤η‖Γ2‖

Γ2 not k-small

∣∣[uΛ(Γ2)]
(k)
µ∗
∣∣ ≤ C11

(
∆ (C2η)

1
d−1

(C12β)
1

d−1χ2(1)θ̂

)k

k! Γ
( k

d− 1
+ 1
)

≤ C11

(
∆ (C2η)

1
d−1

(C12β)
1

d−1χ2(1)θ̂

)k

k! k
k

d−1 .

We choose η so small that (see (A.53))

∆ (C2η)
1

d−1

(C12β)
1

d−1χ2(1)θ̂
<

∆

β
1

d−1 (θ̂χ2(∞))
d

d−1

<
∆

β
1

d−1 (θ̂χ′2)
d

d−1

. (A.54)
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Contribution to [f qΛ]
(k)
µ∗ from the k-large and thin contours

For k-large and thin contours we get lower and upper bounds for [φΛ(Γ2)n]
(k)
µ∗ .

There are two cases.

A. Assume that R1(V (Γ2)) ≥ R2(V (Γ2)), or that V (Γ2) is so large that

θ̂βV (Γ2)R1(V (Γ2)) > k .

For each n ≥ 1 let c(n) = nβ∆V (Γ2). Under these conditions we can apply
Lemma A.4 with a disc Drk,n

so that ∂Drk,n
= ∂Dd

rk,n
. Indeed, if R1(V (Γ2)) ≥

R2(V (Γ2)), then we apply Lemma A.4 with R = θ∆−1R2(V (Γ2)), and in the
other case we set R = θ∆−1R1(V (Γ2)). In both cases rk,n < R, which implies
∂Drk,n

= ∂Dd
rk,n

. Therefore we get for Idk,n(Γ
2) the lower and upper bounds (A.47).

Lemma A.5. There exists a function D(k), limk→∞D(k) = 0, such that for β
sufficiently large and A sufficiently small the following holds. If k ≥ K(A, η, β)
and R1(V (Γ2)) ≥ R2(V (Γ2)) or θ̂βV (Γ2)R1(V (Γ2)) > k, then

(1 −D(k)) [φΛ(Γ2)]
(k)
µ∗ ≤ −[uΛ(Γ2)]

(k)
µ∗ ≤ (1 +D(k)) [φΛ(Γ2)]

(k)
µ∗ .

Proof. We have

−[uΛ(Γ2)]
(k)
µ∗ = [φΛ(Γ2)]

(k)
µ∗ + [φΛ(Γ2)]

(k)
µ∗

∑

n≥2

(−1)(n−1)

n

[φΛ(Γ2)n]
(k)
µ∗

[φΛ(Γ2)]
(k)
µ∗

.

From (A.47) there exists a constant C13,

[φΛ(Γ2)n]
(k)
µ∗

[φΛ(Γ2)]
(k)
µ∗

≤ C13 φ
∗
Λ(Γ2)(n−1)

(c+
c−

)k
nk .

The isoperimetric inequality (A.35), R2(n) ≤ χ2(n)n−
1
d and the definition of

k-large volume contour imply

β‖Γ2‖ ≥ βχ2(V (Γ2))V (Γ2)
d−1

d ≥ θ̂βR2(V (Γ2))V (Γ2) ≥ k .

Let b := C9δ (see (A.45)); we may assume 9
10

− b ≥ 4
5

by taking β large enough.
Then

ck+
ck−

∑

n≥2

nk−1e−(n−1)(1−b)k ≤ ck+
ck−

∑

n≥2

e−
1
10

(n−1)ke−k
[
( 9
10
−b)(n−1)−lnn

]

≤ ck+
ck−

∑

n≥2

e−
1
10

(n−1)ke−k
[

4
5
(n−1)−lnn

]

≤
(c+
c−

e−
1
10

)k ∑

n≥1

e−
1
10
nk .
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We choose A so small that c+(A)c−(A)−1 e−
1
10 ≤ 1.

B. The second case is when

θ̂βV (Γ2)R1(V (Γ2)) ≤ k ≤ θ̂βV (Γ2)R2(V (Γ2)) .

Since the contours are also thin,

β‖Γ2‖ ≤ η−1θ̂−1χ1(1)−1βθ̂χ1(1)V (Γ2)
d−1

d

≤ η−1θ̂−1χ1(1)−1βθ̂V (Γ2)R1(V (Γ2))

≤ η−1θ̂−1χ1(1)−1k ≡ λk .

We choose R = β∆−1R2(V (Γ2)) in Lemma A.4. The integration in (A.40) is
decomposed into two parts (see figure A.1). We show that the contribution from
the integration over ∂Dg

rk,n
is negligible for large enough β. Since k ≥ K(A, η, β)

and the contours verify V (Γ2)
d−1

d > η‖Γ2‖, we have

nβ‖Γ2‖rk,n ≤
k

∆(1 −A)ηV (Γ2)
1
d

≤ k

∆(1 −A0)ηV (Γ2)
1
d

.

By definition of K(A, η, β) (see (A.52))

nβ‖Γ2‖ρ−1C1rk,n ≤ k

10
.

