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CONTENTS 1

Beaucoup d’analystes, en effet, mettent au premier rang
la notion du continu; c’est elle qui intervient d’une manière
plus ou moins explicite dans leurs raisonnements. J’ai
indiqué récemment [...] en quoi cette notion du continu,
considéré comme ayant une puissance supérieure à celle
du dénombrable, me parâıt être une notion purement
négative, la puissance des ensembles dénombrables étant
la seule qui nous soit connue d’une manière positive, la
seule qui intervienne effectivement dans nos raisonne-
ments. Il est clair, en effet, que l’ensemble des éléments
analytiques susceptibles d’être réellement définis et con-
sidérés ne peut être qu’un ensemble dénombrable; je crois
que ce point de vue s’imposera chaque jour davantage
aux mathématiciens et que le continu n’aura été qu’un
instrument transitoire, dont l’utilité actuelle n’est pas
négligeable [...], mais qui devra être regardé seulement
comme un moyen d’étudier les ensembles dénombrables,
lesquels constituent la seule réalité que nous puissions
atteindre.

É. Borel, 1909 [Bor09].





CHAPTER 1

Conditional Expectation

1.1. Conventions

Throughout the text, we denote the fundamental probability space by
(Ω,F, P ). Random variables, i.e. extended F-measurable mappings
from Ω to R (the extended real line), are usually denoted by X, Y, Z.
We will often use the representation X = X+ − X−, where X+ :=
sup{X, 0}, X− := sup{−X, 0}. The set of random variables for which∫
|X| dP < ∞, are called simply integrable. The expectation of an

integrable random variable X is denoted

E[X] =

∫
X dP =

∫
X(ω)P (dω) .

We denote a ∧ b := min{a, b}, a ∨ b := max{a, b}. If the set A ⊂ R

is empty, then inf A := +∞. We use the symbol an ∼ bn to indicate
that an

bn
→ 1 when n→ ∞, and We use the symbol an ≈ bn to indicate

that there exists two constants c1, c2 > 0 such that c1 ≤ an

bn
≤ c2 when

n is large enough. Our basic references are [Bau88, Bil95, Bil65,
Chu01, Shi84, Var00, Wil91, Str93, Str05, R.88, GS05, GS06,
Rév05, Nev70, Pet00, Wal75].

1.2. Conditionning with respect to an Event

In this section, we introduce the notion of conditional expectation with
respect to a sub-σ-algebra, which is a fundamental notion in probabi-
lity, especially for the definition of martingales. From now on, we call
a collection G of subsets of Ω a sub-σ-algebra if it is a σ-algebra (in
particular it must contain ∅ and Ω itself) and if G ⊂ F (i.e. A ∈ G

implies A ∈ F). But before giving the general definition of conditional
expectation we start by simpler considerations.

Let (Ω,F, P ) be a probability space. Any event B ∈ F with strictly
positive probability allows to define a new probability measure P (·|B)

3



4 1. CONDITIONAL EXPECTATION

on (Ω,F), conditionned on the event B:

P (A|B) :=
P (A ∩ B)

P (B)
. (1.2.1)

In practice, in particular in statistics, one is interested in determi-
ning the probability of some event A ∈ F, P (A), but some practical
restrictions are such that we only have access to some conditional pro-
babilities P (A|B1), P (A|B2), ... where the Bn form a partition of
the space Ω. In order to reconstruct the wanted probability P (A),
one then needs to know each P (A|Bn), but also each P (Bn). Once
these informations are known, the formula of total probability gives
(we assume for the time being that P (Bn) > 0 for each n)

P (A) =
∑

n≥1

P (A|Bn)P (Bn)

If it reasonable to believe that P (Bn) is known a priori, the true
determination of P (A) depends on the family {P (A|Bn)}n≥1. The-
refore, it is natural to encode these numbers into a simple function
f : Ω → [0, 1], constant on each Bn:

f(ω) :=
∑

n≥1

P (A|Bn)1Bn
(ω) .

This random variable gives, in some sense, the best estimation of P (A)
when a point ω is chosen at random according to P : if ω ∈ Bn, then
f(ω) = P (A|Bn). If the experience is repeated a large number of
times, the Law of Large Numbers

says that the empirical average of f will converge to

E[f ] = P (A) .

This last equality is a particular case of the following. As a simple
computation shows, we have, for all B which is a union of sets Bn,

P (A ∩B) =

∫

B

f dP .

The random variable f is called conditional probability of A with respect
to the partition {Bn}n≥1.

1.3. Conditionning with respect to a countable measurable
partition

The same considerations hold for expectations. Assume P (B) > 0. If
X is integrable, one can consider the expectation of X with respect to
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the measure P (·|B), called conditional expectation with respect to B,

E[X|B] :=

∫
X(ω)P (dω|B) . (1.3.1)

As can be seen easily,

E[X|B] =
1

P (B)

∫

B

X dP . (1.3.2)

Observe that if (1.3.2) is taken as a definition for any integrable ran-
dom variable X, then (1.2.1) can be obtained by choosing X = 1A.
We therefore consider (1.3.2) as a fundamental definition, which will
also be seen to be more natural.

Let {Bn}n≥1 be a (countable measurable) partition of Ω, that is a family
of sets Bn ∈ F with

⋃
nBn = Ω, and Bn ∩Bm = ∅ when n 6= m. Such

a partition generates a sub-σ-field B ⊂ F, containing all unions of sets
Bn. If P (Bn) > 0, we define E[X|Bn] as in (1.3.1). If P (Bn) = 0,
we define E[X|Bn] in an arbitrary way, for example E[X|Bn] := 0.
Then, for any integrable random variable X, define a new variable
E[X|B] : Ω → R by

E[X|B](ω) :=
∑

n≥1

E[X|Bn]1Bn
(ω) , (1.3.3)

called a version of the conditional expectation of X with respect to B.
The name “version” is used since we have made a specific choice on
the sets Bn with zero probability.

Clearly ω 7→ E[X|B](ω) is B-measurable. Moreover we have, for all
measurable set B,
∫

B

E[X|B] dP =
∑

n≥1

∫

B∩Bn

E[X|Bn] dP =
∑

n≥1

P (B ∩Bn)E[X|Bn] .

(1.3.4)

Now, if we assume that B ∈ B then B is a union of elements Bk,
k ∈ S, which implies P (B ∩ Bn) = P (Bn)1S(n), where 1S(n) = 1 if
n ∈ S, 0 otherwise. Using the definition of E[X|Bn], the last term in
(1.3.4) equals

∑

n≥1

1S(n)

∫

Bn

X dP =

∫

B

X dP .
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Therefore, the random variable E[X|B] satisfies
∫

B

E[X|B] dP =

∫

B

X dP , ∀B ∈ B . (1.3.5)

Of course, any version of E[X|B] satisfies (1.3.5). The following shows
that the versions of E[X|B] are the only random variables with this
property.

Lemma 1.3.1. Let (Ω,F, P ) be a probability space and B ⊂ F a sub-σ-
algebra. Let Y1, Y2 be two B-measurable integrable random variables.
Then Y1 = Y2 a.e. if and only if

∫

B

Y1 dP =

∫

B

Y2 dP ∀B ∈ B . (1.3.6)

Proof. If Y1 = Y2 a.e. then (1.3.6) clearly holds 1. Define B :=
{ω : Y1(ω) > Y2(ω)}. We have B ∈ B and therefore (1.3.6) implies 2

P (B) = 0, i.e. P (Y1 ≤ Y2) = 1. Doing the same by interverting Y1

and Y2, one gets P (Y1 ≥ Y2) = 1, which gives P (Y1 = Y2) = 1. �

1.4. Conditionning with Respect to a σ-algebra

In the previous section we have defined a version of the conditional
expectation E[X|B] with respect to a sub-σ-algebra B ⊂ F generated
by a countable measurable partition, via the expression (1.3.3). We
have then seen that two of its main properties were

(1) E[X|B] is B-measurable.
(2) The family of relations (1.3.5) is satisfied.

We have seen in Lemma 1.3.1 that any other random variable satis-
fying these two properties is almost everywhere equal to E[X|B].

To extend the notion of conditional expectation to a general sub-σ-
algebra G ⊂ F, the lack of countability does not allow a straight
definition as in (1.3.3). In particular, a problem arises when consi-
dering measurable sets B ∈ G with zero probability, in which case
(1.3.3) cannot be used to define E[X|G]. Nevertheless, we shall use

1Namely, let N be a measurable set with P (N) = 0 so that Y1(ω) = Y2(ω) for all ω ∈ N c. Let
B ∈ B. Then

∫
B

(Y1 − Y2)dP =
∫

B∩N
(Y1 − Y2)dP . This last integral is zero since 1N = 0 a.e. and

therefore for i = 1, 2,
∫

B∩N
|Yi| dP ≤

∫
|Yi|1N dP = 0.

2Here we make use of the following fact, which will be used often in this text: if X ≥ 0 and∫
X dP = 0, then X = 0 a.e.
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the two conditions given above as a definition of E[X|G], and then ve-
rify existence, almost-everywhere uniqueness, and finally compatibility
with the definition (1.3.3) in the case of sub-σ-algebras generated by
countable partitions.

Definition 1.4.1. Let G ⊂ F be a sub-σ-algebra and X : Ω → R a
positive integrable random variable. Any random variable Y : Ω → R

which is G-measurable and satisfies
∫

B

Y dP =

∫

B

X dP , ∀B ∈ G , (1.4.1)

is called a version of the conditional expectation of X with respect to G.
We denote any version of the conditional expectation by E[X|G]. For
an arbitrary integrable random variable X, define conditional expecta-
tion as follows: E[X|G] := E[X+|G] − E[X−|G].

The main property of conditional expectation is therefore
∫

B

E[X|G] dP =

∫

B

X dP , ∀B ∈ G , (1.4.2)

Observe that when it exists, E[X|G] is integrable. Namely, applying
(1.4.2) with B = Ω gives

E[E[X|G]] =

∫
E[X|G] dP =

∫
X dP = E[X] . (1.4.3)

We now verify that conditional expectation always exists. Define, for
all B ∈ G,

ν(B) :=

∫

B

X dP .

Since we assume X ≥ 0 to be integrable, ν is a finite measure on
(Ω,G). Moreover, it is absolutely continuous with respect to P (more
precisely, to the restriction of P to G). Therefore, the Radon-Nikodým
Theorem guarantees the existence of a positive G-measurable function
Y such that

ν(B) =

∫

B

Y dP , ∀B ∈ G .

Therefore, Y is nothing but the Radon-Nikodým density dν
dP

, and is
determined uniquely up to sets of measure zero (Lemma 1.3.1). We
will give, in Section 1.6, another way of proving the existence of Y ,
not using the Radon-Nikodým Theorem.
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Example 1.4.1. To verify that the abstract definition coincides with
the one of Section 1.3, let B be the σ-algebra generated by a measu-
rable countable partition {Bn}n≥1 and let E[X|B] denote any version
of the conditional expectation. (Observe that E[X|B] is now defined
without using (1.2.1).) Since E[X|B] is B-measurable, it is constant
on each Bn, i.e. E[X|B](ω) = bn for all ω ∈ Bn. Now for all n we have

bnP (Bn) = bn

∫

Bn

dP =

∫

Bn

E[X|B] dP =

∫

Bn

X dP .

Therefore, when P (Bn) > 0 one has

bn =
1

P (Bn)

∫

Bn

X dP ,

which coincides with (1.3.3) on all sets Bn of positive measure. Since
the other sets have measure zero and that we only need consider a
countable number of them, we have therefore constructed a version of
(1.3.3).

Before starting the study of general properties of E[X|G], we discuss
the two extreme cases which give some insight into the dependence of
E[X|G] on G. First, let G be the largest possible sub-σ-algebra of F,
i.e. G = F, then clearly E[X|G] = X a.e. This follows from the fact
that X is F-measurable and from the trivial identity

∫

B

X dP =

∫

B

X dP , ∀B ∈ F .

On the other extreme, if G is the smallest possible algebra, i.e. G =
{∅,Ω}, then E[X|G] = E[X] a.e. Namely, E[X|G] must be constant
on Ω, and this constant is fixed by the only condition (take B = Ω in
(1.4.2))

E[X|G] =

∫
E[X|G] dP =

∫
X dP = E[X] .

These two particular cases show that E[X|G] also gives an approxima-
tion of X; the finer G, the better the approximation.

Basic Properties. From now on and until the end of the section, G

will denote a sub-σ-algebra of F. The following property can be easily
verified

E[aX + bY |G] = aE[X|G] + bE[Y |G] a.e. (1.4.4)

The first important property of conditional expectation is the following
monotonicity result.
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Lemma 1.4.1. If X, Y are two integrable random variables such that
X ≤ Y a.e., then E[X|G] ≤ E[Y |G] a.e.

Proof. Assume X ≤ Y a.e. Define Z := E[Y |G] − E[X|G]. For
all A ∈ G we have

∫

A

Z dP =

∫

A

(Y −X) dP ≥ 0

This implies, for A = {Z < 0}, that Z1A = 0 a.e., which implies
1A = 0 a.e. Let N be a set so that P (N) = 0 and 1A(ω) = 1 for all
ω ∈ N c. We have

P (A) =

∫
1A dP =

∫
1A∩NdP ≤ P (N) = 0 .

Therefore, P (Z ≥ 0) = 1. �

Applying this lemma once with Y = |X| and once with Y = −|X|
yields, using the linearity in (1.4.4),

Corollary 1.4.1. If X is integrable then |E[X|G]| ≤ E[|X||G] a.e.

More fundamental are the following identities, which show what hap-
pens when the operation of conditionning is iterated, by conditionning
successively with respect to two sub-σ-algebras.

Lemma 1.4.2. Let X be integrable and G,H be two sub-σ-algebras,
such that G ⊂ H. Then

E[E[X|G]|H] = E[X|G] = E[E[X|H]|G] a.e. (1.4.5)

Proof. Observe first that E[E[X|H]|G] and E[E[X|G]|H] are well-
defined since E[X|H] and E[X|G] are integrable. For the first equality,
observe that by definition of E[·|H],

∫

H

E[E[X|G]|H] dP =

∫

H

E[X|G] dP , ∀H ∈ H .

In particular, since G ⊂ H,
∫

G

E[E[X|G]|H] dP =

∫

G

E[X|G] dP , ∀G ∈ G .

Now by the definition of E[X|G],
∫

G

E[X|G] dP =

∫

G

X dP , ∀G ∈ G .
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This shows the first equality in (1.4.5). Similarly, using G ⊂ H gives,
for all G ∈ G,

∫

G

E[E[X|H]|G] dP =

∫

G

E[X|H] dP =

∫

G

X dP ,

which shows the second equality in (1.4.5). �

The identities (1.4.5) are known as the Tower Property of conditional
expectation.

1.5. Basic Convergence Theorems

In this paragraph we give the conditional versions of the classical con-
vergence theorems of Integration Theory.

Theorem 1.5.1 (Monotone Convergence Theorem, Conditional Ver-
sion). Let Xn be an increasing sequence of integrable random variables
such that Xn ր X a.e., where X is integrable. Then

E[Xn|G] ր E[X|G] a.e.

Proof. Since Xn ≤ Xn+1 a.e. we have E[Xn|G] ≤ E[Xn+1|G] a.e.
by Lemma 1.4.1. Therefore, the limit Z := limn→∞E[Xn|G] exists a.e.
(!) Using twice the Monotone Convergence Theorem,
∫

A

Z dP = lim
n→∞

∫

A

E[Xn|G] dP = lim
n→∞

∫

A

Xn dP =

∫

A

X dP , ∀A ∈ G .

This shows that Z = E[X|G] a.e. �

Corollary 1.5.1. If Yn is a sequence of positive integrable random
variables, then

E
(∑

n≥1

Yn|G
)

=
∑

n≥1

E[Yn|G] a.e. (1.5.1)

Theorem 1.5.2 (Dominated Convergence Theorem, Conditional Ver-
sion). Let Xn be a sequence of integrable random variables such that
Xn → X a.e., and such that |Xn| ≤ Y where Y is integrable. Then X
is integrable and

E[Xn|G] → E[X|G] a.e.

Proof. Clearly,X is integrable since |X| ≤ Y a.e. Using Corollary
1.4.1,

|E[Xn|G] −E[X|G]| = |E[Xn −X|G]| ≤ E[|Xn −X||G] ≤ E[Zn|G] ,
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where Zn := supm≥n |Xm −X|. But Zn ց 0 a.e. and since |Zn| ≤ 2Y ,
Zn is integrable and we have

lim
n→∞

∫
Zn dP = 0 (1.5.2)

by the Dominated Convergence Theorem. Since 0 ≤ Zn+1 ≤ Zn,
we have E[Zn+1|G] ≤ E[Zn|G] a.e. (Lemma 1.4.1). Therefore Z :=
limn→∞E[Zn|G] exists a.e. (!), and we have, for all n,

0 ≤
∫
Z dP ≤

∫
E[Zn|G] dP =

∫
Zn dP , (1.5.3)

which by (1.5.2) converges to 0 when n→ ∞. This implies Z = 0 a.e.
and proves the theorem. �

Corollary 1.5.2. If X is integrable, Y is G-measurable and XY is
integrable, then

E[XY |G] = Y E[X|G] a.e. (1.5.4)

Proof. We first verify (1.5.4) for Y = 1A, A ∈ G. Then for all
B ∈ G,
∫

B

Y E[X|G] dP =

∫

B∩A
E[X|G] dP =

∫

B∩A
X dP

=

∫

B

XY dP =

∫

B

E[XY |G] dP .