From (A.43) with r = rk,n we obtain that the contribution to |[uΛ(Γq)]
(k)
µ∗ | is at

most

(1 + A)k
(
β∆V (Γ2)

)k
exp

( k
10

) k!
kk

∑

n≥1

nke−nβ‖Γ
2‖(1−C6δ) .

As in the proof of Lemma A.5, we choose β large enough so that we can assume
that 9

10
− C6δ ≥ 4

5
. Then

∑

n≥1

nke−nβ‖Γ
2‖(1−C6δ) ≤ e−β‖Γ

2‖(1−C6δ)
(
1 +

∑

n≥2

e−
1
10

(n−1)ke−k
[

4
5
(n−1)−lnn

])

≤ e−β‖Γ
2‖(1−C6δ)

(
1 +

∑

n≥1

e−
1
10
nk
)

= e−β‖Γ
2‖(1−C6δ)

(
1 +D(k)

)
.

Since β‖Γ2‖ ≤ λk, by choosing A small enough and β large enough, so that δ is
small enough, we have

(1 −D(k))ck−e
ke−β‖Γ

2‖C9δ ≥ (1 −D(k))ck−e
ke−kλC9δ > e

2k
3
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and

(1 +D(k))(1 + A)ke
k
10 eβ‖Γ

2‖C6δ ≤ (1 +D(k))(1 + A)ke
k
10 eλkC6δ < e

k
3 .

If these inequalities are verified, then the contribution to −[uΛ(Γq)]
(k)
µ∗ coming

from the integrations over ∂Dg
rk,n

is negligible with respect to that coming from

the integrations over ∂Dd
rk,n

. Taking into account (A.47) we get Lemma A.6.

Lemma A.6. There exists 0 < A′ ≤ A0 so that for all β sufficiently large, the
following holds. If k ≥ K(A′, η, β) and Γ2 is a k-large and thin contour, then

−[uΛ(Γ2)]
(k)
µ∗ ≥ 1

20
(1 −D(k))

(
β∆V (Γ2)

)k
ck− φ

∗
Λ(Γ2) .

Proposition A.4. There exists β ′ so that for all β > β ′, the following holds.
There exists an increasing diverging sequence {kn} such that for each kn there
exists Λ(Ln) such that for all Λ ⊃ Λ(Ln)

−[f 2
Λ]

(kn)
µ∗ ≥ Ckn

14 kn!
d

d−1 ∆knβ−
kn

d−1 χ′2
− dkn

d−1 .

C14 > 0 is a constant independent of β, kn and Λ.

Proof. We compare the contribution of the small and fat contours with that of
the large and thin contours for k ≥ K(A′, η, β). The contribution of the small

contours to |[f 2
Λ]

(k)
µ∗ | is at most

C10 ∆k β−
k

d−1 (θ̂χ′2)
− kd

d−1 k! k
k

d−1 ≤ C10 ∆k β−
k

d−1

( e
1
d

θ̂χ′2

)k d
d−1
k!

d
d−1 .

The contribution of the fat contours is much smaller by our choice of η (see

(A.54)). The contribution to −[f 2
Λ]

(k)
µ∗ of each large and thin contour is nonnega-

tive. By assumption (A.50) and the definition of the isoperimetric constant χ2,
there exists a sequence Γ2

n, n ≥ 1, such that

lim
n→∞

‖Γ2
n‖ → ∞ and V (Γ2

n)
d−1

d ≥ ‖Γ2
n‖

(1 + ε′)χ′2
.

Since xk
d

d−1 e−x has its maximum at x = k d
d−1

, we set

kn :=

⌊
d− 1

d
β‖Γ2

n‖
⌋
.

For any n, Γ2
n is a thin and kn-large volume contour, since by (A.51)

β (1 − 2
√
A′)V (Γ2)R2(V (Γ2)) ≥ β (1 − 2

√
A′)V (Γ2)

d−1
d χ′2

≥ (1 − 2
√
A′)

1 + ε′
β‖Γ2

n‖ ≥ kn .
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If Λ ⊃ Γ2
n, then

−[uΛ(Γ2
n)]

(kn)
µ∗ ≥ 1 −D(k)

20

[
β∆c−V (Γ2

n)
]kn

φ∗Λ(Γ2
n)

≥ 1 −D(k)

20
∆knβ−

kn
d−1

( d c
d−1

d
−

(d− 1)(1 + ε′)χ′2

) dkn
d−1
k

knd
d−1
n φ∗Λ(Γ2

n)

and (see (A.45))

k
knd
d−1
n φ∗Λ(Γ2

n) ≥ k
knd
d−1
n exp

[
−
(
kn

d

d− 1
+ 1
)
(1 + C9δ)

]

∼ kn!
d

d−1 e−C9δ
d

d−1
kn

e−1−C9δ

(2πkn)
d

2(d−1)

.

By the choice (A.51) of the parameters θ and ε′, if δ is small enough, i.e. β large
enough, then

e
1
d

θ(1 − 2
√
A′)

<
d

d− 1

c
d−1

d
−

1 + ε′
e−C9δ .

Hence the contributions of the small and fat contours are negligible for large kn
(see (A.53) and (A.54)). Let Λ(Ln) be a box which contains at least |Λ(Ln)|/4
translates of Γ2

n. For any Λ ⊃ Λ(Ln), if kn and β are large enough, then there
exists a constant C14 > 0, independent of β, kn and Λ ⊃ Λ(Ln), such that

−[f 2
Λ]

(kn)
µ∗ ≥ Ckn

14 kn!
d

d−1 ∆knβ−
kn

d−1 χ′2
− dkn

d−1 .

A.4.2 Bounds at Infinite Volume

We show that we can interchange the thermodynamic limit and the operation of
taking the derivatives, and that the Taylor series, which exists, has a radius of
convergence equal to 0. These statements are a consequence of Lemmas A.7 and
A.8.

Lemma A.7. If β is sufficiently large, then for any k ∈ N there exists Mk =
Mk(β) <∞, such that for all t ∈ (µ∗ − ε, µ∗] and for all finite Λ,

∣∣[f 2
Λ]

(k)
t

∣∣ ≤Mk .

Proof. For sufficiently large contours, ω(Γ2) is analytic and τ1(β, θ
′)-stable on a

disc of radius θ∆−1R2(V (Γ2)). From Cauchy formula

∣∣[uΛ(Γ2)]
(k)
t

∣∣ ≤ k!Ck
15|Γ2| k

d−1 e−βκ|Γ
2| ,
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for some constants C15 and κ > 0. Therefore, for sufficiently large contours,

∑

Γ2⊂Λ

∣∣[uΛ(Γ2)]
(k)
t

∣∣ ≤ k!Ck
15

∑

Γ2⊂Λ

|Γ2| k
d−1 e−βκ|Γ

2| ≡ |Λ|βM ′k <∞ .

This implies the existence of Mk such that
∣∣[f 2

Λ]
(k)
t

∣∣ ≤Mk.

Lemma A.8.
lim
L→∞

[f 2
Λ(L)]

(k)
µ∗ = lim

t↑µ∗
[f ]

(k)
t .

Proof. We compute the first derivative at the origin. Let η > 0.

A(η) : =
f(µ∗) − f(µ∗ − η)

η

= lim
L→∞

f 2
Λ(L)(µ

∗) − f 2
Λ(L)(µ

∗ − η)

η

= lim
L→∞

[f 2
Λ(L)]

(1)
µ∗ η + 1

2!
[f 2

Λ(L)]
(2)
µ∗−xL(η) η

2

η

= lim
L→∞

(
[f 2

Λ(L)]
(1)
µ∗ +

1

2!
[f 2

Λ(L)]
(2)
µ∗−xL(η) η

)
.

By Lemma A.7, |[f 2
Λ(L)]

(2)
µ∗−xL(η)| ≤ M2. Therefore {A(η)}η is a Cauchy sequence.

Hence the following limits exist,

[f ]
(1)
µ∗ = lim

η↓0

f(µ∗) − f(µ∗ − η)

η
= lim

t↑µ∗
[f ]

(1)
t = lim

L→∞
[f 2

Λ(L)]
(1)
µ∗ .

Same proof for the derivatives of any order.
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Appendix B

The Stationary Phase Analysis

The following theorem is a generalisation of a result due to Isakov [Isakov1]. Let
Dρ(t) := {z ∈ C : |z − t| < ρ}.
Theorem B.1. Let ρ > 0, F (z) = exp(−cz + bf(z)) where 1 ≤ b ≤ c, and f is
analytic in a disc Dρ(0), with a uniformly bounded derivative:

sup
z∈Dρ(0)

|f ′(z)| ≤ A <
1

25
. (B.1)

There exists k0 = k0(A) such that the following holds: let t ∈ Dρ(0) and define
k+ = (ρ − |t|)(c − 2b

√
A). For all integer k ∈ [k0, k+] there exists zk = rke

iϕk ∈
Dρ(0) and ck ∈ C such that

F (k)(t) = k!
ck

(−zk)k
F (−zk + t) . (B.2)

When Im t = 0 and f(z) takes real values for real z, then ϕk = 0 and Im ck = 0,
and we have the estimates

3

10

1√
2πcrk

< Re ck <
1√
crk

and
∣∣Im ck

∣∣ ≤ 1√
crk

, (B.3)

∣∣ tanϕk
∣∣ ≤ bA

c− bA
and

k cosϕk
c+ bA

≤ rk ≤
k cosϕk
c− bA

. (B.4)

We have not indicated, for notational convenience, the dependence of rk, ϕk, ck
on t. A consequence of this Theorem, for t ∈ (−ρ,+ρ), is given after the proof in
Corollary B.1. Our theorem improves significantly the original result of [Isakov1],
since we show that derivatives of the function can be estimated anywhere in the
disc of analyticity Dρ(0). In the course of the proof, we make clear the fact
that the stationary point zk = rke

iϕk is solution of a system of equations (see
(B.9)-(B.10)), whereas Isakov considered only the point t = 0, and there a single
equation suffices to find zk since ϕk = 0. Since this result is at the core of the
proof of non-analyticity, we have explicited every step of the proof.
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Proof of Theorem B.1: We use Cauchy’s Formula. Define κ ∈ (0, 1) by κρ = |t|.
For all r ∈ (0, ρ(1 − κ)) we have