By linearity, this extends to any finite linear combination of indicator
functions, i.e. to any simple function. Therefore, assume first that Y
is positive and let Yn be a sequence of simple functions Yn ր Y . Since
|XYn| ≤ |XY |, which is integrable, and since XYn → XY , Theorem
1.5.2 gives

E[XY |G] = lim
n→∞

E[XYn|G] = lim
n→∞

YnE[X|G] = Y E[X|G] a.e.

In the last inequality we used the fact that E[X|G] < ∞ a.e., which
follows from the fact that it is integrable. For the general case simply
use the decomposition Y = Y + − Y −. �

Theorem 1.5.3 (Jensen’s Inequality, Conditional Version). Let X be
integrable and φ = φ(x) be convex. Assume φ(x) is finite for all x ∈ R

and that φ(X) is integrable. Then

φ(E[X|G]) ≤ E[φ(X)|G] a.e. (1.5.5)
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Proof. Since φ is convex and finite, it is continuous, and there
exists, for all x0 ∈ R, a finite constant A0 such that

φ(x) ≥ φ(x0) + A0(x− x0) , ∀x ∈ R .

We will first assume that E[X|G](ω) <∞ for all ω ∈ Ω. Applying the
previous inequality with x = X, x0 = E[X|G], and taking E[·|G] on
both sides gives

E[φ(E[X|G])|G] ≤ E[φ(X)|G] .

Since E[X|G] is G-measurable, φ(E[X|G]) is too, and by Corollary
1.5.2,

E[φ(E[X|G])|G] = φ(E[X|G])E[1|G] = φ(E[X|G]) a.e.,

which proves (1.5.5). When E[X|G] is not bounded, define the sets
An := {ω : |E[X|G](ω)| ≤ n}. By the preceding result we have

φ(E[1An
X|G]) ≤ E[φ(1An

X)|G] a.e. (1.5.6)

By Theorem 1.5.2, E[1An
X|G] → E[X|G] a.e. Therefore, since φ is

continuous, φ(E[1An
X|G)] → φ(E[X|G]) a.e. For the right-hand side

of (1.5.6), write

E[φ(1An
X)|G] = E[1An

φ(X)|G] +E[1Ac
n
φ(0)|G] a.e.

= 1An
E[φ(X)|G] + 1Ac

n
φ(0) a.e.

Since E[φ(X)|G] is integrable, it is finite a.e. The same reasoning
applies to E[X|G], which leads to 1An

→ 1 a.e. Therefore the first
term converges to E[φ(X)|G] a.e. The second converges to 0 a.e.,
which finishes the proof. �

Observe that Corollary 1.4.1 can be obtained by Jensen’s Inequality
with φ(x) = |x|.

1.6. A Geometric Interpretation of E[X|G]

There exists an enlighting geometric interpretation of conditional expecta-
tion. For convenience, let us abreviate Lp(Ω,F, P ) by Lp(F). As
we know, the conditional expectation transforms a random variable
X ∈ L1(F) into a random variable LGX := E[X|G] ∈ L1(G). We have
seen in (1.4.4) that LG is linear and since L1(G) ⊂ L1(F), we want to
interpret LG as a projection.
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This can be done by resctricting ourselves to L2(F). Observe that LG

maps L2(F) into L2(G). Namely, let X ∈ L2(F). Then 3 X ∈ L1(F)
and therefore E[X|G] is well defined. Using Jensen’s Inequality with
φ(x) = x2, we get

∫
|E[X|G]|2 dP ≤

∫
E[|X|2|G] dP =

∫
|X|2 dP <∞ ,

and therefore E[X|G] ∈ L2(G).

Now, we use the fact that L2(F) is a Hilbert space, complete with
respect to the norm ‖ · ‖2 = 〈·, ·〉 inherited from the scalar product

〈X, Y 〉 :=

∫
XY dP .

Since L2(G) is obviously a closed (with respect to the topology induced
by ‖·‖2) subspace of L2(F), one can consider the orthogonal projection
πG : L2(F) → L2(G). πG is self-adjoint and satisfies π2

G = πG. Now πGX
is G-measurable, by definition, and for all A ∈ G,
∫

A

πGX dP =

∫
(πGX)1A dP =

∫
X(πG1A) dP =

∫
X1A dP =

∫

A

X dP ,

where we have used self-adjointness and πG1A = 1A, since 1A ∈ L2(G).
Therefore, πGX is the equivalence class of almost everywhere equal
random variables which contains E[X|G]. That is, πGX represents all
the possible versions of E[X|G].

To extend this construction to any integrable random variable, let
first X ∈ L1(F) be positive, and let Xn := inf{X, n}. Then obviously
Xn ∈ L2(F) and Yn := πGXn = E[Xn|G] can be constructed as above.
We have Yn ≤ Yn+1 since Xn ≤ Xn+1, and therefore Yn ր Y :=
limn Yn exists. Using two times the dominated convergence theorem
then shows that Y = E[X|G]. Namely, for any B ∈ G,
∫

B

Y dP = lim
n→∞

∫

B

Yn dP = lim
n→∞

∫

B

E[Xn|G] dP = lim
n→∞

∫

B

Xn dP =

∫

B

X dP .

3Namely, if X ∈ L2(F) then∫
|X | dP =

∫

|X|≤1

|X | dP +

∫

|X|>1

|X | dP ≤ P (|X | ≤ 1) +

∫
|X |2 dP <∞ .
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This method gives a construction of E[X|G] which doesn’t rely on the
Radon-Nikodým Theorem 4. Using this point of view, various results
obtained before for conditional expectation can be obtained by using
the properties of the orthogonal projection πG. For example, if G ⊂ H,
then L1(G) ⊂ L1(H) and therefore the identities πGπH = πG = πHπG,
which are obvious from the geometric point of view, directly imply
Lemma 1.4.2.

1.7. Conditional Probability

When applied to the special case where the random variable X is an
indicator function, conditional expectation leads to the definition of
conditional probability.

Definition 1.7.1. Let (Ω,F, P ) be a probability space, A ∈ F. The
conditional probability of A with respect to a sub-σ-algebra G ⊂ F is
defined by

P (A|G) := E[1A|G] . (1.7.1)

Again, P (A|G) is only defined uniquely up to sets of measure zero.
Being any version of E[1A|G], it satisfies

P (A ∩B) =

∫

B

P (A|G) dP , ∀B ∈ G . (1.7.2)

A simple example is when G is the σ-algebra generated by a partition
{B,Bc}, B ∈ F. In this case, P (A|G) is constant on B and Bc (since
it is G-measurable) and if 0 < P (B) < 1,

P (A|G)(ω) =

{
P (A|B) if ω ∈ B ,

P (A|Bc) if ω ∈ Bc ,
(1.7.3)

where P (A|B) and P (A|Bc) are defined as in (1.2.1). Observe, ne-
vertheless, that our definition makes sense even when P (B) or P (Bc)
equals zero.

For each fixed A, the properties of the function ω 7→ P (A|G)(ω) are
known almost-everywhere. In particular, we have P (∅|G) = 1 and
P (Ω|G) = 1 almost everywhere. Moreover, if (An)n≥1 is any sequence

4In fact, as we will see later, the Radon-Nikodým Theorem can be obtained as a consequence of
the convergence results on martingales that will be described later.
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of pairwise disjoint events, then by Corollary 1.5.1

P
( ⋃

n≥1

An|G
)

=
∑

n≥1

P (An|G) , a.e. (1.7.4)

Nevertheless, this does not imply that P (·|G) is a probability measure
on (Ω,F). Indeed, the properties mentionned above hold one sets of
measure one, but in each case this set depends on the event observed.
For example, for a given sequence (An)n≥1, the set of ω’s for which
(1.7.4) holds depends on the whole sequence (An)n≥1. This leads to
the following question: does there exist a version of P (·|G) for which
A 7→ P (A|G)(ω) is a probability measure for each ω belonging to a
set of probability one? The answer to this question will be affirmative
when more structure is given to the set Ω. We discuss this in the
following section.

1.7.1. Regular Conditional Probabilities. In the preceding
section we associated to each event A ∈ F the random variable ω 7→
P (A|G)(ω). Due to the previous discussion, we now wish to consider
P (A|G)(ω), for each fixed ω ∈ Ω, as a function of A. This leads to the
following natural definition.

Definition 1.7.2. Let G ⊂ F be a sub-σ-algebra. A map (ω,A) 7→
P ∗(A|G)(ω) is called a regular conditional probability with respect to G

if the following holds:

(1) For all ω ∈ Ω, A 7→ P ∗(A|G)(ω) is a probability measure on
(Ω,F).

(2) For all A ∈ F, ω 7→ P ∗(A|G)(ω) is a version of P (A|G).

The element P ∗(·|G) is sometimes called expectation kernel (see Bauer
[Bau88]). This terminology is made clear in the following proposition,
which shows that the conditional expectation of any integrable variable
can be derived from P ∗(·|G).

Proposition 1.7.1. Let P ∗(·|G) be an expectation kernel. Then for
all integrable random variable X,

E[X|G] =

∫
X(ω)P ∗(dω|G) , a.e. (1.7.5)

The role of P ∗(·|G), in the construction of E[·|G], should therefore be
seen as the analog of the role played by P (·) in the construction of
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E[·], via the common expression

E[X] =

∫
X(ω)P (dω) .

Proof of Proposition 1.7.1: Let X = 1A. Then (1.7.5) is im-
mediate. If X ≥ 0 then by taking any increasing sequence of simple
random variablesXn ր X, the Monotone Convergence Theorem (con-
ditional and standard) gives

E[X|G] = lim
n→∞

E[Xn|G] = lim
n→∞

∫
Xn(ω)P ∗(dω|G) =

∫
X(ω)P ∗(dω|G) , a.e.

For a general integrable random variable, use X = X+ −X−. �

The existence of a regular conditional probability is not guaranteed in
general. The following result, which we give without proof, gives the
existence of a regular conditional probability under some assumption
on the measurable space (Ω,F). See [Bau88] for details. A measurable
space (Ω,F) is standard Borel if Ω is a complete separable metric space
and F is its Borel σ-algebra.

Theorem 1.7.1. Let (Ω,F, P ) be a probability space, where (Ω,F) is
Borel standard. Let G ⊂ F be a sub-σ-algebra. Then there exists a
regular conditional probability with respect to G.



CHAPTER 2

The Simple Random Walk

In this section we study a few basic properties of the simple random
walk on Z, such as recurrence, the Reflection Principle, a Large De-
viation estimate, and the Law of the Iterated Logarithm. The simple
random walk will be encountered in many places in subsequent sec-
tions. For example, we will come back to random walks in Section
4.3.2, after having developped the general theory of recurrence, in the
framework of Markov chains. The simple random walk will be the first
example of martingale, treated in Section 5.

Consider a sequence (Yn)n≥1 of independent identically distributed ran-
dom variables with P (Yk = +1) = p, P (Yk = −1) = q with p+ q = 1.
These can be constructed using Theorem 3.1.1. Define S0 := 0, and
for all n ≥ 1, Sn :=

∑n
k=1 Yk. The sequence (Sn)n≥0 is called the simple

random walk on Z. When p = 1
2 , the random walk is called symmetric.

The purpose of this chapter is to describe the long-time behaviour of
the walk, i.e. describe the typical behaviour of Sn when n becomes
large. Observe first that, by the Strong Law of Large Numbers,

Sn
n

→ E[Y1] ≡ 2p− 1 a.s. (2.0.6)

This implies, in particular, that P (limn→∞ Sn = +∞) = 1 when p > 1
2
,

and that P (limn→∞ Sn = −∞) = 1 when p < 1
2
: when p 6= 1

2
, this

means that almost surely, the walk visits the origin a finite num-
ber of times and then travels towards ±∞ with an asymptotic speed
v = 2p − 1 6= 0. A first natural set of questions is thus: when p = 1

2 ,
does the walk come back to the origin an infinite number of times?
Does it visit any k ∈ Z an infinite number of times? What can we
say about the random variable giving the first time at which the walk
visits the origin? Does the walk, on the whole, spend an equal amount
of time on each side of the origin?

17
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The basic combinatorial identity is the following: if n ≥ 1 and k ∈ Z

are admissible, in the sense that {Sn = k} 6= ∅, then

P (Sn = k) =

(
n
k+n

2

)
p

n+k
2 q

n−k
2 . (2.0.7)

This allows a few comments. First, let us consider the events {S2n =
0}. By (2.0.7) and the Stirling Formula (see Exercise 2.1),

P (S2n = 0) =

(
2n

n

)
(pq)n ∼ 1√

πn
(4pq)n . (2.0.8)

Therefore, when p 6= q, i.e p 6= 1
2
, we have 4pq < 1 and so

∑
n P (S2n =

0) < ∞. By Borel-Cantelli, this implies that P (S2n = 0 i.o.) = 0,
i.e. the walk visits the origin a finite number of times almost su-
rely, which we already knew. On the other hand, when p = 1

2 then∑
n P (S2n = 0) = ∞ but nothing can be said about the visits at the

origin since the events {S2n = 0} are not independent.

The asymptotic formula given in (2.0.7) is just a particular case of
the following limit theorem, which will be used at a few places in this
section. The proof, based entirely on (2.0.7) and the Stirling Formula,
is left as an exercise (it can also be found in [Shi84], p. 56).

Theorem 2.0.1 (Local Limit Theorem). Assume p = 1
2. If ln = o(n

2
3 ),

then 1

P (Sn = ln) ∼
√

2

πn
e−

l2n
2n (2.0.9)

To prove the Central Limit Theorem, one needs only ln = o(n
1
2 ). When

proving the Law of the Iterated Logarithm, we will see that an expo-
nent larger than 1

2 is necessary.

2.1. Recurrence

Recurrence poses the problem of knowing if and how does the walk
come back to its starting point. Therefore, define the time of first
return to the origin,

T0 := inf{n ≥ 1 : Sn = 0} , (2.1.1)

where we remind that we make the convention that the infimum over
an emptyset is +∞. T0 is an N ∪ {∞}-valued random variable. The

1Remember that an ∼ bn means that an

bn

→ 1 when n→ ∞.
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random walk is called recurrent if P (T0 < ∞) = 1, and transient if
P (T0 <∞) < 1. The basic recurrence result is the following.

Theorem 2.1.1. For the simple random walk on Z,

P (T0 <∞) = 1 − |p− q| . (2.1.2)

In particular, the walk is recurrent if and only if p = q = 1
2
. Moreover,

E[T0]

{
<∞ if p 6= 1

2
,

= ∞ if p = 1
2 .

(2.1.3)

Proof. Let f denote the generating function for the distribution of
T0:

f(s) := E[sT0] =
∑

n≥1

P (T0 = 2n)s2n − 1 < s < 1 . (2.1.4)

We are interested in computing

P (T0 <∞) = P
( ⋃

n≥1

{T0 = 2n}
)

=
∑

n≥1

P (T0 = 2n) = lim
s→1−

f(s) .

We used Abel’s Theorem (see Exercise 2.2) for the interchange of the
limit and the sum. To compute f(s), it is useful to introduce also the
generating function for the distribution P (S2n = 0):

g(s) :=
∑

n≥0

P (S2n = 0)s2n .

Since we have an explicit expression for P (S2n = 0) in (2.0.7), g is
easy to compute:

g(s) =
∑

n≥0

(
2n

n

)
(pqs2)n ≡ 1√

1 − 4pqs2
.

This last identity is a simple Taylor expansion (Exercise 2.5). Now,
observe that by the Markov Property (see Exercise 2.3)

P (S2n = 0) =
n∑

k=1

P (S2n = 0|T0 = 2k)P (T0 = 2k)

=
n∑

k=1

P (S2n−2k = 0)P (T0 = 2k) ,
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which is the nth coefficient of the power series representing f(s)g(s).
Therefore, multiplying by sn and summing over n ≥ 0, we get g(s) =

1 + g(s)f(s). Therefore, f(s) = 1 −
√

1 − 4pqs2, and so

P (T0 <∞) = lim
s→1−

f(s) = 1 −
√

1 − 4pq . (2.1.5)

Since 1 = (p+q)2, we have shown (2.1.2). For the second part, observe
that, again by Abel’s Theorem,

E[T0] =
∑

n≥1

2nP (T0 = 2n) = lim
s→1−

f ′(s) .