1

k!
F (k)(t) =

1

2πi

∫

∂Dr(t)

F (z)

(z − t)k+1
dz =

1

2πrk

∫ 2π

0

F (reiϕ + t)

eikϕ
dϕ ,

where we have used the parametrisation z := t + reiϕ for ∂Dr(t). Our aim is
to extract the main contribution to this last integral. The integrand, because of
the form of F , has a maximal value for ϕ close to π. We thus make a change of
variable, ϕ′ := ϕ− π, to obtain

1

k!
F (k)(t) =

(−1)ke−ct

rk
1

2π

∫ +π

−π
eφ(r,ϕ)+iψ(r,ϕ)dϕ , (B.5)

where

φ(r, ϕ) := cr cosϕ+ bRef(−reiϕ + t)

ψ(r, ϕ) := cr sinϕ+ bImf(−reiϕ + t) − kϕ .

If t ∈ R and f is real at real points, f(z) = f(z) and therefore Imf(z + t) =
−Imf(z+ t). By symmetry we get F (k)(t) ∈ R. The core of the proof is to choose
r in a specific manner. This is a standard stationary phase analysis. To this end,
we will need an estimate on the second derivative of f . Using Cauchy’s Formula
allows to obtain, for all z0 ∈ Dρ(0):

f ′′(z0) =
1

2πi

∫

∂Dr′(z0)

f ′(ω)

(ω − z0)2
dω =

1

2π

∫ 2π

0

f ′(z0 + r′eiθ)

r′eiθ
dθ , (B.6)

where r′ > 0 is such that |z0| + r′ < ρ. Using the uniform bound |f ′| < A we
obtain (we optimise taking the largest possible r′, namely ρ− |z0|)

|f ′′(z0)| ≤
A

ρ− |z0|
. (B.7)

Now, set t ∈ Dρ(0), |t| = κρ, and consider the map ϕ 7→ f(−reiϕ + t). A direct
computation yields

d

dϕ
f(−reiϕ + t) = −ireiϕf ′(−reiϕ + t)

d2

dϕ2
f(−reiϕ + t) = reiϕf ′(−reiϕ + t) − (reiϕ)2f ′′(−reiϕ + t) .

Using (B.7) gives the bound

sup
ϕ

∣∣∣∣
d2

dϕ2
f(−reiϕ + t)

∣∣∣∣ ≤ rA+ r2 A

ρ(1 − κ) − r
=

rA

1 − r
ρ(1−κ)

. (B.8)

We now turn to the existence of a saddle point.
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Lemma B.1. Let t ∈ Dρ(0), |t| = κρ. Then for all k ∈ [0, ρ(1 − κ)(c− 2b
√
A)],

the system

∂

∂ϕ
φ(r, ϕ) = 0 (B.9)

∂

∂ϕ
ψ(r, ϕ) = 0 (B.10)

has a solution (rk, ϕk) with rk and ϕk satisfying the following estimates:

∣∣ tanϕk
∣∣ ≤ bA

c− bA
and

k cosϕk
c+ bA

≤ rk ≤
k cosϕk
c− bA

. (B.11)

Proof. We make (B.9) and (B.10) explicit:

sinϕ
(
c− bRef ′(−z + t)

)
− cosϕ bImf ′(−z + t) = 0 ;

r cosϕ
(
c− bRef ′(−z + t)

)
+ r sinϕ bImf ′(−z + t) = k .

These two equations are equivalent to

k sinϕ = rbImf ′(−z + t)) ; (B.12)

k cosϕ = r(c− bRef ′(−z + t)) . (B.13)

Then, we see that any solution of the system (B.9), (B.10), satisfies (B.11). To
show that there exists a solution, we first solve (B.13) locally for some fixed ϕ ∈
(−π

2
,+π

2
) (so that cosϕ > 0). Define the map r 7→ ξ(r, ϕ) := r(c−bRef ′(−reiϕ+

t)). Since f is analytic, its real and imaginary parts are C∞ with respect to r > 0
and ϕ (see [Rem1]), so ξ is C∞. We have ξ(0, ϕ) = 0, and

ξ(ρ(1 − κ), ϕ) = ρ(1 − κ)
(
c− bRef ′

(
− ρ(1 − κ)eiϕ + t

))

≥ ρ(1 − κ)(c− bA)

≥ ρ(1 − κ)(c− 2b
√
A) ≥ k ≥ k cosϕ

which proves the existence of some rϕ ∈ (0, ρ(1−κ)] such that ξ(rϕ, ϕ) = k cosϕ.
Notice that we also have that 1

rϕ
ρ(1 − κ)

=
k cosϕ

ρ(1 − κ)(c− bRef ′)
≤ c− 2b

√
A

c− bA
< 1 . (B.14)

We can then show that the solution rϕ is unique, by verifying that ∂
∂r
ξ(r, ϕ) is

strictly positive at rϕ. First,

∂

∂r
ξ(r, ϕ) = c− bRef ′(−reiϕ + t) − rb

∂

∂r
Ref ′(−reiϕ + t)

= c− bRef ′(−reiϕ + t) + rbRe
(
eiϕf ′′(−reiϕ + t)

)

(see (B.7)) ≥ c− bA

1 − r
ρ(1−κ)

.

1The definition of k+, with 2
√

A instead of
√

A, ensures the strict inequality < 1.
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At r = rϕ we get (see (B.14))

∂

∂r
ξ(r, ϕ)

∣∣∣∣
r=rϕ

≥ c−
√
A(c− bA)

2 −
√
A

≥ c− c
√
A

2 −
√
A

≥ 8c

9
> 0 ,

which proves uniqueness of rϕ. The continuity of ϕ 7→ rϕ is a consequence of
the implicit function theorem. We turn to the second equation, and set r = rϕ.
Using again equations (B.12), (B.13), we have

tanϕ =
bImf ′

(
rϕe

iϕ
)

c− bRef ′
(
rϕeiϕ

) .

On (−π
2
, π

2
) the function

ϕ 7→ bImf ′
(
rϕe

iϕ
)

c− bRef ′
(
rϕeiϕ

) ,

is continuous and takes its values in the interval
( −bA
c−bA ,

bA
c−bA

)
. Therefore there

exists a solution 2 (rk, ϕk), rk := rϕk
, of (B.12) and (B.13).

Notice that we have explicit bounds on ϕk, such as

| sinϕk| ≤ | tanϕk| ≤
1

24
, | cosϕk| ≥

4

5
, |ϕk| ≤

π

8
, (B.15)

and that we can estimate, at r = rk (see (B.8) and (B.14)),

sup
ϕ

∣∣∣∣
d2

dϕ2
f(−rkeiϕ + t)

∣∣∣∣ ≤
rkA

1 − rk
ρ(1−κ)

≤ rkA
c− bA

2b
√
A− bA

≤ 5

9

c

b
rk
√
A . (B.16)

We now examine (B.5) when r = rk. Defining zk = rke
iϕk , we extract the value

taken by the integrand at zk:

1

k!
F (k)(t) =

F (−zk + t)

(−zk)k
1

2π

∫ +π

−π
eφ(rk ,ϕ)−φ(rk,ϕk)+i

(
ψ(rk ,ϕ)−ψ(rk,ϕk)

)
dϕ

︸ ︷︷ ︸
≡ck

(B.17)

We will estimate the integral in ck by decomposing [−π,+π] in two parts. The
first is [−π,+π]\[−π

4
,+π

4
].

Lemma B.2. For all δ > 0, there exists k1 = k1(δ) such that for all k ≥ k1 we
have
∣∣∣∣∣

1

2π

(∫ π

π
4

+

∫ −π
4

−π

)
eφ(rk ,ϕ)−φ(rk,ϕk)+i

(
ψ(rk ,ϕ)−ψ(rk ,ϕk)

)
dϕ

∣∣∣∣∣ ≤ δ
1√

2πcrk
. (B.18)

2We have not shown that this solution is unique.
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Proof. We have |ei(ψ(rk ,ϕ)−ψ(rk ,ϕk))| = 1. First, consider the interval [π
4
, π]. On

this interval, cosϕ ≤ y(ϕ) where ϕ 7→ y(ϕ) := cos π
4
− sin π

4
(ϕ − π

4
) (we have

y(π) = −0, 95 · · · > −1). We can thus compute

crk(cosϕ− cosϕk) = crk(cosϕ− cos
π

4
+ cos

π

4
− cosϕk)

≤ −
√

2

2
crk(ϕ− π

4
) + crk(cos

π

4
− cosϕk)

≤ −
√

2

2
crk(ϕ− π

4
) − 2.3

25
crk ,

where we used (B.15) in the last step. For the other part containing f ,

b
(
Re f(−reiϕ + t) − Re f(−reiϕk + t)

)
≤ b(ϕ− ϕk) sup

ϕ

∣∣∣∣
d

dϕ
Re f(−rkeiϕk + t)

∣∣∣∣

≤ brkA(ϕ− ϕk)

= brkA(ϕ− π

4
+
π

4
− ϕk)

≤ crkA(ϕ− π

4
) +

2

25
crk

The first part of the integral can thus be bounded by:

e−
0.3
25
crk

2π

∫ π

π
4

e−
√

2
2
crk(ϕ−π

4
)+crkA(ϕ−π

4
)dϕ ≤ e−

0.3
25
crk

2π

∫ ∞

0

e−(
√

2
2
−A)xdx

≤ e−
0.3
25
crk

√
2πcrk(

√
2

2
− 1

25
)

1√
2πcrk

≤ δ

2

1√
2πcrk

,

once k is large enough, since crk ≥ 1
1+A

4
5
k (see (B.11)). The same can be done

on [−π,−π
4
], on which we use the function y(ϕ) := cos π

4
+ sin π

4
(ϕ− π

4
).

On the interval [−π
4
,+π

4
], we use Taylor expansions for φ and ψ, around ϕ = ϕk.