(2.1.3) follows easily by explicit computation of lims→1− f
′(s). �

2.2. The Reflection Principle and The Arcsine Law

We know that when p = q, the walk comes back to the origin almost
surely. In the present section we study the time spent by the walk on
either side of the origin.

It will be convenient to consider the trajectory of the random walk as
a two dimensional spacetime line on N × Z, in which the point (n, x)
corresponds to the event {Sn = x}. We start by a key combinatorial
result.

Lemma 2.2.1 (Reflection Principle). Let x, y > 0, n ≥ 1. The number
of paths joining (0, x) to (n, y) which visit at least once the origin is
equal to the number of paths joining (0,−x) to (n, y).

Proof. Let C(0,−x;n, y) denote the set of paths joining (0,−x) to
(n, y), and C(0, x;n, y)∗ denote the set of paths joining (0, x) to (n, y)
which hit the origin at least once. We construct a bijection ϕ between
these two sets. Assuming (n, y−x) is admissible, let π ∈ C(0, x;n, y)∗.
Define n′ as the first time π hits the origin. Define a path ϕ(π) by

(0, x)

(n, y)

(0,−x)

n′

Figure 1. The Reflection Principle.
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reflecting π through the origin on the interval [0, n′], and leaving it
unchanged on the interval [n′, n]. Then ϕ(π) ∈ C(0,−x;n, y) and ϕ is
clearly invertible, proving the claim. �

Let Nn,x be the number of paths which start at the origin and reach
the point x by time n: Nn,x := |{Sn = x}|. In order to reach x by
time n, a path must contain n+ := n+x

2 upward-steps and n− := n−x
2

downward-steps. Therefore,

Nn,x =

(
n

n+

)
. (2.2.1)

Theorem 2.2.1. Let y > 0. Conditionnally on the event that the walk
reached y by time n, the probability that it never visited the origin at
times 1, 2, . . . , n− 1 equals y

n
.

Proof. We assume (n, y) is admissible. If the walk starts at the
origin and never visits it again, its position at time 1 must be 1. The
total number of paths which start at (1, 1) and reach (n, y) is Nn−1,y−1,
and the number of those which visit at least once the origin equals, by
the Reflection Principle, Nn−1,y+1. The number of paths which reach
y by time n and don’t visit the origin is therefore, with α := n+y

2 ,

Nn−1,y−1 −Nn−1,y+1 =

(
n− 1

α− 1

)
−

(
n− 1

α

)
=

2α− n

n
Nn,y ≡

y

n
Nn,y ,

(2.2.2)

which gives the result. �

This last theorem is usually called the Ballot Theorem. Assume that
two individuals A and B were the unique candidates to an election.
One starts looking at the votes, one after the other. At the end, one
gets α > β, where α and β are the respective total numbers of votes of
each candidate. That is, A won the election. What is the probability
that A stayed ahead of B all through the counting of the votes? If
one considers the counting of the votes as a symmetric random walk
starting at the origin, in which an upward-step is a vote for A and
a downward-step is a vote for B, then the total number of steps is
α + β and the position to be reached is α − β > 0. The probability
that A stays ahead of B through the counting of the votes equals the
probability that this random walk never visits the origin up to time
α + β, which equals α−β

α+β by Theorem 2.2.1.
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One can use (2.2.2) in another way. Since the number of paths starting
at the origin, ending at (2n, 2y) and not going through the origin for
times 1, 2, . . . , 2n, equals N2n−1,2y−1−N2n−1,2y+1, dividing by the total
number of paths up to time 2n gives

P (S1 > 0, . . . , S2n > 0, S2n = 2y) =
1

2
P (S2n−1 = 2y − 1) − 1

2
P (S2n−1 = 2y + 1) .

The 1
2s appear because of the choice on the last step. By summing

over y = 1, . . . , n, this gives

P (S1 > 0, . . . , S2n > 0) =
1

2
P (S2n−1 = 1) .

In the same way, P (S1 < 0, . . . , S2n < 0) = 1
2P (S2n−1 = −1). We have

shown

Theorem 2.2.2. For the simple random walk starting at the origin,

P (S1 6= 0, . . . , S2n 6= 0) = P (S2n = 0) . (2.2.3)

We can use this identity in many ways. For example, consider the first
return to the origin, T0 := inf{k ≥ 1 : Sk = 0}; we can express its
distribution as follows

P (T0 > 2n) = P (S1 6= 0, . . . , S2n 6= 0) = P (S2n = 0) ∼ 1√
πn

.

In particular, P (T0 = ∞) = limn→∞ P (T0 > 2n) = 0, and E[T0] = ∞,
which we already knew from Theorem 2.1.1.

As a second application of (2.2.3), we will now show that on a given
time interval, the walk spends most of its time on only one side of the
origin. Define the time of the last visit to the origin before time 2n:

L2n := sup{k ≤ 2n : Sk = 0} . (2.2.4)

Theorem 2.2.3 (Arsine Law). Let 0 < a < b < 1. Then, as n→ ∞,

P
(
a ≤ L2n

2n
< b

)
−→ 1

π

∫ b

a

1√
x(1 − x)

dx . (2.2.5)

The name of this theorem stems from the fact that by a change of
variable

√
x ≡ y,

1

π

∫ b

a

1√
x(1 − x)

dx =
2

π

∫ √
b

√
a

1√
1 − y2

dy =
2

π

(
arcsin

√
b−arcsin

√
a
)
.
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The counter-intuitiveness of the Arsine Law is that the asymptotic
distribution of L2n

2n is symmetric around 1
2. In particular,

P
(L2n

2n
<

1

2

)
−→ 1

2
.

Quoting Durrett: “in gambling terms, if two people were to bet 1$ on
a coin flip every day of the year, then with probability 1

2 one of the
players would be ahead from July 1st to the end of the year, an event
that would undoubtedly cause the other player to complain about his
bad luck”.

The Arcsine Law follows from the following lemma. Let u2k := P (S2k =
0).

Lemma 2.2.2. P (L2n = 2k) = u2ku2n−2k.

Proof. We have, by the Markov Property,

P (L2n = 2k) = P (S2k = 0, S2k+1 6= 0, . . . , S2n 6= 0)

= P (S2k = 0)P (S2k+1 6= 0, . . . , S2n 6= 0|S2k = 0)

= P (S2k = 0)P (S1 6= 0, . . . , S2n−2k 6= 0) ,

which, by (2.2.3), proves the lemma. �

Sketch of the proof of Theorem 2.2.3: Consider the sequence
an (resp. bn) defined such that 2nan (resp. 2nbn) is the smallest (resp.
largest) even integer larger (resp. smaller) than 2na (resp. 2nb). Then,

P
(
a ≤ L2n

2n
< b

)
= P

(
an ≤

L2n

2n
< bn

)
=

∑

k:an≤ 2k
2n

≤bn

P (L2n=2k)

=
∑

k:an≤ 2k
2n

≤bn

u2ku2n−2k .

By the asymptotic behaviour of u2k for large k, we have
∑

k:an≤ 2k
2n

≤bn

u2ku2n−2k ∼
∑

k:an≤ 2k
2n

≤bn

1√
πk

1√
π(2n− 2k)

=
1

n

∑

k:an≤ 2k
2n

≤bn

1√
π k
n
(1 − k

n
)
→

∫ b

a

1√
πx(1 − x)

dx .

�
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2.3. Large Deviations: the Bernstein Estimate

What is the probability that the walk makes a large excursion, i.e.
how can one estimate the probability of events such as {Sn ≥ cn}?
These happen to be exponentially small.

Theorem 2.3.1. For all c > 0,

P (Sn ≥ cn) ≤ exp
(
− c2

16
n
)

∀n ≥ 1 (2.3.1)

It is important to notice that the Bernstein Estimate (2.3.1) can also

be used for a c which depends on n, for example c = n−
1
3 .

Proof. It is simpler to use the variables Ln := Sn+n
2 ∈ {0, 1, . . . , n}:

P (Sn ≥ cn) = P
(
Ln ≥

1 + c

2
n
)
≡ P

(
Ln ≥ (p+ δ)n

)
,

with p = 1
2 , δ = c

2 . Now

P
(
Ln ≥ (p+ δ)n

)
=

∑

(p+δ)n≤k≤n
P (Ln = k) =

∑

(p+δ)n≤k≤n

(
n

k

)
pkqn−k .

Introduce a parameter λ > 0 that will be chosen below, and observe
that for each k of the sum, one has 1 ≤ eλ(k−(p+δ)n). By rearranging
k − pn = qk − p(n− k), we get

P
(
Ln ≥ (p+ δ)n

)
≤ e−λδn

∑

(p+δ)n≤k≤n

(
n

k

)
[peλq]k[qe−λp]n−k

≤ e−λδn
(
peλq + qe−λp

)n
.

Since ex ≤ x + ex
2

, we get

P
(
Ln ≥ (p+ δ)n

)
≤ e−λδn

(
peλ

2q2 + qeλ
2p2)n ≤ e−λδneλ

2n ≡ e−
δ2

4 n ,

once we choose λ := δ
2 . This proves the theorem. �

2.4. The Law of the Iterated Logarithm

In this section we consider only p = 1
2. We have seen in Theorem 2.3.1

that when c > 0, {Sn ≥ cn} are very rare events. Nevertheless, the
simple symmetric random walk does make excursions far from the ori-
gin, and we make this precise in the present section, following Révész
[Rév05].
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Loosely speaking, the aim is to find an increasing sequence of intervals
centered at the origin I0 ⊂ I1 ⊂ I2 ⊂ . . . such that, almost surely,: 1)
Sn belongs to In, unless maybe for a finite number of times; in this
sense, the sequence of intervals In contains the whole trajectory of the
walk, 2) the sequence In is the smallest possible, in the sense that Sn
must hit the boundary of In infinitely many times.

The Law of the Iterated Logarithm below shows that the sequence In
must grow like

|In| ≈
√
n log logn . (2.4.1)

Let us argue in favor of the appearance of something of the form
“log log”. The details are left as an exercise (Exercise 2.7). First,
from the Strong Law of Large Numbers (2.0.6),

lim
n→∞

Sn
n

= 0 a.s. (2.4.2)

almost surely, and so clearly we need |In| ≪ n. On the other hand,

normal excursions, of order n
1
2 , are described by the Central Limit

Theorem: they are probable. Therefore, we need |In| ≫ n
1
2 . Then,

as can be seen easily, E[S2k
n ] = O(nk) for all k ≥ 1. By Chebycheff’s

Inequality, P (|Sn| ≥ n
1
2+ǫ) = O(n−2ǫk) for all ǫ > 0, which implies

lim
n→∞

Sn

n
1
2+ǫ

= 0 a.s. (2.4.3)

This shows that |In| ≪ n
1
2+ǫ for any ǫ > 0. The next candidates are

therefore amplitudes of order n
1
2 (logn)δ, δ > 0. Nevertheless, it can

be shown (see [R.88] p.65) that for all ǫ > 0,

lim
n→∞

Sn

n
1
2 (logn)

1
2+ǫ

= 0 a.s. (2.4.4)

The sequence In must therefore satisfy n
1
2 ≪ |In| ≪ n

1
2 (logn)

1
2+ǫ for

all ǫ > 0. The good rate happens to be the one given in (2.4.1) with a
constant equal to

√
2, as shown in the following result, due to Khinchin

(1923).

Theorem 2.4.1 (Law of the Iterated Logarithm). Let (Sn)n≥0 denote
the simple symmetric random walk on Z. Then, almost surely,

lim sup
n→∞

Sn√
2n log logn

= 1 and lim inf
n→∞

Sn√
2n log logn

= −1 .

(2.4.5)
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The Law of the Iterated Logarithm implies, in particular, that lim supn Sn =
+∞, lim infn Sn = −∞ almost surely, which implies that P (Sn =
x i.o.) = 1 for all x ∈ Z. That is, the symmetric random walk visits
any site an infinite number of times. In particular, it is recurrent.

Although Theorem 2.4.1 holds under more general assumptions on
the increments (Xn), we will prove it in our simple setting, following
Révész [Rév05]. The central ingredient is the following combinatorial
lemma.

Lemma 2.4.1. Let (Sn)n≥0 denote the simple symmetric random walk
on Z. Let Mn := max0≤j≤n |Sj|. There exist two constants c1, c2 > 0

such that for any sequence 0 < kn = o(n
1
6 ), the following holds for

large n:
c1
kn
e−

k2
n
2 ≤ P (Sn ≥ n

1
2kn) ≤

c2
kn
e−

k2
n
2 , (2.4.6)

c1
kn
e−

k2
n
2 ≤ P (Mn ≥ n

1
2kn) ≤

4c2
kn
e−

k2
n
2 . (2.4.7)

The events {Sn ≥ n
1
2kn} describe fluctuations which are slightly larger

than normal, which is exactly what we need since in our case kn ∼√
log logn = o(n

1
6 ).

Proof. The inequalities (2.4.6) rely on the Local Limit Theorem
2.0.1. Take L > 0 large enough, and consider the decomposition

P (Sn ≥ n
1
2kn) = P (n

1
2kn ≤ Sn < Ln

1
2kn) + P (Sn ≥ Ln

1
2kn)

For the first term, we can use the Local Limit Theorem to obtain
upper and lower bounds: with kn = o(n

1
6 ) one has, for large enough n,

P (n
1
2kn ≤ Sn < Ln

1
2kn) ∼

√
2

πn

Ln
1
2 kn∑

k=n
1
2 kn

e−
k2

2n

≈ 1√
n

∫ Ln
1
2 kn

n
1
2 kn

e−
x2

2ndx

=

∫ Lkn

kn

e−
y2

2 dy ≈
∫ ∞

kn

e−
y2

2 dy ≈ 1

kn
e−

k2
n
2 .

(2.4.8)
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For the second term, we use the Bernstein Estimate (2.3.1) with c =

cn = Ln−
1
2kn:

P (Sn ≥ Ln
1
2kn) = P (Sn ≥ cnn) ≤ exp

(
− c2n

16
n
)

= exp
(
− L2

8

k2
n

2

)

which, when L is large enough, becomes negligible compared to (2.4.8).
This shows (2.4.6). Then, (2.4.7) follows from (2.4.6) and P (Mn ≥
a) ≤ 4P (Sn ≥ a). To see this, we first show that if M+

n = max0≤j≤n Sj,
then

P (M+
n ≥ a) = 2P (Sn > a) + P (Sn = a) . (2.4.9)

For a = 0 the identity is trivial. For a > 0, write

P (M+
n ≥ a) − P (Sn = a) = P (M+

n ≥ a, Sn < a) + P (M+
n ≥ a, Sn > a)

= P (M+
n ≥ a, Sn < a) + P (Sn > a) .

(2.4.10)

It therefore suffices to show that

P (M+
n ≥ a, Sn < a) = P (M+

n ≥ a, Sn > a) .

But this follows from a simple reflection argument analogous to what
was done in the Reflection Principle: on {M+

n ≥ a, Sn < a}, consider
the first time n′ at which the walk crosses the line L = {(x, y) : y = a}.
On [n′, n] reflect the path across L, which transforms the constraint
Sn < a into Sn > a. �

Proof of Theorem 2.4.1: Define Λn :=
√

2n log logn. We first
show that for all ǫ > 0,

lim sup
n→∞

Mn

Λn

≤ 1 + ǫ a.s. (2.4.11)

Since Sn ≤ |Sn| ≤Mn, this implies lim supn→∞
Sn

Λn
≤ 1 + ǫ. By (2.4.7),

P (Mn ≥ (1 + ǫ)Λn) ≤
1

(logn)1+ǫ

for large enough n. If we consider a subsequence nk = ⌊θk⌋, where
θ > 1, then (logn)1+ǫ ∼ k1+ǫ and by Borel-Cantelli we get P (Mnk

≥
(1 + ǫ)Λnk

i.o.) = 0, which means

lim sup
k→∞

Mnk

Λnk

≤ 1 + ǫ a.s. (2.4.12)
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For any large n, consider the number k ≥ 1 for which nk ≤ n < nk+1.
We have (here it is crucial that Mn increases with n)

Mn

Λn

≤ Mnk+1

Λnk

=
Λnk+1

Λnk

Mnk+1

Λnk+1

Since

lim
k→∞

Λnk+1

Λnk

=
√
θ , (2.4.13)

and since θ can be taken arbitrarily close to 1, we have shown (2.4.11).
For the lower bound, we use the same subsequence nk and show that
θ can be taken large enough so that almost surely, for infinitely many
ks,

Snk

Λnk

≥ 1 − 2ǫ . (2.4.14)

This implies lim supn→∞
Sn

Λn
≥ 1− ǫ. In order to use Borel-Cantelli for

the lower bound, we consider the independent events {Snk+1
− Snk

≥
(1− ǫ)Λnk+1

}. Since Snk+1
− Snk

has the same distribution as Snk+1−nk
,

we have by (2.4.6), for large enough k and θ,

P (Snk+1
− Snk

≥ (1 − ǫ)Λnk+1
) = P

[ Snk+1−nk√
nk+1 − nk

≥ (1 − ǫ)
Λnk+1√
nk+1 − nk

]

≥ C

(lognk+1)1− ǫ
4

≈ 1

k1− ǫ
4

where C = C(θ) > 0. This implies that {Snk+1
−Snk

≥ (1−ǫ)Λnk+1
i.o.}

has probability one. On this set, we write (this holds for infinitely
many ks)

Snk+1

Λnk+1

=
Snk+1

− Snk

Λnk+1

+
Λnk

Λnk+1

Snk

Λnk

≥ (1 − ǫ) +
Λnk

Λnk+1

Snk

Λnk

≥ (1 − ǫ) − Λnk

Λnk+1

Mnk

Λnk

By (2.4.13) and (2.4.12),

lim sup
k→∞

Λnk

Λnk+1

Mnk

Λnk

≤ 1 + ǫ√
θ

≤ ǫ a.s.

for large enough θ. This proves (2.4.14). �

The almost sure information provided by the Law of the Iterated Lo-
garithm for the excursions of the walk are as follows: for all ǫ > 0, we
have

Sn ≤ (1 + ǫ)
√

2n log logn
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for all large enough n, and

Sn ≥ (1 − ǫ)
√

2n log logn

for an infinite number of ns. This shows that the largest typical excur-
sions are of order

√
2n log log n. Various refinements of this asymptotic

behaviour can be found in [Rév05]. For example, for all ǫ > 0,

Sn ≤
√
n(2 log logn+ (3 + ǫ) log log logn)

for all large enough n, and

Sn ≥
√
n(2 log logn+ 3 log log logn)

for an infinite number of ns.