We have (r = rk is fixed)

φ(ϕ) = φ(ϕk) + 0 +
1

2!
(ϕ− ϕk)

2 d2

dϕ2
φ

∣∣∣∣
ϕ̃

ψ(ϕ) = ψ(ϕk) + 0 +
1

2!
(ϕ− ϕk)

2 d2

dϕ2
ψ

∣∣∣∣
˜̃ϕ

,

where ϕ̃ and ˜̃ϕ are both functions of ϕ. On the interval [−π
4
,+π

4
], we have the

estimates

−10

9
crk ≤

d2

dϕ2
φ ≤ −5

9
crk (B.19)
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Indeed, since

d2

dϕ2
φ = −crk cosϕ+ b

d2

dϕ2
Re f(−rkeiϕ + t) , (B.20)

we use (B.16) and find

d2

dϕ2
φ ≥ −crk −

5

9

√
Acrk ≥ −10

9
crk , (B.21)

and the upper bound

d2

dϕ2
φ ≤ −crk cos

π

4
+

5

9

√
Acrk ≤ −5

9
crk . (B.22)

We can thus compute some upper bound on the integral over [−π
4
,+π

4
] in ck as

follows:

1

2π

∫ + π
4

−π
4

eφ(rk ,ϕ)−φ(rk,ϕk)dϕ ≤ 1

2π

∫ +∞

−∞
exp

(
− 1

2
· 5

9
crkx

2
)
dx

=
3√
5

1√
2πcrk

The upper bounds on Re ck and Im ck can be obtained by taking, say, δ = 1
3

in
Lemma B.2, which gives

|ck| ≤ δ
1√
crk

+
3√
5

1√
2πcrk

≤ 1√
crk

. (B.23)

The lower bound on Re ck is obtained by dividing [−π
4
,+π

4
] = I1 ∪ I2, where

I1 = [ϕk − γ, ϕk + γ], and γ = γk ∈ [−π
8
,+π

8
] is defined by two conditions: first,

fix γ small enough such that

sup
ϕ∈I1

| sinϕ| ≤ 2A

1 −A
. (B.24)

The existence of such a γ is guaranteed by (B.11). This first choice implies that

sup
ϕ∈I1

|ψ(ϕ) − ψ(ϕk)| ≤
1

2
γ2 sup

ϕ∈I1

(
crk| sinϕ| + b

∣∣ d2

dϕ2
Im f(−rkeiϕ + t)

∣∣)

( see (B.16)) ≤ 1

2
γ2
(
crk

2A

1 − A
+

5

9
crk

√
A
)

=
1

2
γ2crk

√
A
( 2

√
A

1 −A
+

5

9

)

≤ 1

2
crk

√
Aγ2 ≤ 1

10
crkγ

2
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Then, the second condition on γ is the following:

1

10
crkγ

2 ≡ π

3
. (B.25)

Here, we might have to take k large enough to make sure that γ ∈ [−π
8
,+π

8
].

Then, we have a lower bound:

Re
1

2π

∫

I1

eφ(ϕ)−φ(ϕk)+i
(
ψ(ϕ)−ψ(ϕk)

)
dϕ ≥ cos π

3

2π

∫

I1

eφ(ϕ)−φ(ϕk)dϕ

(see (B.19)) ≥ cos π
3

2π

∫

I1

exp
(
− 1

2
· 10

9
crk(ϕ− ϕk)

2
)
dϕ

=
3√
80π

(
2Φ(

√
100

27
π) − 1

) 1√
2πcrk

≥ 47

100

1√
2πcrk

(B.26)

The upper bound on I2 = [−π
4
, ϕk − γ] ∪ [ϕk + γ,+π

4
] is obtained easily:

1

2π

( ∫ ϕk−γ

−π
4

+

∫ π
4

ϕk+γ

)
eφ(ϕ)−φ(ϕk)dϕ ≤ 2 · 1

2π

∫ π
4
+|ϕk|

γ

exp
(
− 1

2
· 5

9
crkx

2
)
dx

≤ 2 · 1

2π

∫ +∞

γ

exp
(
− 1

2
· 5

9
crkx

2
)
dx

=
6√
5

(
1 − Φ(

√
50

27
π)
) 1√

2πcrk

≤ 3

100

1√
2πcrk

(B.27)

Taking δ := 14
100

in Lemma B.2 and using (B.26), (B.27) gives

Re ck ≥
( 47

100
− δ − 3

100

) 1√
2πcrk

=
3

10

1√
2πcrk

, (B.28)

which completes the proof.

Corollary B.1. Let ρ > 0, F (z) = exp(−cz + bf(z)) where 1 ≤ b ≤ c, and f
is analytic in a disc Dρ(0), taking real values on the real line, with a uniformly
bounded derivative:

sup
z∈Dρ(0)

|f ′(z)| ≤ A <
1

25
. (B.29)



166 APPENDIX B. THE STATIONARY PHASE ANALYSIS

There exists k0 = k0(A) such that the following holds: let t ∈ (−ρ,+ρ) and define
k+ = (ρ − |t|)(c − 2b

√
A). For all integer k ∈ [k0, k+] there exists rk > 0 and

ck > 0 such that

F (k)(t) = k!
ck

(−rk)k
F (−rk + t) . (B.30)

We have the estimates

3

10

1√
2πcrk

< ck <
1√
crk

,
k

c+ bA
≤ rk ≤

k

c− bA
. (B.31)