2.5. Exercises

Exercise 2.1. ([Str05] p.18) Let Z1, . . . , Zn be independent, identi-
cally distributed with Z1 ∼ exp(1). Show that for all 0 < R ≤ √

n,

1− 1

R2
≤ P

[∣∣∣Z1 + · · · + Zn − n√
n

∣∣∣ ≤ R
]

=
1

(n− 1)!

∫ +
√
nR+n

−√
nR+n

tn−1e−tdt ≤ 1

Make a change of variables to obtain
∫ +

√
nR+n

−√
nR+n

tn−1e−tdt = nn−
1
2e−n

∫ R

−R
exp

[
− σ2

2
+ En(σ)

]
dσ ,

where

En(σ) = (n− 1) log
(
1 +

σ√
n

)
−√

nσ +
σ2

2
.

Use a Taylor expansion for log(1+x) to show thatEn(σ) → 0 uniformly
for |σ| < R. Combine to obtain

1− 1

R2
≤ lim inf

n→∞
nn+ 1

2e−n

n!

∫ +R

−R
e−

σ2

2 dσ ≤ lim sup
n→∞

nn+ 1
2e−n

n!

∫ +R

−R
e−

σ2

2 dσ ≤ 1 .

This proves Stirling’s Formula: n! ∼
√

2πnnne−n.

Exercise 2.2. Show Abel’s Theorem: if an ≥ 0 and
∑

n ans
n is con-

vergent for all 0 < s < 1, then lims→1−
∑

n ans
n =

∑
n an (whether

both are finite or infinite).

Exercise 2.3. Show the Markov Property of the simple random walk:
for all x1, . . . , xn+1 ∈ Z,

P (Sn+1 = xn+1|Sn = xn, . . . , S1 = x1) = P (Sn+1 = xn+1|Sn = xn) .
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Use this to prove that P (S2n = 0|T0 = 2k) = P (S2n−2k = 0), where T0

is the time of first return to the origin.

Exercise 2.4. Show the Martingale Property of the simple symmet-
ric random walk (Sn)n≥0: 1) E[|Sn|] < ∞ for all n, 2) if Fn :=
σ(X1, . . . , Xn) denotes the σ-algebra generated by X1, . . . , Xn, then

E[Sn+1|Fn] = Sn a.s.

Exercise 2.5. Show that
∑

n≥0

(
2n

n

)
(pqs2)n =

1√
1 − 4pqs2

.

Exercise 2.6. [GS05] p. 27. Consider the random walk defined by
S0 := 0, Sn := X1 + · · · + Xn, where the Xk are integer valued, i.i.d.
random variables. The range of the walk up to time n is the number of
distinct integers k ∈ Z for which there exists m ≤ n such that Sm = k.
Show that

P (Rn = Rn−1 + 1) = P (S1 6= 0, . . . , Sn 6= 0) ,

and conclude that when n→ ∞,

E[Rn]

n
→ P (Sk 6= 0 ∀k ≥ 1) .

What is the value of this limit in the case of the simple symmetric
random walk?

Exercise 2.7. (Towards the Law of the Iterated Logarithm, [Rév05]
p29-30.) Consider the simple random walk on Z, denoted (Sn)n≥1.

(1) Verify that E[|Sn|2] = n, and estimate P (|Sn2| ≥ ǫn2) for all

ǫ > 0. Conclude that
|Sn2 |
n2 → 0 a.s. From this, deduce:

Sn
n

→ 0 a.s. (Borel, 1909) .

(2) Show that E[S2k
n ] = O(nk) when n → ∞. Conclude that

P (|Sn| ≥ n
1
2+ǫ) = O(n−2ǫk) for all ǫ > 0, which implies

Sn

n
1
2+ǫ

→ 0 a.s. (Hausdorff, 1913)

(3) Show that for all t, E[etSn] = (cosh t)n. Compute limnE[e
Sn√

n ].

Use this to bound P [Sn ≥ (1+ǫ)n
1
2 logn] for large n. Conclude
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that

lim sup
n→∞

Sn

n
1
2 logn

≤ 1 a.s.

Exercise 2.8. [GS05] p. 332. Let (Xn)n≥1 be independent, Sn :=
X1 + · · · + Xn. A function ϕ = ϕ(x) ≥ 0 is said to belong to the
the upper class if P (Sn > ϕ(n) i.o.) = 0. Consider the case where
Xk ∼ N(0, 1), and study functions of the form ϕ(x) =

√
λx log x,

λ > 0. For which values of λ does ϕ belong to the upper class?
Hint: use ∫ ∞

x

e−
t2

2 dt ≤ 1

x
e−

x2

2 .

Exercise 2.9. Consider ΛN := {0, 1, 2, . . . , N}, and let ∂ΛN := {0, N},
int ΛN := ΛN\∂ΛN = {1, 2, . . . , N − 1}.

(1) A function f : ΛN → R is called harmonic if

f(x− 1) + f(x+ 1)

2
= f(x) for all x ∈ int ΛN .

(a) Show the Maximum Principle: a harmonic function attains
its maximum and minumum on ∂ΛN .

(b) Consider the Dirichlet Problem: find a harmonic function
f such that f(0) = a, f(N) = b. Show that the solution
to the Dirichlet Problem is unique. Hint: consider two
solutions f, g and study h := f − g.

(2) For each x ∈ intΛN , consider the simple symetric random walk
starting at x. Let pN(x) denote the probability that the walk,
starting at x, reaches 0 before N . Clearly, pN(0) = 1, pN(N) =
0. Show that pN : ΛN → [0, 1] is harmonic. Make an ansatz
for the solution of the Dirichlet Problem. Assuming N is even,
compute pN(N2 ) and N → ∞.

(3) ([GS05] p. 74) Generalize to the non-symmetric case: take
p ∈ (0, 1), p 6= 1

2 , and let q := 1 − p, and define a function
f : ΛN → R to be harmonic if

qf(x− 1) + pf(x+ 1) = f(x) for all x ∈ int ΛN .

Prove the same statements as in (1). Show that in (2), the solu-
tion is of the form pN(x) = aθx1 +bθx2 , where θ1 = 1, θ2 = q

p
. Use

the boundary condition to find the constants a and b. Compute
limN→∞ pN(x) for a fixed x ≥ 1 and then limN→∞ pN(N2 ). Can
you obtain recurrence?
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(4) A gambler wins 1$ with probability p and loses 1$ with pro-
bability 1 − p. The game stops only when the gambler goes
bankrupt. If he starts with an initial amount of k$, what is the
probability of him going bankrupt?

Exercise 2.10. [Str05] Let B1, B2, . . . be i.i.d. Z-valued random
variables with 0 < E[|B1|] < ∞. Let [x]+ := max{0, x}. Define the
queue (Qn)n≥0 by Q0 := 0,

Qn := [Qn−1 + Bn]
+ .

(1) Show that (voir Landim p. 110)

Qn = Sn − min
0≤m≤n

Sm = max
0≤m≤n

(Sn − Sm) ,

where Sn :=
∑n

k=1Bk, S0 := 0. Conclude that for each n ≥ 0,
the distribution ofQn is the same as that ofMn = max0≤m≤n Sm.

(2) Set M∞ := limn→∞Mn ∈ N ∪ {∞}. Conclude that

lim
n→∞

P (Qn = j) = P (M∞ = j) .

(3) Set µ := E[B1]. Use the WLLN to show that when µ > 0,
P (M∞ = ∞) = 1. Do the same when µ = 0 (use a previous
exercise). Conclude that when E[B1] ≥ 0, P (Qn = j) → 0 (the
queue grows infinitely long).

(4) Assume now µ < 0. Use the SLLN to conclude that P (M∞ <
∞) = 1, and therefore Qn has a limiting distribution νj :=
limn→∞ P (Qn = j) = P (M∞ = j), with

∑
j νj = 1.

(5) Consider the case where the Bn are Bernoulli with parame-
ter p. Proceed as in part (4) of Exercise 2.9 to compute the
distribution of M∞, and obtain

lim
n→∞

P (Qn = j) =

{
0 if p ≥ q ,
q−p
q

(
p
q

)i
if p < q .

(6) Generalize the preceding to the case where Bn ∈ {±1, 0}, p =
P (B1 = +1), q = P (B1 = −1). Here the idea is that M∞ is
distributed in the same way as supn Yn where Yn is the random
walk corresponding to Bernoulli variables with parameter p

p+q .

Exercise 2.11. The Branching Process. Let Y ∈ {0, 1, 2, . . .} have

distribution P (Y = k) = pk,
∑

k pk = 1. Consider an array (Y
(j)
i , i, j ≥

1) of independent random variables which all have the same distribu-
tion as Y . We define a process describing the evolution of a population
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in which all individuals can have children, and the number of the ith

individual of the jth generation is Y
(j)
i . We consider the number of

individuals of the population at generation n, denoted Xn and that
there is exactly one individual at generation 0: X0 := 1. Then, for
n ≥ 1,

Xn+1 :=

{
Y

(n)
1 + · · · + Y

(n)
Xn

if Xn > 0 ,

0 if Xn = 0 .

We say the population survives if Xn > 0 for all n ≥ 1, and dies
if there exists n such that Xn = 0. Clearly, the mean number of
children per individual, λ := E[Y ], is determinant for the survival of
the population. The problem is interesting only if one assumes that
p0 = P (Y = 0) > 0. Let π denote the probability that the population
dies out. We will show the following result:

λ ≤ 1 ⇒ π = 1 ,

λ > 1 ⇒ π < 1 .

(1) Show that π = limn πn, where πn := P (Xn = 0).
(2) Consider the generating function of Y , f(t) := E[etY ]. Show

that f(0) > 0, f(1) = 1.
(3) Show that f is differentiable at all t ∈ (−1,+1) and that

limt→0− f
′(t) = λ. Show that f is convex.

(4) Let fn(t) := E[etXn]. Show that fn(0) = πn, and that

fn+1(t) = fn(f(t)) , ∀t ∈ [0, 1] .

Hint: to study Xn+1, condition on Xn.
(5) Show that πn+1 = f(πn). Take the limit n→ ∞ and study the

solutions of the limiting equation in function of λ.





CHAPTER 3

Kolmogorov: Extension Theorem and 0-1 Laws

A great deal of Probability Theory is to state convergence results for
sequences of i.i.d variables X1, X2, . . . . We give here the construction
that shows that such sequences do indeed exist, and then give general
asymptotic features of these sequences, known as 0 − 1 Laws.

3.1. The Extension Theorem

The main existence theorem for families of independent random va-
riables with prescribed distributions is the following.

Theorem 3.1.1. Let (νn)n≥1 be a sequence of probability measures on
the line (R,B(R)). Then there exists a probability space (Ω,F, P )
and a sequence of independent random variables (Xn)n≥1 defined on
(Ω,F, P ) such that for each n ≥ 1, the distribution of Xn is given by
νn: for all Borel set B ∈ B(R), P (Xn ∈ B) = νn(B).

This will follow from a more general result, Kolmogorov’s Extension
Theorem, which allows to construct sequences (Xn)n≥1 with particular
dependencies, for example Markov chains (see Theorem 4.1.2).

The natural space, to construct sequences of real variables is the in-
finite product RN, elements of which are sequences ω = (ω1, ω2, . . . ),
ωk ∈ R. Let I denote the set of intervals of the line of the type
(−∞, a), [a, b), or [b,+∞). A simple rectangle in Rn is a set of the
form I1 × · · ·× In, where each Ik ∈ I. Let Rn denote the algebra gene-
rated by simple rectangles. As can be verified easily, elements of Rn

are finite disjoint unions of simple rectangles. The product σ-algebra
on Rn is B(Rn) := σ(Rn).

For m ≤ n, define the canonical projection πnm : Rn → Rm by

πnm(ω1, . . . , ωn) := (ω1, . . . , ωm) . (3.1.1)

35
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When n = ∞, we write πm for the projection πm : RN → Rm, defined
by

πm(ω1, ω2, . . . ) := (ω1, . . . , ωm) . (3.1.2)

We have

πnm ◦ πn = πm , and (πnm)−1 = πn ◦ π−1
m . (3.1.3)

On RN, the algebra of cylinders of size n is defined by Cn := π−1
n (Rn).

Let C :=
⋃
n≥1 Cn. Since Cn ⊂ Cp when n ≤ p, C is an algebra on RN,

called the algebra of cylinders. Finally, B(RN) := σ(C).

Theorem 3.1.2 (Kolmogorov’s Extension Theorem). Let (µn)n≥1, where
µn is a probability measure on (Rn,B(Rn)), satisfying the following
compatibility condition: for all n ≥ m,

µn ◦ (πnm)−1 = µm . (3.1.4)

Then there exists a unique probability measure P on (RN,B(RN)) such
that

P ◦ π−1
n = µn , ∀n ≥ 1 . (3.1.5)

Proof. The compatibility condition (3.1.4) will allow to define a
probability P on the algebra C, which we then extend to B(RN) using
Carathéodory’s Extension Theorem. Let B ∈ C, i.e. B = π−1

n (R) for
some n ≥ 1, and R ∈ Rn. Define

P (B) := µn(R) .

Since Cn ⊂ Cp when n ≤ p, the representation of B is not unique,
and we must verify that each such representation leads to the same
number P (B). So assume B = π−1

n (R) = π−1
p (R′), where R′ ∈ Cp with

p ≥ n. This implies, by (3.1.4) and (3.1.3),

µn(R) = µp((π
p
n)

−1(R)) = µp((πp(π
−1
n (R))) = µp(R

′) .

This shows that P is well defined on C. We verify that P is additive:
let A,B ∈ C, A ∩ B = ∅. There exist m,n such that A = π−1

n (R),
B = π−1

m (R′), where R ∈ Rn, R′ ∈ Rm. Letting p := max{n,m},
we get A ∪ B = π−1

p ((πpn)
−1(R) ∪ (πpm)−1(R′)), and since (πpn)

−1(R) ∩
(πpm)−1(R′) = ∅,

P (A ∪B) = µp((π
p
n)

−1(R) ∪ (πpm)−1(R′))

= µp((π
p
n)

−1(R)) + µp(π
p
m)−1(R′))

= µn(R) + µm(R′)

= P (A) + P (B) .
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To verify σ-additivity, let Bn ∈ C, Bn ց ∅. We will show that
P (Bn) ց 0 ad absurdum: assuming that P (Bn) ց 2λ > 0, we will
show, using a compactness argument, that

⋂
nBn 6= ∅, a contradiction.

We can assume, without loss of generality, that Bn ∈ Cn, i.e. Bn =
π−1
n (Rn) and P (Bn) = µn(Rn) for some Rn ∈ Rn. Since µn is a proba-

bility measure, there exists a compact R̂n ⊂ Rn such that

µn(Rn\R̂n) ≤
λ

2n
. (3.1.6)

Then, there exists R′
n ∈ Rn and a compact R̃n such that R̂n ⊂ R′

n ⊂
R̃n ⊂ Rn, and such that, with B′

n := π−1
n (R′

n),

P (Bn\B′
n) = P (π−1

n (Rn\R′
n)) = µn(Rn\R′

n) ≤ µn(Rn\R̂n) ≤
λ

2n
.

Set B̃n := π−1
n (R̃n), and D̃n :=

⋂n
k=1 B̃k, which is decreasing. We will

show that
⋂
n D̃n 6= ∅, which yields a contradiction since

⋂
n D̃n ⊂⋂

nBn = ∅. Let also D′
n :=

⋂n
k=1B

′
k.

P (D′
n) ≥ P (D′

n∩Bn) = P (Bn)−P (Bn\D′
n) ≥ 2λ−

n∑

k=1

P (Bk\B′
k) ≥ λ .

In particular, D′
n 6= ∅, and so D̃n 6= ∅. For each n, take ωn =

(ωnk )k≥1 ∈ D̃n. Consider the sequence (ωn1 )n≥1. Since for all n ≥ 1

ωn1 ∈ π1(D̃n) ⊂ π1(D̃1), which is compact, there exists a subsequence
of 1, 2, . . . , denoted (n(1, j))j≥1, such that

ω∗
1 := lim

j→∞
ω
n(1,j)
1 exists.

Then consider the subsequence (ω
n(1,j)
2 )j≥1. Since ω

n(1,j)
2 ∈ π2(D̃1),

which is compact, there exists a further subsequence of (n(1, j))j≥1,
denoted (n(2, j))j≥1, such that

ω∗
2 := lim

j→∞
ω
n(2,j)
2 exists.

This procedures goes on until having constructed, for all k, some sub-
sequence of (n(k − 1, j))j≥1 denoted (n(k, j))j≥1, such that

ω∗
k := lim

j→∞
ω
n(k,j)
k exists.
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Consider the diagonal sequence (n(j, j))j≥1, which is a subsequence of
all the previous ones. Therefore,

lim
j→∞

(ω
n(j,j)
1 , . . . , ω

n(j,j)
k ) = (ω∗

1, . . . , ω
∗
k)

for all k. Since (ω
n(j,j)
1 , . . . , ω

n(j,j)
k ) ∈ πk(D̃n(j,j)) for large enough j, and

since πk(D̃n(j,j)) is closed, πk(D̃n(j,j)) ⊂ πk(D̃k), we have (ω∗
1, . . . , ω

∗
k) ∈

πk(D̃k). This implies that the full sequence ω∗ := (ω∗
1, ω

∗
2, . . . ) ∈ D̃k

for all k, which proves that
⋂
k D̃k 6= ∅. �

Remark 3.1.1. Usually, the cylinders are defined to be sets of the form
π−1
n (B), where B ∈ B(Rn) (rather than B ∈ Rn). This definition can

be shown to lead to the same σ-field B(RN). The only difference, in the
proof of the Extension Theorem, is that to guarantee the existence of
the compact set R̂n in (3.1.6) requires a classical theorem from measure
theory that says that any measure on a complete separable metric
space is tight, i.e. the measure of any Borel set can be approximated
from below by compact sets. We will come back to these properties in
Chapter 7.2.

Proof of Theorem 3.1.1: Consider Ω := RN, with the σ-algebra
B(RN) defined above. For each n ≥ 1, consider the product measure
on (Rn,B(Rn)) defined by µn := ν1 ⊗ · · · ⊗ νn. The sequence (µn)n≥1

clearly satisfies the compatibility condition (3.1.4). The measure P is
thus the one given by Kolmogorov’s Extension Theorem. Moreover,
defining Xk : Ω → R by Xk(ω) := ωk, we have that

P (Xi1 ∈ B1, . . . , Xik ∈ Bk) = νi1(B1) . . . νik(Bk) = P (Xi1 ∈ B1) . . . P (Xik ∈ Bk) ,

which shows that the Xk are independent. �

Kolmogorov’s Extension Theorem shows that one can always consider
a family of random variables (Xn)n≥1 as constructed on the product
space (RN,B(RN)). Namely, assume (Xn)n≥1 lives on a probability
space (Ω,F, Q). Define the marginals

µn(B1 × · · · × Bn) := Q(X1 ∈ B1, . . . , Xn ∈ Bn) ,

and construct the measure P on (RN,B(RN)) using the Kolmogorov
Extension Theorem. Then, define for all ω = (ω1, ω2, . . . ),

X̃n(ω) := ωn .
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Then (X̃n)n≥1 is distributed exactly as (Xn)n≥1. The advantage of wor-
king on (RN,B(RN)) makes it easier to define shifting and permuting
operations, as will be seen later.

3.2. The 0-1 Law of Kolmogorov

Consider a sequence of random variables (Xn)n≥1 defined on a same
probability space (Ω,F, P ), for example on the product space of the
previous section. Events which are relevant in the study of (Xn)n≥1

are events which are sensitive only to asymptotic properties of this
sequence. For example, the Strong Law of Large Numbers asserts
that if the sequence is i.i.d., then

Sn
n

→ E[X1] a.s.

One could ask, for example: why is the preceding limit not random?
It happens that the event {Sn

n
has a limit} does not depend on any

finite number of variables Xk, and such events have the particularity
of not being random, in that their probability is either 0 or 1, as we
shall see below.

Let F∞
n := σ(Xn+1, Xn+2, . . . ) denote the smallest σ-algebra for which

each Xk, k > n, is measurable. The sequence of σ-algebras (F∞
n )n≥1

is decreasing: F∞
n ⊃ F∞

n+1. The tail σ-field is defined by

T∞ :=
⋂

n≥1

F∞
n . (3.2.1)

The events in T∞ are called tail events. Observe for example that
{limnXn = c} is a tail event, since

{ lim
n→∞

Xn = c} =
⋂

m≥1

⋃

n≥m

⋂

j≥n

{
|Xj − c| ≤ 1

m

}
︸ ︷︷ ︸

∈F∞
j ⊂F∞

n︸ ︷︷ ︸
∈F∞

n ⊂F∞
m︸ ︷︷ ︸

∈F∞
m

.

On the other hand, {∑n≥1Xn = c} 6∈ T∞.

Theorem 3.2.1 (0-1 Law of Kolmogorov). Assume the variables (Xn)n≥1

are independent. Then P (A) ∈ {0, 1} for all A ∈ T∞.
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The proof relies on two lemmas. The first, although intuitively ob-
vious, requires a proof of a rather abstract nature; see Corollary B.0.3
of Appendix B.

Lemma 3.2.1. Assume the variables (Xn)n≥1 are independent. Then
for all k ≥ 1, σ(X1, . . . , Xk) and σ(Xk+1, . . . ) are independent.

Lemma 3.2.2 (Approximation Lemma). Let (Ω,F, P ) be a probability
space, where F is generated by an algebra A. Then for all E ∈ F there
exists a sequence An ∈ A such that P (E△An) → 0.

Proof. Let G denote the family of sets E ∈ F for which the pro-
perty holds. We show that G is a σ-algebra; since it contains A, this
will show the lemma. Obviously, ∅,Ω ∈ G, and since P (Ec△Ac

n) =
P (E△An), G is stable under complementation. Then, let En ∈ G. We
verify that E =

⋃
nEn ∈ G. Take ǫ > 0. Consider, for each n ≥ 1,

some An ∈ A such that P (En△An) ≤ ǫ2−(n+1). If D :=
⋃
n≥1An, we

have P (E△D) = limn→∞ P (E△DN), where DN :=
⋃N
n=1An. But

P (E△D) = P (E ∩Dc) + P (D ∩ Ec)

≤
∑

n≥1

P (En ∩Dc) +
∑

m≥1

P (Am ∩ Ec)

≤
∑

n≥1

P (En ∩Ac
n) +

∑

m≥1

P (Am ∩ Ec
m) =

∑

n≥1

P (En△An) ≤
ǫ

2
.

Therefore, if N is sufficiently large, P (E△DN) ≤ ǫ. Since DN ∈ A,
this shows that E ∈ G. �

Proof of Theorem 3.2.1: Let A ∈ T∞ ⊂ σ(X1, X2, . . . ). Since
σ(X1, X2, . . . ) = σ(A), where A =

⋃
n≥1 σ(X1, . . . , Xn) (see Exercise

3.4), we can use the Approximation Lemma: there exists a sequence
An ∈ A such that limn P (A△An) = 0. Therefore, P (A) = P (A∩A) =
limn P (A ∩An). Since An ∈ σ(X1, . . . , Xm) for some sufficiently large
m, and since A ∈ σ(Xm+1, . . . ), Lemma 3.2.1 implies that A and
An are independent: P (A ∩ An) = P (A)P (An). Therefore, P (A) =
limn P (A)P (An) = P (A)2 and so P (A) equals 0 or 1. �

An immediate consequence of the 0 − 1-Law of Kolmogorov is

Theorem 3.2.2. Assume the variables (Xn)n≥1 are independent. Then
any T∞-measurable random variable Z is almost surely constant: there
exists −∞ ≤ c ≤ +∞ such that P (Z = c) = 1.
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Proof. By hypothesis, {Z ≤ x} ∈ T∞ and therefore P (Z ≤ x) ∈
{0, 1} for all x. Since x 7→ P (Z ≤ x) is non-decreasing and right-
continuous, one can define c := inf{x : P (Z ≤ x) = 1}, which gives
P (Z = c) = 1. �

For example, consider the simple random walk on Z, denoted (Sn)n≥1.
Define

Z := lim sup
n→∞

Sn√
2n log logn

.

Clearly, Z is T∞-measurable, and by the previous theorem there exists
c ∈ R ∪ {±∞} such that P (Z = c) = 1. As we saw in Section 2,
c = +∞ if p > 1

2, c = −∞ if p < 1
2 , and by the Law of the Iterated

Logarithm, c = 1 if p = 1
2 .

Let us see further consequences of the 0 − 1 Law, in the general case
where the variables Xk are independent. Of central interest in the
asymptotic properties of (Xn)n≥1 are the partial sums Sn =

∑n
k=1Xk.

These lead to two particular types of random variables. First, if one
considers the random series limn Sn =

∑
n≥1Xn, then the 0-1 Law says

that

P
( ∑

n

Xn converges
)
∈ {0, 1} .

To guarantee that the above number is 1 can require some work. We
will see later how a simple condition on the variances of the Xns allows
to show that this probability is indeed 1. See Theorem 5.4.3 in the
chapter on martingales.

Second, let (an)n≥1 with an → ∞. Define the average

An :=
Sn
an
.

Laws of Large of Numbers study conditions under which these averages
have limits. Since one can always write, for all m ≤ n,

An =
1

an

m−1∑

k=1

Xk +
1

an

n∑

k=m

Xk ,

we see that when n → ∞, the first term always vanishes. This shows
that {limnAn exists} is invariant under a change of finitely many ran-
dom variables Xk. Therefore, P (limnAn exists) ∈ {0, 1}. Considering
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in particular random variables of the type Xn − E[Xn] with an = n,

P
(1

n

n∑

k=1

(Xk − E[Xk]) converges
)
∈ {0, 1} ,

which shows that the Strong Law of Large numbers reduces to giving
conditions on the variables Xk under which this probability is 1 (and
not 0!).

More generally, a tail-σ-algebra can be created starting from any dec-
reasing countable collection of σ-algebras: let (Fn)n≥1 be such that
Fn+1 ⊂ Fn. Then One can define as before

T∞ :=
⋂

n≥1

Fn . (3.2.2)

Above we had Fn = σ(Xn, Xn+1, . . . ). Another example can be const-
ructed as follows: let E1, E2, . . . be any sequence of events, and take
Fn := σ(En, En+1, . . . ). Then the events lim supnEn and lim infnEn

clearly belong to T∞. Moreover, if the events En are independent, we
conclude that both P (lim supnEn) and P (lim infnEn) equal either 0
or 1. The Borel-Cantelli then gives a criterium to decide whether it is
0 or 1 by considering the convergence of the series

∑
n P (En).

3.3. The 0-1 Law of Hewitt-Savage

In the case of the simple random walk on Z, it can be seen that
{Sn = 0 i.o.} is not a tail event. Therefore, one can not deduce di-
rectly from the 0-1 Law of Kolmogorov that P (Sn = 0 i.o.) ∈ {0, 1},
although we know this to be true by the recurrence properties of the
random walk. Observe that although {Sn = 0 i.o.} may be sensitive
to a change of a finite number of the variables Xk, it nevertheless re-
mains invariant under the permutation of two variables Xn, Xm: the
Hewitt-Savage gives a 0-1 Law for events that are invariant under fi-
nite permutations of variables.

The notion of “permutation” of two variables needs to be made pre-
cise. Observe that since the events under consideration are defined
only in terms of the variables Xk (that is, contained in the σ-algebra
σ(X1, . . . )) we might as well use for the underlying probability space



3.3. THE 0-1 LAW OF HEWITT-SAVAGE 43

the infinite product

(Ω,F) := (RN,B(RN))

constructed in Section 3.1, and take Xk(ω) := ωk. Notice that in this
case, σ(X1, . . . , Xn) ≡ B(Rn) and σ(X1, X2, . . . ) ≡ B(RN).

Let ϕ : N → N be a finite permutation, i.e. a bijection such that
{k ∈ N : ϕ(k) 6= k} is finite. Let Π denote the set of all finite
permutations. Define ϕ : Ω → Ω by

ϕ(ω1, ω2, . . . ) := (ωϕ(1), ωϕ(2), . . . ) .

Lemma 3.3.1. For each ϕ ∈ Π, ϕ : Ω → Ω is measurable: ∀A ∈ F,
ϕ−1(A) ∈ F.

Proof. Let D denote the class of events A ∈ F for which ϕ−1(A) ∈
F. Then clearly D ⊃ C, and is easy to verify that D is a σ-algebra.
Therefore, D = F. �

Lemma 3.3.2. Assume the variables (Xn)n≥1 are independent and iden-
tically distributed. Then P ◦ ϕ−1 = P for all ϕ ∈ Π.

Proof. Take ϕ ∈ Π and define Q := P ◦ ϕ−1. Then, as can be
easily seen, Q(A) = P (A) for all cylinder A ∈ C, and therefore Q and
P coincide everywhere. �

An event A ∈ F is called exchangeable if ϕ−1(A) = A ∀ϕ ∈ Π. The
class of exchangeable events forms a σ-algebra denoted E. Observe
that all tail events are exchangeable: T∞ ⊂ E. Nevertheless, {Sn =
0 i.o.} ∈ E\T∞. The following is thus a generalization of the 0-1 Law
of Kolmogorov.

Theorem 3.3.1 (0-1 Law of Hewitt-Savage). Assume the variables
(Xn)n≥1 are independent and identically distributed. Then P (A) ∈
{0, 1} for all A ∈ E.

Proof of Theorem 3.3.1: Let E ∈ E. We proceed as in the
proof of the 0-1 Law of Kolmogorov. Since E ⊂ σ(X1, X2, . . . ), and
since σ(X1, X2, . . . ) is generated by the algebra A =

⋃
n≥1 σ(X1, . . . , Xn),

we can use the Approximation Lemma: there exists a sequence An ∈ A

such that limn P (E△An) = 0. We can assume without loss of gene-
rality that An ∈ σ(X1, . . . , Xn). For each n ≥ 1, consider the finite
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permutation ϕn : N → N defined by

ϕn(k) :=





k + n if k = 1, . . . , n ,

k − n if k = n+ 1, . . . , 2n ,

k if k > 2n.

Observe that ϕn satisfies ϕ2
n = id, i.e. ϕ−1

n = ϕn, and that ϕ−1
n (An) ∈

σ(Xn+1, . . . ). Therefore, since the variablesXk are independent, Lemma
3.2.1 gives P (An ∩ ϕ−1

n (An)) = P (An)P (ϕ−1
n (An)). By Lemma 3.3.2,

P (ϕ−1
n (An)) = P (An). Therefore, P (An ∩ ϕ−1

n (An)) → P (E)2 when
n→ ∞, and we can write

|P (E) − P (E)2| = lim
n→∞

|P (E) − P (An ∩ ϕ−1
n (An))|

≤ lim sup
n→∞

[P (E△An) + P (E△ϕ−1
n (An))]

= lim sup
n→∞

P (E△ϕ−1
n (An))

= lim sup
n→∞

P (E△ϕ−1
n (An)) . (3.3.1)

We used the inequality |P (E)−P (C1∩C2)| ≤ P (E△C1)+P (E△C2),
which can easily be verified 1. Now since E ∈ E, we have E = ϕ−1

n (E).
Therefore,

P (E△ϕ−1
n (An)) = P (ϕ−1

n (E)△ϕ−1
n (An)) = P (ϕ−1

n (E△An)) = P (E△An) ,

where we used the fact that ϕn is a bijection in the second equality,
and Lemma 3.3.2 in the last. But since P (E△An) → 0 when n→ ∞,
(3.3.1) shows that P (E) = P (E)2, and finishes the proof. �

The 0-1 Law of Hewitt-Savage gives the following weak characteriza-
tion of recurrence for the simple random walk on Z, denoted Sn.