In particular, (−1)kF (k)(t) > 0. Moreover, if f satisfies the local condition

−ct+ bf(t) ≤ −αρc , (B.32)

with α ∈ (log 2, 1), then there exists a function a = a(k, c, b), sup |a| < ∞, and
γ = γ(α) > 0 such that for all k ∈ [k0, k+] and A sufficiently small:

(
log(1 + F )

)(k)
(t) = (1 + a · e− γ

2
k)F (k)(t) (B.33)

Proof. The first part of the proof follows from Theorem B.1. For the second part,
notice that (B.32) implies |F (t)| ≤ e−αρc < 1. The continuity of f implies that in

some neighborhood V ⊂ Dρ(0), V ∋ t, we have supz∈V |F (z)| ≤ e−
1
2
αρc < 1. In

V we can thus use the Taylor series for log(1 + F ):

log
(
1 + F

)
=
∑

n≥1

(−1)n+1

n
F n = F +

∑

n≥2

(−1)n+1

n
F n

Since the series converges absolutely and uniformly in V , we can derive it term-
wise with respect to k. We then need to show that the following holds:

Lemma B.3. Let α ∈ (log 2, 1). There exists a positive constant K0 < ∞ such
that for all λ ∈ ( log 2

α
, 1) and for all n ≥ 2, k ∈ [k0, k+],

∣∣(F n)(k)(t)
∣∣ ≤ K0e

− γ
2
ke−α(1−λ)(n−1)k

∣∣F (k)(t)
∣∣ , (B.34)

where γ is given by γ := αλ − log 2. The constant A in (B.29) has to be taken
small enough (depending on the value of α).

Suppose for a while that the Lemma has been shown; we have the following
estimate: ∣∣∣∣∣

∑

n≥2

(−1)n+1

n
(F n)(k)(t)

∣∣∣∣∣ ≤
∑

n≥2

∣∣(F n)(k)(t)
∣∣

≤ K0e
− γ

2
k
∣∣F (k)(t)

∣∣∑

n≥2

e−α(1−λ)(n−1)k

≤ K0
e−α(1−λ)k0

1 − e−α(1−λ)k0
e−

γ
2
k
∣∣F (k)(t)

∣∣ ,

which proves (B.33).
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Proof of Lemma B.3: The point is that F is of exponential type. We have

F (z)n = e−cnz+bnf(z) ≡ e−cnz+bnf(z) , (B.35)

with cn = cn, bn = bn. For each n = 1, 2, . . . , we can apply Theorem B.1: there
exists for all k ∈ [k0, kn,+], where kn,+ = nk+, some rn,k and cn,k such that

1

k!
(F n)(k)(t) =

cn,k
(−rn,k)k

F (−rn,k + t)n (B.36)

Notice that [k0, k+] ⊃ [k0, kn,+] for all n. The constant rn,k is a solution of the
equation k = r(cn − bnRe f ′(−r + t)) and satisfies

k

cn + bnA
≤ rn,k ≤

k

cn − bnA
. (B.37)

The constant cn,k satisfies

3

10

1√
2πcnrn,k

≤ cn,k ≤
1

√
cnrn,k

. (B.38)

We can then consider, for all k ∈ [k0, k+]:

(F n)(k)(t)

F (k)(t)
=
cn,k
c1,k

(
r1,k
rn,k

)k
F (−rn,k + t)n

F (−r1,k + t)
(B.39)

Notice that when n increases, rn,k ց 0 and kn,+ ր ∞. Using (B.37) and (B.38),
we find

r1,k
rn,k

≤ n
1 + A

1 − A
, (B.40)

and

cn,k
c1,k

≤ 10

3

√
2π

√
1 + A

1 −A
≡ K0 . (B.41)

We must estimate

F (−rn,k + t)n

F (−r1,k + t)
= exp

(
c(nrn,k−r1,k) − ct(n− 1)

+ b(nf(−rn,k + t) − f(−r1,k + t))
)

(B.42)

Using the definition of rn,k gives

nrn,k − r1,k = k

[
1

c− bRe f ′(−rn,k + t)
− 1

c− bRe f ′(−r1,k + t)

]

= k
b
(
Re f ′(−rn,k + t) − Re f ′(−r1,k + t)

)

(c− bRe f ′(−rn,k + t))(c− bRe f ′(−r1,k + t))

≤ k
2bA

(c− bA)2
≤ k

c

2A

(1 − A)2
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We then compute the term involving f (we use twice |f(x)− f(x′)| ≤ A|x− x′|):

nf(−rn,k + t)−f(−r1,k + t) (B.43)

= (n− 1)f(t) + n(f(−rn,k + t) − f(t)) − (f(−r1,k + t) − f(t))

≤ (n− 1)f(t) + nArn,k + Ar1,k

≤ (n− 1)f(t) +
k

c

2A

1 −A

We thus have

F (−rn,k + t)n

F (−r1,k + t)
≤ eǫ(A)ke(−ct+bf(t))(n−1) , (B.44)

where ǫ(A) = 2A(2 − A)(1 − A)−2. Since ρc > k+ ≥ k, we can use assumption
(B.32) and get, for all λ ∈ (0, 1),

e(−ct+bf(t))(n−1) ≤ e−αk(n−1) = e−αλk(n−1)e−α(1−λ)k(n−1) (B.45)