Theorem 3.3.2. Let (Sn)n≥1 denote the simple random walk on Z.
Then, with probability one, exactly one of the following events occurs:

(1) {limn→∞ Sn = +∞},
(2) {limn→∞ Sn = −∞},
(3) {lim infn→∞ Sn = −∞} ∩ {lim supn→∞ Sn = +∞}.
Proof. Define Z+ := lim supn→∞ Sn, Z− := lim infn→∞ Sn. The

0-1 Law of Hewitt-Savage implies that these random variables are
constant almost surely: there exists c+, c− ∈ R ∪ {±∞} such that
P (Z± = c±) = 1. It suffices to show that the constants c± can’t be

1First verify that |P (E) − P (B)| ≤ P (E△B), and then take B = C1 ∩ C2.
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finite. Namely, assume that c+ is finite. Then, since S ′
n := Sn+1 −X1

has the same distribution as Sn, we must have c+ = c+ − X1, i.e.
X1 = 0 almost surely, which is absurd. �

3.4. Exercises

Exercise 3.1. Show that the σ-algebra on Rn generated by rectangles,
i.e. set of the form B1 × . . . Bn, where Bk ∈ B(R), equals B(Rn).

Exercise 3.2. Prove Theorem 3.1.1.

Exercise 3.3. Show that the Kolmogorov’s Extension Theorem gene-
ralizes easily to families (Xt)t∈I , where I is an arbitrary set of indices,
for example I = [0, 1]. (voir les deux gus)

Exercise 3.4. Seja X1, X2, . . . uma seqüência qualquer de variáveis
aleatórias. Mostre que

σ(X1, X2 . . . ) = σ
( ⋃

n≥1

σ(X1, . . . , Xn)
)
.

Exercise 3.5. Show that a random variable which is T∞-measurable
is almost-surely constant.

Exercise 3.6. [Chu01] p. 270. Let (Xn)n≥1 be independent, such
that P (Xn = 4−n) = P (Xn = −4−n) = 1

2 . Is the tail field T∞ =
σ(Sn, n ≥ 1) is trivial?

Exercise 3.7. Let T∞ :=
⋂
n≥1 σ(Xn, Xn+1, . . . ). Set Sn =

∑n
k=1Xk.

Determine which of the following events are in T∞.

{Xn ∈ In i.o.} ,
{

lim
n
Sn exists

}
,

{
lim
n
Sn exists and is ≤ c

}
,

{
lim sup

n
Xn <∞

}
,

{
lim sup

n
Sn = ∞

}
,

{
lim sup

n
Sn > 0

}
,

What must the sequence (cn)n≥1 satisfy in order to guarantee that the
event {lim supn Sn/cn > x} ∈ T∞?

Exercise 3.8. Consider independent site percolation on Zd, d ≥ 1.
Characterize the tail-σ-field. Which of the events

{|C0| = ∞} , {there exists an infinite connected cluster}
are trivial?

Exercise 3.9. Let (Sn) denote the simple symmetric random walk.
Show that P (lim supn Sn = ∞) = 1, without using the Law of the
Iterated Logarithm.
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Exercise 3.10. Consider the simple random walk on Z. Is it that
{Sn = 0 i.o.} ∈ T∞? Show that

• if p 6= 1
2 , then P (Sn = 0 i.o.) = 0 (in particular, (Sn) is transi-

ent).
• if p = 1

2
, then P (Sn = 0 i.o.) = 1 (in particular, (Sn) is recur-

rent).

Hint: the first follows by a direct application of Borel-Cantelli. For
the second, observe that it suffices to show that P (A+) = P (A−) = 1,
where A± are the tail events

A+ =
{

lim sup
n→∞

Sn√
n

= ∞
}
, A− =

{
lim inf
n→∞

Sn√
n

= −∞
}
.

Observe that A± =
⋂
k≥1A

±
k , where A±

k are the tail events

A+
k =

{
lim sup
n→∞

Sn√
n
≥ k

}
, A−

k =
{

lim inf
n→∞

Sn√
n
≤ −k

}
.

Use the Central Limit Theorem and the inclusion (prove!) {lim supn Zn ≥
c} ⊂ lim supn{Zn ≥ c} to show that P (A±

k ) = 1 for all k.

Exercise 3.11. Show that for the simple random walk on Z, P (T0 <
∞) ∈ {0, 1}.
Exercise 3.12. [Wil91] p. 229. Let (Sn)n≥0 denote the SRRW. De-
fine A := σ(X1, . . . ), Tn := σ(Sn+1, . . . ). Let

L :=
⋂

n≥1

σ(A,Tn) , M := σ
(
A,

⋂

n≥1

Tn

)
.

Show that L 6= M. Hint: show that X1 is L-measurable and indepen-
dent of M.

Exercise 3.13. Show that for the simple random walk on Z, lim supn Sn
is constant almost surely.



CHAPTER 4

Markov Chains

This chapter is inspired partly by [Nev70] and [R.88].

4.1. Definitions and Basic Properties

Let S be a finite or countable set, which we call state space, endowed
with the σ-algebra P(S) = {A : A ⊂ S}.
Definition 4.1.1. Let (Ω,F, P ) be a probability space. A sequence of
S-valued random variables (Xn)n≥0 is a Markov chain (with state space
S) if for all n ≥ 0, Xn : Ω → S is measurable and

P (Xn+1 = xn+1|Xn = xn, . . . , X0 = x0) = P (Xn+1 = xn+1|Xn = xn)
(4.1.1)

for all x0, . . . , xn+1 ∈ S.

We avoided to mention that (4.1.1) holds P -almost surely, and will
usually continue doing so in the sequel. We don’t yet worry about
the structure of the underlying probability space (Ω,F, P ), although
a canonical choice will be made in Section 4.1.1.

We will mostly consider the case where the probability P (Xn+1 =
xn+1|Xn = xn) does not depend on n, that is where

P (Xn+1 = y|Xn = x) = P (X1 = y|X0 = x)

for all n ≥ 1. In such case, the chain is called homogeneous, and the
dependence among the random variables is determined by the numbers
P (X1 = y|X0 = x), called transition probabilities. Observe that these
satisfy

∑
y∈S P (X1 = y|X0 = x) = 1 (P -a.s.) for all x ∈ S. We

are interested in the study of Markov chains for which the transition
probabilities are specified a priori.

Definition 4.1.2. A collection Q(x, y), x, y ∈ S, is called a transition
probability matrix if Q(x, y) ∈ [0, 1] and if

∑
y∈S Q(x, y) = 1 for all

x ∈ S. A homogeneous Markov chain (Xn)n≥0 has transition probability
matrix Q if

P (Xn+1 = y|Xn = x) = Q(x, y) P -a.s.

47
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for all n ≥ 0, x, y ∈ S.

Although it might seem trivial at this point, observe that for all y ∈ S,
x 7→ Q(x, y) is measurable. The existence of a Markov chain associa-
ted to a transition probability matrix will be shown in Section 4.1.1.
Before going further we give a serie of examples.

Example 4.1.1. Independent variables furnish a trivial example of Mar-
kov chain. Let (Xn)n≥0 be a sequence of i.i.d random variables with
distribution µ over (S,P(S)). If we define Q(x, y) := µ(y), then by
independence,

P (Xn+1 = xn+1|Xn = xn, . . . , X0 = x0) = µ(xn+1) ≡ Q(xn, xn+1) .

Example 4.1.2. The two state Markov chain is defined for S = {1, 2}.
An example of a transition matrix is given in the following graphical
representation:

1 2

1
2

1
2

1
3

2
3

Example 4.1.3. The random walk on S = Zd. We considered the
simplest case of random walk in Section 2. Consider a sequence (Yn)n≥1

of Zd-valued independent identically distributed random variables, and
denote their common distribution by p. Define S0 := 0, and for all
n ≥ 1, Sn :=

∑n
k=1 Yk. The sequence (Sn)n≥0 is called a random walk

on Zd. Observe that, since Yn+1 is independent of S1, . . . , Sn, we have

P (Sn+1 = xn+1|Sn = xn, . . . , S0 = x0)

= P (Yn+1 = xn+1 − xn|Sn = xn, . . . , S0 = x0)

= P (Yn+1 = xn+1 − xn)

= P (Yn+1 = xn+1 − xn|Sn = xn)

= P (Sn+1 = xn+1|Sn = xn) .

Therefore, since P (Yn+1 = xn+1 − xn) = p(xn+1 − xn), (Sn)n≥0 is a
Markov chain with state space S = Zd and transition matrixQ(x, y) =
p(y − x). When

p(x) =

{
1
2d if ‖x‖1 = 1 .

0 otherwise,
(4.1.2)
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that is when p(±ei) = 1
2d

where the e1, . . . , ed are the canonical unit

vectors of Rd, the random walk is called simple, symmetric. More will
be said on random walks in Section 4.3.2.

Example 4.1.4. Uniform Random Walk on a Graph. Let G = (V,E)
be a simple graph without loops. For each x ∈ V , we assume that
Ax := {y ∈ V : {x, y} ∈ E} is finite: |Ax| < ∞. Setting S ≡ V , one
can define a transition matrix by

Q(x, y) :=

{
1

|Ax| if {x, y} ∈ E ,

0 otherwise .
(4.1.3)

The simple random walk of the previous example is a particular case.

Example 4.1.5. The Ehrenfest chain. Consider two urns with a total
of r balls. Each urn can be considered as a box with a certain number
of molecules, the total number of molecules being r. At each time step,
a ball is chosen at random (in either box) and its position switched to
the other box. Let Xn be the number of balls in the first box at time n.
Then (Xn)n≥0 is a Markov Chain with state space S = {0, 1, 2, . . . , r}
and transition matrix Q given by

Q(k, k + 1) =
r − k

r
, Q(k, k − 1) =

k

r
,

and zero otherwise.

Example 4.1.6. Birth and death chains. Consider S = {0, 1, 2, . . .}, in
which Xn = x means that population at time n is x, and Q(x, y) > 0
only if |x−y| ≤ 1. Therefore, the chain is determined by the transition
probabilities rx = Q(x, x), qx = Q(x, x − 1) (clearly, q0 = 0), px =
Q(x, x+ 1). See Figure 1.

... ...

r1r0 rx

pxp0

qx
xq1

0 1 2

Figure 1. The birth and death chain.

Example 4.1.7. Renewal chains. Consider S = {0, 1, 2, . . .} and a
sequence (pk)k≥1 with

∑
k pk = 1. ThenQ(0, k) = pk, andQ(k, k−1) =

1 for all k ≥ 2.
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Example 4.1.8. The Branching Process was introduced by Galton and
Watson to understand extinction or survival of family names. Let

(Y
(n)
k )n≥0,k≥1 be an array of i.i.d. N-valued random variables, with

distribution ρ: P (Y
(n)
k = j) = ρ(j) for all j ≥ 1. Y

(n)
k is the number

of children of the kth individual of the nth generation. Let X0 := 1,
and define the total number of individuals of the n+ 1th generation:

Xn+1 :=

Xn∑

k=1

Y
(n)
k . (4.1.4)

Let us show that (Xn)n≥0 is a Markov chain with state space S =
{0, 1, 2, . . .}.

P (Xn+1 = y|Xn = xn, . . . , X0 = x0) = P
( Xn∑

k=1

Y
(n)
k = y

∣∣Xn = xn, . . . , X0 = x0

)

= P
( xn∑

k=1

Y
(n)
k = y

)
.

Since the variables Y
(n)
k are independent, the distribution of the sum∑xn

k=1 Y
(n)
k is given by the convolution ρ ∗ ρ ∗ · · · ∗ ρ (xn times), which

we denote by ρ∗xn. This shows that (Xn)n≥0 is a Markov chain with
transition probability matrix given by

Q(x, y) = ρ∗x(y) ∀x, y ∈ S (4.1.5)

It is well known that in the subcritical case, i.e. when λ := E[Y
(0)
1 ] ≤ 1,

the population dies out P -almost surely. In the supercritical case, i.e.
for λ > 1, then the population explodes with positive probability.

We define the iterates of a transition matrix as follows: Q(1) := Q,
and for n ≥ 2,

Q(n)(x, z) :=
∑

y∈S
Q(n−1)(x, y)Q(y, z) . (4.1.6)

Clearly, each Q(n) is well defined and is again a transition matrix. Let
us give an important equivalent characterization of Markov chains.

Lemma 4.1.1. Let Q be a transition probability matrix. A sequence
(Xn)n≥0 is a Markov chain with transition matrix Q if and only if for
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all n ≥ 1 and all x0, . . . , xn ∈ S,

P (X0 = x0, . . . , Xn = xn) = P (X0 = x0)Q(x0, x1) . . .Q(xn−1, xn) .
(4.1.7)

In particular, if P (X0 = x0) > 0, then

P (Xn = y|X0 = x0) = Q(n)(x0, y) . (4.1.8)

Proof. Assume (Xn)n≥0 is a Markov chain with transition matrix
Q. If n = 1, (4.1.7) is trivial. Indeed, if P (X0 = x0) = 0 then
P (X0 = x0, X1 = x1) = 0 and so P (X0 = x0, X1 = x1) = P (X0 =
x0)Q(x0, x1). If P (X0 = x0) = 0 > 0 the same holds. So assume
that (4.1.7) holds for n. Again, if P (X0 = x0, . . . , Xn = xn) = 0
then P (X0 = x0, . . . , Xn+1 = xn+1) = 0 and the result follows. If
P (X0 = x0, . . . , Xn = xn) > 0 then

P (X0 = x0, . . . , Xn+1 = xn+1)

= P (Xn+1 = xn+1|Xn = xn, . . . , X0 = x0)P (X0 = x0, . . . , Xn = xn)

= P (Xn+1 = xn+1|Xn = xn)P (X0 = x0)Q(x0, x1) . . .Q(xn−1, xn)

= P (X0 = x0)Q(x0, x1) . . .Q(xn−1, xn)Q(xn, xn+1) ,

which shows the validity of (4.1.7) for n + 1. For (4.1.8), use (4.1.7)
as follows:

P (Xn = xn, X0 = x0) =
∑

x1,....xn−1

P (Xn = xn, Xn−1 = xn−1, . . . , X0 = x0)

= P (X0 = x0)
∑

x1,....xn−1

Q(x0, x1) . . .Q(xn−1, xn)

≡ P (X0 = x0)Q
(n)(x0, xn) , (4.1.9)

which gives (4.1.8) if P (X0 = x0) > 0. �

Observe that by (4.1.7), the transition matrix Q completely specifies
the evolution of the chain, once the distribution of X0 is known. Let
therefore µ be a distribution on (S,P(S)). When the distribution of
X0 is given by µ, we will denote the law of (Xn)n≥0 by Pµ. That is, by
(4.1.7),

Pµ(X0 = x0, . . . , Xn = xn) = µ(x0)Q(x0, x1) . . .Q(xn−1, xn) . (4.1.10)

When µ is a Dirac mass, i.e. µ(x) = 1 for some x ∈ S, we will write
Px rather than Pµ, and interpret x as being a deterministic initial
condition. For example, (4.1.8) gives

Px(Xn = y) = Q(n)(x, y) . (4.1.11)
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As can be easily verified, the measure Pµ can be reconstructed by
convex combination of the measures {Px}x∈S:

Pµ =
∑

x∈S
µ(x)Px .

We denote expectations with respect to Px by Ex. We have

Ex(f(Xn)) =
∑

y∈S
f(y)Px(Xn = y)

=
∑

y∈S
f(y)Q(n)(x, y)

≡ Q(n)f(x) , (4.1.12)

where for each n ≥ 1, the function Q(n)f : S → R is defined by

Q(n)f(x) :=
∑

y∈S
Q(n)(x, y)f(y) . (4.1.13)

(4.1.8) says that the distribution of Xn, conditionned on X0, is given
by the nth iterate of Q. This distribution can be written as P (Xn =
y|X0 = x0) = E[1{Xn=y}|X0 = x0]. Since we will also be interested
in functions depending on the process, of the form f : S → R, we
might therefore be interested in studying more general conditional
expectations of the form E[f(Xn)|X0 = x0].

Lemma 4.1.2. Let (Xn)n≥1 be a Markov chain with transition matrix
Q. If f : S → R, then for all n ≥ 0,

E[f(Xn+1)|Xn = xn, . . . , X0 = x0] = Qf(xn) . (4.1.14)

More generally, for any set {i1, . . . , ik} ⊂ {1, 2, . . . , n− 1},
E[f(Xn+1)|Xn = xn, Xik = xik . . . , Xi1 = xi1] = Qf(xn) . (4.1.15)

4.1.1. The Canonical Chain. Up to now the underlying proba-
bility space on which the chain is defined hasn’t had an important role,
but one should of course verify that at least one such space exists.

Theorem 4.1.1. Let µ be a probability distribution on (S,P(S)) and
Q a transition probability matrix. Then there exists a probability space
(Ω′,F′, P ′

µ) and a sequence of S-valued random variables (Xn)n≥0 on
(Ω′,F′, P ′

µ) which form a Markov Chain with transition probability
matrix Q:

P ′
µ(X0 = x0, . . . , Xn = xn) = µ(x0)Q(x0, x1) . . .Q(xn−1, xn) . (4.1.16)
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Proof. By Theorem 3.1.1, one can construct simultaneously a fa-
mily of i.i.d. random variables (Yn)n≥1 on the product space Ω′ =
[0, 1]N, with uniform distribution on [0, 1] with respect to the Lebes-
gue measure. Ω′ is endowed with the product σ-algebra F′ and P ′ is
the product of Lebesgue measures. Let us enumerate S in an arbitrary
way: S = {y1, y2, . . . }. Fix some initial condition x ∈ S. We define a
process (Xx

n)n≥0 on (Ω′,F′, P ′) as follows. First, Xx
0 := x. Then, we

need to define Xx
1 in such a way that P ′(Xx

1 = yk|Xx
0 = x) = Q(x, yk)

for all k ≥ 1. Define, for all z ∈ S,

αk(z) :=
∑

1≤i≤k
Q(z, yi) .

Observe that 0 ≤ α1(z) ≤ α2(z) ≤ · · · ≤ 1, and αk(z) → 1 when
k → ∞. Then, set

Xx
1 = yk if and only if αk−1(x) < Y1 ≤ αk(x) .

Clearly, P ′(Xx
1 = yk|Xx

0 = x) = P ′(αk−1(x) < Y1 ≤ αk(x)) ≡ Q(x, yk).
For n ≥ 2, Xx

n is defined by

Xx
n = yk if and only if αk−1(X

x
n−1) < Yn ≤ αk(X

x
n−1) .

One then gets, by the independence and uniformity of the Yns,

P ′(Xx
n+1 = yk|Xx

n = xn, . . . , X
x
0 = x0) =

= P ′(αk−1(X
x
n) < Yn ≤ αk(X

x
n)|Xx

n = xn, . . . , X
x
0 = x0)

= P ′(αk−1(xn) < Yn ≤ αk(xn))

= Q(xn, yk) , (4.1.17)

which shows that (Xx
n)n≥0 is a Markov chain with transition proba-

bility matrix Q and initial condition x. One can obtain a chain with
initial distribution µ by taking convex combinations. Write the pro-
cess constructed above (Xn)n≥0, and denote its law by P ′

x, in order to
have P ′

x(X0 = x) = 1. Now define

P ′
µ :=

∑

x∈S
µ(x)P ′

x .
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Then, using Lemma 4.1.1,

P ′
µ(X0 = x0, . . . , Xn = xn) =

∑

x∈S
µ(x)P ′

x(X0 = x0, . . . , Xn = xn)

=
∑

x∈S
µ(x)1{x=x0}Q(x0, x1) . . .Q(xn−1, xn)

= µ(x0)Q(x0, x1) . . .Q(xn−1, xn) ,

which is (4.1.16). �

As will become clearer in the sequel, the study of homogeneous Mar-
kov chains is greatly facilitated by the introduction of a certain time
translation operator on the process and of its random version, which
will lead to the proofs of all recurrence results of Section 4.3. In the
present section we construct a canonical space on which this operator
will be naturally defined.

Each realization ω ∈ Ω yields a sequence X1(ω), X2(ω), . . . , which we
call a trajectory of the chain. A natural candidate for the simplest
probability space describing an S-valued Markov Chain (Xn)n≥0 is
therefore the space in which each element ω is itself a trajectory, that
is, the elements of which are the sequences ω = (ω0, ω1, . . . ) where
each ωk ∈ S:

Ω := S{0,1,2,... } . (4.1.18)

For each k ≥ 0, consider the coordinate map Xk : Ω → R defined by
Xk(ω) := ωk. The σ-algebra F is defined as the smallest collection of
subsets of Ω for which each Xk is measurable, that is F := σ(Xk, k ≥
0). The σ-algebra F can also be obtained by considering the σ-algebra
generated by thin cylinders, i.e. subsets of Ω of the form

[x0, x1, . . . , xn] = {ω ∈ Ω : ω0 = x0, ω1 = x1, . . . , ωn = xn} , (4.1.19)

where x0, . . . , xn ∈ S. The intersection of two thin cylinders is either
empty or is again a thin cylinder. The algebra of cylinders is obtained
by taking finite unions of thin cylinders, and is denoted C. Then
clearly, F = σ(C).

Theorem 4.1.2. Let µ be a probability distribution on (S,P(S)) and
Q be a transition probability matrix. Then there exists a unique pro-
bability measure Pµ on (Ω,F) such that on (Ω,F, Pµ), the coordinate
maps (Xn)n≥1 form a Markov Chain with state space S, transition
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probability matrix Q, and initial distribution µ:

Pµ(X0 = x0, . . . , Xn = xn) = µ(x0)Q(x0, x1) . . .Q(xn−1, xn) . (4.1.20)

Proof. Consider the probability space (Ω′,F′, P ′
µ) constructed in

Theorem 4.1.1, together with the process constructed therein, which
we temporarily denote by (X ′

n)n≥0 in order to distinguish it from the
coordinate maps on Ω. Consider the map ϕ : Ω′ → Ω defined by
ϕ(ω′)n := X ′

n(ω
′) for all n ≥ 0.

Lemma 4.1.3. ϕ is measurable: ϕ−1(A) ∈ F′ for all A ∈ F.

Proof. Let A := {A ∈ F : ϕ−1(A) ∈ F′}. Then A is a σ-algebra.
Moreover, it contains all sets of the formX−1

n ({x}), x ∈ S, n ≥ 0, since
ϕ−1(X−1

n ({x})) = (Xn◦ϕ)−1({x}) = X ′−1
n ({x}) ∈ F′ by definition (the

X ′
ns are random variables). Therefore, A ≡ F. �

Since ϕ is measurable, we can define the image measure Pµ := P ′
µ◦ϕ−1.

We have

Pµ(X0 = x0, . . . , Xn = xn) = P ′
µ(X

′
0 = x0, . . . , X

′
n = xn)

= µ(x0)Q(x0, x1) . . .Q(xn−1, xn) ,

which shows that (Xn)n≥0 has the wanted properties. Regarding uniqueness,
assume P̃µ is another measure also satisfying (4.1.20). But (4.1.20)

implies that Pµ and P̃µ coincide on thin cylinders, and since these
generate F, they are equal. �

Alternate proof of Theorem 4.1.2: Let [x0, x1, . . . , xn] be any
thin cylinder and define

P ([x0, x1, . . . , xn]) := µ(x0)Q(x0, x1) . . .Q(xn−1, xn) . (4.1.21)

We need to show that P extends uniquely to a probability on (Ω,F)
and that under P . But this follows immediately from Kolmogorov’s
Extension Theorem 3.1.2. By (4.1.21), the coordinate maps (Xn)n≥0

clearly define a Markov chain with transition probability matrixQ and
initial distribution µ. �

The following proposition shows that the canonical representation is
sufficient for the study of Markov chains, in the sense that one cannot
distinguish the distribution of the canonical chain from any other.

Proposition 4.1.1. Let (Yn)n≥0 be a Markov chain with initial dist-
ribution µ and transition matrix Q, constructed on some probability
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space (Ω̃, F̃, P̃ ). Let (Xn)n≥0 be the Canonical Markov chain with ini-
tial distribution µ and transition matrix Q, constructed on the product
space (Ω,F, P ) as above. Then P is the image of P̃ under the me-

asurable map ϕ : Ω̃ → Ω defined by ϕ(ω̃) := (Yn(ω̃))n≥0. That is,

P = P̃ ◦ ϕ−1.

Proof. We already saw in Lemma 4.1.3 that ϕ is measurable. Now
for any thin cylinder [x0, . . . , xn],

P̃ ◦ ϕ−1([x0, . . . , xn]) = P̃ (Y0 = x0, . . . , Yn = xn)

= µ(x0)Q(x0, x1) · · ·Q(xn−1, xn)

≡ P (X0 = x0, . . . , Xn = xn) . (4.1.22)

Since thin cylinders generate F, this proves the proposition. �

4.2. The Markov Property

The basic relation defining a Markov chain, (4.1.1), says that condi-
tionnally on a given past up to time n, X0, X1, . . . , Xn, the distribution
of Xn+1 depends only on Xn. Since this and time homogeneity suggest
a certain translation in time, the canonical space constructed in the
previous section appears well adapted to the precise formulation of
a more general version of this property: conditionnally on a given
past up to time n, X0, X1, . . . , Xn, the distribution of the entire fu-
ture Xn+1, Xn+2, . . . depends only on Xn. So from now on, the Markov
chain under consideration will always be considered as built on the ca-
nonical product space Ω defined in (4.1.18). Define the transformation
θ : Ω → Ω, called the shift, by

θ(ω)n := ωn+1 ∀n ≥ 0 .

Since θ−1(X−1
n ({x})) = X−1

n+1({x}) ∈ F, θ is measurable. One can of
course iterate the shift: θ1 := θ, and θn+1 := θn ◦ θ.

To use the language of conditional expectation, we encode the infor-
mation contained in the past of n, X0, X1, . . . , Xn, in the σ-algebra
Fn := σ(X0, X1, . . . , Xn).

Theorem 4.2.1 (Simple Markov Property). Let x ∈ S, and n ≥ 1.
Let ϕ : Ω → R be bounded, positive and Fn-measurable. Then for all
bounded, positive, measurable ψ : Ω → R,

Ex[ϕ · ψ ◦ θn] = Ex[ϕ · EXn
(ψ)] . (4.2.1)
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In the right-hand side of (4.2.1) appears the random variable EXn
(ψ),

which is just Ex(ψ) evaluated at Xn
1. Observe that by taking ϕ = 1A

for each A ∈ Fn, (4.2.1) is equivalent to the Px-almost sure statement

Ex[ψ ◦ θn|Fn] = EXn
[ψ] . (4.2.2)

Proof. We first consider the case where ϕ and ψ are indicators
of thin cylinders: ϕ = 1C, with C = [x0, . . . , xn], ψ = 1D with D =
[y0, . . . , yp]. We have

EXn
[ψ] =

∑

x′0,...,x
′
p

ψ(x′0, . . . , x
′
p)PXn

(X0 = x′0, . . . , Xp = x′p)

= 1{Xn=y0}Q(y0, y1) . . .Q(yp−1, yp) ,

which leads to

Ex[ϕ·EXn
(ψ)] = 1{x0=x}Q(x0, x1) . . .Q(xn−1, xn)1{xn=y0}Q(y0, y1) . . .Q(yp−1, yp) .

On the other hand,

Ex[ϕ · ψ ◦ θn] = Ex[1{X0=x0} . . . 1{Xn=xn}1{Xn=y0}1{Xn+1=y1} . . . 1{Xn+p=yp}]

= Px(X0 = 0, . . .Xn = xn, Xn = y0, Xn+1 = y1, . . . , Xn+p = yp)

= 1{x0=x}Q(x0, x1) . . .Q(xn−1, xn)1{xn=y0}Q(y0, y1) . . .Q(yp−1, yp) ,

which shows (4.2.1) in the particular case. We then show that for the
same ϕ, (4.2.1) holds also in the case where ψ = 1A, where A ∈ F.
Consider the class A = {A ∈ F : Ex[ϕ ·1A◦θn] = Ex[ϕ ·EXn

(1A)]}. We
know that A contains all thin cylinders, and therefore all cylinders by
summation. It is then easy to verify that A is a Dynkin system, and
so A = F by Theorem B.0.1. Now, the extension to arbitrary boun-
ded positive functions follows by uniform approximation by simple
functions. �

A simple application of the Markov Property is the following identity,
known as the Chapman-Kolmogorov Equation:

Px(Xm+n = y) =
∑

z∈S
Px(Xm = z)Pz(Xn = y) . (4.2.3)

1Observe here that x 7→ Ex(ψ) is P(S)-measurable, and that ω 7→ EXn(ω)(ψ) is a random variable.
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Namely, one can write Px(Xm+n = y) = Ex[Ex(1Xm+n=y|Fm)], and then

Ex[Ex(1Xm+n=y|Fm)] = Ex[Ex(1Xn=y ◦ θm|Fm)]

= Ex[EXm
(1Xn

= y)]

= Ex[PXm
(Xn = y)]

=
∑

z∈S
Px(Xm = z)Pz(Xn = y) . (4.2.4)

The reader should convince himself that any other proof of (4.2.3) will
necessary end up requiring one or another form of the Simple Markov
Property.

The Markov Property deserves an extension to the case there the time
n is replaced by a random time T . The reason is the following. Sup-
pose we are interested in the following question: if the chain returns
back to its starting point with probability one, is it true that it will
do so an infinite number of times? This seems clear since at the time
of first return, the chain is back at its original position and therefore
by the Markov Property the probability of coming back a second time
is again one, and so on. Nevertheless, the times at which the chain
returns to its starting point are random, and the simple Markov Pro-
perty can’t be used in its actual form.

Random times are usually called stopping times. We will define them
here in the framework of Markov chains; in Section 5 these will be used
extensively in the chapter on martingales. A stopping time satisfies
a list of properties which we first illustrate on a simple example. Let
(Xn)n≥0 be the random walk on the integers with initial condition
X0 = 0. Considering n as a parameter describing time, an example of
a random time is the first return of the walk to the origin, which we
already encountered in Section 2:

T0 := inf{n ≥ 1 : Xn = 0} . (4.2.5)

If the walk never returns to the origin, i.e. {n ≥ 1 : Xn = 0} = ∅, we
set T0 = ∞. So T0 is a random variable taking values in {1, 2, . . .} ∪
{∞}. Moreover, the event {T0 = n} is insensitive to the change of
any of the variables Xk for k > n. This is made clear by noting
that {T0 = n} = {X1 6= 0, . . . , Xn−1 6= 0, Xn = 0}. In other words,
{τ0 = n} is Fn-measurable, where Fn = σ(X0, X1, . . . , Xn). We call the
sequence (Fn)n≥0 the natural filtration associated to the chain (Xn)n≥0.
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Clearly, Fn ⊂ Fn+1 for all n ≥ 0. The natural filtration can be defined
for any random process.

Definition 4.2.1. Consider the natural filtration (Fn)n≥0 associated
to a Markov chain (Xn)n≥0. A stopping time is a {1, 2, . . .} ∪ {∞}-
valued random variable T such that for all n ≥ 0, {T = n} ∈ Fn.

In the Simple Markov Property, we considered a Markov chain at a
fixed time n, conditionned with respect to Fn. We now want to consi-
der the same chain at a random time T , and condition with respect to
the σ-algebra which contains events that depend only on what happe-
ned before T . Since it doesn’t make sense to write “σ(X0, X1, . . . , XT )”,
we say that A ∈ FT if each time T ≤ n then A ∈ Fn. So define the
stopped σ-algebra generated by T :

FT := {A ∈ F : A ∩ {T ≤ n} ∈ Fn ∀n ≥ 0} . (4.2.6)

Fot example, {T < ∞} ∈ FT . It can be easily verified that FT is a
σ-algebra (see Exercise 4.12). The position of a Markov chain at time
T is naturally defined by the random variable

XT (ω) :=

{
Xn(ω) if T (ω) = n ,

“0” if T (ω) = ∞ ,

where “0” is any fixed point of S. We also define θ∞ := id. We are
now ready to move on to the study of the Markov Property when the
conditionning is done with respect to the past of a random stopping
time.

Theorem 4.2.2 (Strong Markov Property). Let x ∈ S. Let T be a
stopping time adapted to the natural filtration (Fn)n≥0. Let ϕ : Ω → R

be bounded, positive and FT -measurable. Then for all bounded, posi-
tive, measurable ψ : Ω → R,

Ex[1{T<∞} · ϕ · ψ ◦ θT ] = Ex[1{T<∞} · ϕ · EXT
(ψ)] . (4.2.7)

In particular, if Px(T <∞) = 1, then

Ex[ϕ · ψ ◦ θT ] = Ex[ϕ · EXT
(ψ)] . (4.2.8)

The analogue of (4.2.2) for random times reads

Ex[1{T<∞} · ψ ◦ θT |FT ] = 1{T<∞}EXT
[ψ] Px-a.s. (4.2.9)
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Proof. The proof follows by writing {T < ∞} =
⋃
n≥0{T = n}.

Then, since 1{T=n} · ϕ is Fn-measurable, by the Simple Markov Pro-
perty,

Ex[1{T=n} · ϕ · ψ ◦ θT ] = Ex[1{T=n} · ϕ · ψ ◦ θn]
= Ex[1{T=n} · ϕ · EXn

(ψ)]

= Ex[1{T=n} · ϕ · EXT
(ψ)] .

Summing over n gives (4.2.7). �

4.3. Recurrence and Classification

We now consider the recurrence problem mentionned before in the
case of the random walk: when does a Markov chain come back to its
starting point? As before, we will always consider the canonical chain
constructed on the product space Ω = S{0,1,2,...}.