Since log n− log 2 ≤ 1
2
(n− 2) for all n ≥ 1 we can compute the following bound

sup
n≥2

nke−αkλ(n−1) = sup
n≥2

ek(logn−αλ(n−1)) (B.46)

≤ sup
n≥2

ek(log 2−1+αλ+n( 1
2
−αλ)) (B.47)

≤ ek(log 2−αλ) ≡ e−ζk , (B.48)

where we used the fact that λ is chosen such that ζ = ζ(α) > 0. Putting our
bounds together we bound (B.39), when A is small, by

K0

(
1 + A

1 −A
eǫ(A)

)k
e−

1
2
ζke−

1
2
ζke−α(1−λ)k(n−1) ≤ K0e

− 1
2
ζke−α(1−λ)k(n−1) .



Appendix C

Elements of Cluster Expansion

Consider a countable set D whose elements are called animals, and denoted γ ∈ D.
To each animal γ is associated a finite subset of Zd, called the support of γ.
Usually we also denote the support by γ. In the cases we consider, the support is
always an R-connected set. Assume we are given a symmetric binary relation on
D, denoted ∼. We say two animals γ, γ′ are compatible if γ ∼ γ′. When γ and
γ′ are not compatible we write γ 6∼ γ′. We assume that the following condition
is necessary to characterise incompatibility: for each animal γ, there exists a set
b(γ) ⊂ Zd such that if γ 6∼ γ′, then b(γ) ∩ b(γ′) 6= ∅.
To each animal γ ∈ D we associate a complex weight ω(γ) ∈ C. The partition
function is defined by

Ξ(D) :=
∑

{γ}⊂D
compat.

∏

γ∈{γ}
ω(γ) , (C.1)

where the sum extends over all sub-families of D of pairwise compatible animals
(we assume this sum exists, which is the case in every concrete situation). When
{γ} = ∅, we define the product over γ as equal to 1. We are interested in studying
the logarithm of the partition function. To this end, we define the family D̂ of
all maps γ̂ : D → {0, 1, 2, . . .}. The support of γ̂ is the set {γ ∈ D : γ̂(γ) ≥ 1}.
Usually we also denote the support of γ̂ by γ̂. We will also write γ̂ ∋ x if the
support of γ̂ contains an animal whose support contains x. A map γ̂ ∈ D̂ is a
cluster of animals if its support can’t be decomposed into a disjoint union S1 ∪S2

such that each γ1 ∈ S1 is compatible with each γ2 ∈ S2. Formally, the logarithm
of the partition function has the form (see e.g [Pf])

log Ξ(D) =
∑

γ̂∈D̂

ω(γ̂) , (C.2)

where the weight of γ̂ equals

ω(γ̂) = aT (γ̂)
∏

γ∈D
ω(γ)γ̂(γ) (C.3)
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The numbers aT (γ̂) are purely combinatorial factors. They equal zero if γ̂ is not
a cluster. The following is the technical lemma that gives explicit conditions for
the convergence of the development (C.2). The proof is standard and can be
adapted from [Pf].

Lemma C.1. Let ω0(γ) be a positive weight such that

sup
x∈Zd

∑

γ:b(γ)∋x
ω0(γ)e

|b(γ)| ≤ ǫ , (C.4)

where 0 < ǫ < 1. Define ω0(γ̂) as in (C.3) with ω0(γ) in place of ω(γ). Then
there exists a function η(ǫ), limǫ→0 η(ǫ) = 0 such that

sup
x∈Zd

∑

γ̂∋x
|ω0(γ̂)| ≤ η(ǫ) . (C.5)

Typically, in the cases we consider, the weights are maps z 7→ ω(γ; z), ana-
lytic in a domain A ⊂ C, and there exists a positive weight ω0(γ) such that
‖ω(γ; ·)‖A ≤ ω0(γ) for all γ. Lemma C.1 thus implies that the series (C.2) is nor-
mally convergent, i.e. compactly convergent on A. This guarantees analyticity
of the logarithm of Ξ(D), by a standard Theorem of Weierstrass (see [Rem1], p.
249-250).
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eds., (1987).



BIBLIOGRAPHY 173

[Is] Ising E., Beitrag zur Theorie des Ferromagnetismus, Zeitschrift für Physik,
31, 253, (1925).

[Isr] Israel R.B., Convexity in the Theory of Lattice Gas, Princeton Series in
Physics, (1979).

[Ku] Kuratowski K., Topology, vol. 1 and 2, Academic Press, New York and
London, (1968).

[KuS] Kunz H., Souillard B., Essential Singularity and Asymptotic Behavior of
Cluster Size Distribution in Percolation Problems, J. Stat. Phys. 19, 77-
106, (1978).

[KUH] Kac M., Uhlenbeck G.E., Hemmer P.C., On the van der Waals Theory of
the Vapor-Liquid Equilibrium, J. Math. Phys. 4, 216-228, (1963).

[L] Langer J.S., Theory of the Condensation Point, Annals of Physics (N.Y.),
41, 108-157, (1967).

[LMMRS] Laanait L., Messager A., Miracle-Solé S., Ruiz J., Shlosman S., The
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