Two random variables are relevant in the study of recurrence. For
each x ∈ S, the first visit at x is defined by

Tx := inf{n ≥ 1 : Xn = x} , (4.3.1)

where we set Tx := ∞ if {n ≥ 1 : Xn = x} = ∅. Observe that Tx is a
stopping time since {Tx > n} = {X1 6= x, . . . , Xn 6= x} ∈ Fn. On the
other hand, the number of visits at site x is defined by

Nx :=
∑

n≥1

1{Xn=x} . (4.3.2)

Clearly, Nx ≥ 1 if and only if Tx <∞, and so Px(Nx ≥ 1) = Px(Tx <
∞). A cornerstone in the study of recurrence for Markov chains is a
generalization to the situation where Nx ≥ k.

Lemma 4.3.1. Let x, y ∈ S, k ≥ 1. Then

Px(Ny ≥ k) = Px(Ty <∞)Py(Ny ≥ k − 1) . (4.3.3)

In particular, Px(Nx ≥ k) = Px(Tx <∞)k−1.

Proof. Observe that Ny = Ny ◦ θTy
+ 1. Therefore, Ny ≥ k + 1 if

and only if Ty <∞ and Ny ◦ θTy
≥ k:

Px(Ny ≥ k + 1) = Px(Ty <∞, Ny ◦ θTy
≥ k)

= Ex[1{Ty<∞} · 1{Ny≥k} ◦ θTy
] .
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By the Strong Markov Property (with ϕ = 1) and since XTy
= y,

Ex[1{Ty<∞} · 1{Ny≥k} ◦ θTy
] = Ex[1{Ty<∞} · EXTy

[1{Ny≥k}]]

= Ex[1{Ty<∞}]Ey[1{Ny≥k}]

≡ Px(Ty <∞)Py(Ny ≥ k) . (4.3.4)

The second affirmation follows from the first by induction. �

As an immediate corollary, we obtain the following formula:

Ex[Nx] =
∑

k≥1

Ex[Nx ≥ k] =
1

1 − Px(Tx <∞)
=

1

Px(Tx = ∞)
.

(4.3.5)
This formula makes sense also when Px(Tx = ∞) = 0, in which case
Ex[Nx] = ∞.

Definition 4.3.1. A point x ∈ S is called

• recurrent if Px(Tx <∞) = 1,
• transient if Px(Tx <∞) < 1.

Proposition 4.3.1. Let x ∈ S. Then

(1) x is recurrent if and only if Px(Nx = ∞) = 1 ,
(2) x is transient if and only if Px(Nx = ∞) = 0.

Proof. Assume x is recurrent. Then since {Nx ≥ k} ց {Nx =
+∞}, and since Px(Nx ≥ k) = 1 by the previous lemma, we have
Px(Nx = ∞) = 1. Conversely, if Px(Nx = ∞) = 1 then Px(Nx ≥ k) =
1 for all k ≥ 1, which implies Px(Tx <∞) = 1 by the previous lemma:
x is recurrent 2. If x is transient then Px(Tx <∞) < 1, and by Lemma
4.3.1, Px(Nx = ∞) = limk→∞ Px(Nx ≥ k) = 0 . �

Observe that {Nx = ∞} is a tail event, and we have proved that with
respect to Px, its probability is either 0 (when x is transient) or 1
(when x is recurrent). Nevertheless, we have not yet proved a 0-1 Law
for Markov chains.

The goal of the rest of this section is to study the partition of S into
recurrent and transient states. Comparison of recurrence properties
of different points x, y, will be done by studying the expected number
of visits at y when started from x:

u(x, y) := Ex[Ny] . (4.3.6)

2Observação feita pela Luciana, abril 2008.
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Lemma 4.3.2. For any x, y ∈ S,

(1) u(x, y) =
∑

n≥0Q
(n)(x, y).

(2) x is recurrent if and only if u(x, x) = ∞.
(3) If x 6= y, then

u(x, y) = Px(Ty <∞)u(y, y) . (4.3.7)

Each of these properties is intuitive: together, (1) and (2) give a com-
putable criterium for verifying whether a point is recurrent, which will
be used repeatedly in the sequel (in particular for random walks, in
Section 4.3.2). The identity (4.3.7) gives a simple way of comparing
recurrence properties of different points.

Proof of Lemma 4.3.2. (1) follows by the definition of Ny and
(4.1.8), (2) was shown in (4.3.5). For (3), we use the Strong Markov
Property. Since Ny = 0 on {Ty = ∞},

Ex[Ny] = Ex[Ny, Ty <∞] = Ex[1{Ty<∞} ·Ny ◦ θTy
]

= Ex[1{Ty<∞} ·Ey[Ny]]

= Px(Ty <∞)Ey[Ny] ,

which is (4.3.7). �

“Recurrence is contagious”, as seen hereafter.

Lemma 4.3.3. Let x be recurrent, and y 6= x. If u(x, y) > 0, then
Py(Tx < ∞) = 1, u(y, x) > 0, y is recurrent and Px(Ty < ∞) = 1. If
y is transient, then u(x, y) = 0.

Proof. Since x is recurrent, Px(Nx = ∞) = 1 (Proposition 4.3.1),
and so

0 = Px(Nx <∞) ≥ Px(Ty <∞, Tx ◦ θTy
= ∞)

= Ex[1{Ty<∞} · 1{Tx=∞} ◦ θTy
]

= Ex[1{Ty<∞} · Ey[1{Tx=∞}]]

= Px(Ty <∞)Py(Tx = ∞) . (4.3.8)

Since u(x, y) > 0, there exists n ≥ 1 such that Q(n)(x, y) > 0, which
implies Px(Ty < ∞) ≥ Q(n)(x, y) > 0. (4.3.8) thus gives Py(Tx =
∞) = 0, i.e. Py(Tx <∞) = 1. By (4.3.7), we obtain u(y, x) = Py(Tx <
∞)u(x, x) = ∞ > 0. Since u(y, x) > 0, there exists m ≥ 1 such that



4.3. RECURRENCE AND CLASSIFICATION 63

Q(m)(y, x) > 0. Then, for all p ≥ 0, by the Chapman-Kolmogorov
Equation,

Q(n+m+p)(y, y) ≥ Q(m)(y, x)Q(p)(x, x)Q(n)(x, y) ,

and so

u(y, y) ≥
∑

p≥0

Q(n+m+p)(y, y) ≥ Q(m)(y, x)
[∑

p≥0

Q(p)(x, x)
]
Q(n)(x, y) = ∞ ,

which implies that y is recurrent. Proceeding as above from y to x
gives Px(Ty <∞) = 1. The last claim is then obvious. �

As an application, consider the simple random walk on Z with 0 < p <
1. Let x, y ∈ S, x < y. Then u(x, y) ≥ Q(y−x)(x, y) ≥ py−x > 0. Simi-
larly, u(y, x) ≥ qy−x > 0. Therefore, all points are either recurrent, or
transient. It is thus sufficient to consider the recurrence properties of
the origin. By Theorem 2.1.1, we have that all points are recurrent if
p = 1

2, transient otherwise.

Going back to the general case, let us write S as a disjoint union R∪T,
where R are the recurrent points and T are the transient points. De-
fine the following relation on R: x ∼ y if and only if u(x, y) > 0. Then
obviously x ∼ x, and Lemma 4.3.3 shows that ∼ is reflexive: x ∼ y
implies y ∼ x. On the other hand, Then, if x ∼ y then there exists
n ≥ 1 with Q(n)(x, y) > 0, if y ∼ z then there exists m ≥ 1 with
Q(n)(y, z) > 0, and so Q(n+m)(x, z) > 0, i.e. x ∼ z. That is, ∼ is
an equivalence relation, and we can consider the partition of R into
equivalence classes. Since R is countable, this partition also is, and we
denote it by R =

⋃
j≥1 Rj . Each Rj is called a recurrence class.

The Classification Theorem hereafter proves the following intuitive pro-
perties: the chain started at x ∈ Rj stays in Rj forever and visits any
other y ∈ Rj an infinite number of times. The chain started at x ∈ T

either never visits R and visits any transient point a finite number
of times, or eventually enters a recurrence class Rj and stays there
forever.

Theorem 4.3.1. The decomposition S = T∪⋃
j≥1 Rj has the following

properties:

(1) If x ∈ Rj then, Px-almost surely, Ny = ∞ for all y ∈ Rj and
Ny = 0 for all y ∈ S\Rj.
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(2) If x ∈ T and TR := inf{n ≥ 1 : Xn ∈ R} then, Px-almost
surely,
(a) either TR = ∞ and then Ny <∞ for all y ∈ S,
(b) or TR < ∞ and there exists a random j ≥ 1 such that

Xn ∈ Rj for all n ≥ TR.

Proof. (1) Let x ∈ Rj . Then Ex(Ny) = u(x, y) = 0 for all y ∈ T

by Lemma 4.3.3, and for all y ∈ Ri (i 6= j) by definition. Therefore,
Ny = 0 Px-a.s. for all y ∈ S\Rj. If y ∈ Rj , then by taking k → ∞ in
Lemma 4.3.1, we get

Px(Ny = ∞) = Px(Ty <∞)Py(Ny = ∞) . (4.3.9)

But Px(Ty < ∞) = 1 by Lemma 4.3.3, and Py(Ny = ∞) = 1 by
Proposition 4.3.1. Therefore, Ny = ∞ Px-a.s.
(2) Let x ∈ T. We first show (2a), which means

Px(TR = ∞) = Px(TR = ∞, Ny <∞∀y ∈ T) . (4.3.10)

Since

Px(TR = ∞, Ny <∞∀y ∈ T) = Px(TR = ∞)−Px
(
{TR = ∞}∩

⋃

y∈T

{Ny = ∞}
)
,

it suffices to notice that for each y ∈ T,

Px(TR = ∞, Ny = ∞) ≤ Px(Ny = ∞) ,

which is zero since y is transient (use (4.3.9) and Proposition 4.3.1).
This proves (4.3.10). Then we show (2b), which means

Px(TR <∞) = Px(TR <∞, ∃j ≥ 1 s.t. Xn ∈ Rj∀n ≥ TR) . (4.3.11)

Since the recurrence classes Rj are disjoint, we can compute

Px(TR <∞, Xn ∈ Rj∀n ≥ TR) = Ex[1{TR<∞} · 1{Xn∈Rj∀n≥0} ◦ θTR
]

= Ex[1{TR<∞} · PXTR
(Xn ∈ Rj∀n ≥ 0)]

But clearly, PXTR
(Xn ∈ Rj∀n ≥ 0) = 1 if XTR

∈ Rj, 0 if XTR
6∈ Rj .

Therefore, the right hand side of (4.3.11) equals
∑

j≥1

Ex[1{TR<∞} · PXTR
(Xn ∈ Rj∀n ≥ 0)] = Ex

[
1{TR<∞}

∑

j≥1

1{XT
R
∈Rj}

]

≡ Ex[1{TR<∞}]

= Px(TR <∞) .

We have used the fact that
∑

j≥1 1{XTR
∈Rj} = 1{XTR

∈R} = 1 on {TR <

∞}. This finishes the proof of the theorem. �
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4.3.1. Irreducibility. The Classification Theorem shows that the
long time evolution of a Markov chain depends on how the state space
S splits into equivalence classes, via the use of the function u. It is
natural to consider the case in which the chain has a single class.

Definition 4.3.2. A chain is called irreducible if u(x, y) > 0 for all
x, y ∈ S.

An equivalent definition of irreducibility is: for all x, y ∈ S, there
exists an n ≥ 1 such that Q(n)(x, y) > 0. As seen hereafter, in an
irreducible chain, all the points are of the same type.

Theorem 4.3.2. Let the chain be irreducible. Then

(1) either all the points are recurrent, there exists a single recur-
rence class S ≡ R1, and Px(Ny = ∞∀y ∈ S) = 1 for all x ∈ S,

(2) or all states are transient, S = T, and Px(Ny <∞∀y ∈ S) = 1
for all x ∈ S.

When S is finite, only the first case can happen.

Proof. (1) If there is a recurrent point, then by the irreducibility
hypothesis and Lemma 4.3.3, all points are recurrent, and clearly there
can exist only one recurrence class. The statement, as well as (2),
follow from Theorem 4.3.1. For the last statement, assume |S| < ∞.
If some x ∈ S were transient, then by (2), we would have, Px-a.s.,
Ny < ∞ for all y ∈ S. In particular,

∑
y∈S Ny < ∞. But this is

absurd since∑

y∈S
Ny =

∑

y∈S

∑

n≥0

1{Xn=y} =
∑

n≥0

∑

y∈S
1{Xn=y} = ∞ .

(Indeed, for each n ≥ 0,
∑

y∈S 1{Xn=y} = 1.) �

Before going further and introduce invariant measures, we apply these
results to the study of recurrence of random walks on Zd.

4.3.2. The Simple Symmetric Random Walk on Zd. The
simple random walk on Zd was introduced in Example 4.1.3: Sn =∑n

k=1Xk, where S0 = 0 and the variables Xk are Zd-valued, i.i.d., with
distribution p defined in (4.1.2). We denote the probability describing
the walk by P (rather than P0). Clearly, the chain is irreducible. By
Theorem 4.3.2, the points are either all recurrent, or all transient. It
is thus enough to consider the origin, whose time of first return is
denoted T0. The random walk is recurrent if P (T0 < ∞) = 1, and
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transient otherwise (i.e. if P (T0 < ∞) < 1). The main result for the
simple random walk is the following.

Theorem 4.3.3. The simple symmetric random walk is recurrent for
d = 1, 2, and transient for d ≥ 3.

Since Q(n)(0, 0) = P (Sn = 0), which is zero when n is odd, Lemma
4.3.2 gives the following criterium for recurrence.

The walk is recurrent ⇔
∑

n≥1

P (S2n = 0) = ∞ . (4.3.12)

Recurrence for d = 1, 2 will be obtained with the following property
of symmetric random walks.

Lemma 4.3.4. If the walk is symmetric, then

P (S2n = 0) = sup
z∈Zd

P (S2n = z) . (4.3.13)

Proof. We sum over the position at the nth step and use inde-
pendence:

P (S2n = z) =
∑

y∈Zd

P (Sn = y, S2n = z)

=
∑

y∈Zd

P (Sn = y, S2n − Sn = z − y)

=
∑

y∈Zd

P (Sn = y)P (Sn = z − y) . (4.3.14)

By the Cauchy-Schwartz Inequality and a change of variable,

∑

y∈Zd

P (Sn = y)P (Sn = z − y) ≤
[ ∑

y∈Zd

P (Sn = y)2
]1

2
[ ∑

y∈Zd

P (Sn = z − y)2
]1

2

=
∑

y∈Zd

P (Sn = y)2 .

Now if the walk is symmetric then P (Sn = y) = P (Sn = −y), and so
using again (4.3.14) with z = 0, we get

∑

y∈Zd

P (Sn = y)2 =
∑

y∈Zd

P (Sn = y)P (Sn = −y) = P (S2n = 0) ,

which proves the claim. �

Below, ‖ · ‖ denotes Euclidian distance in Zd.



4.3. RECURRENCE AND CLASSIFICATION 67

Proof of Theorem 4.3.3: First consider d = 1: by Lemma 4.3.4,

1 =
∑

y∈Z:‖y‖≤2n

P (S2n = y) ≤ (4n+ 1)P (S2n = 0) ,

which gives P (S2n = 0) ≥ (4n + 1)−1. By (4.3.12), the walk is re-
current. For d = 2, we proceed in the same way. A straightforward
computation using independence of the Xks yields E[‖S2n‖2] = 2n.
By the Chebychev Inequality,

P (‖S2n‖ > 2
√
n) ≤ E[‖S2n‖2]

4n
=

1

2
.

One can thus proceed as before and obtain

1

2
≤ P (‖S2n‖ ≤ 2

√
n) =

∑

y∈Z2:‖y‖≤2
√
n

P (S2n = y) ≤ (8
√
n+1)2P (S2n = 0) .

By (4.3.12), the walk is recurrent. For d = 3, we need an upper bound.
Let ni ≥ 0, i ∈ {1, 2, 3}, be the number of positive steps done along
the direction ei. To be back at the origin after 2n steps, we must
choose a triple (n1, n2, n3) satisfying n1 +n2 +n3 = n, and then choose
a path which contains, for each i = 1, 2, 3, ni steps along +ei, and ni
steps along −ei. There are(

2n

n1 n1 n2 n2 n3 n3

)
=

(2n)!

(n1!n2!n3!)2

ways of doing so. Since each path has probability (1
6)

2n,

P (S2n = 0) =
∑

(n1,n2,n3):
n1+n2+n3=n

(2n)!

(n1!n2!n3!)2

1

62n

=
1

22n

(
2n

n

) ∑

(n1,n2):
0≤n1+n2≤n

[
n!

n1!n2!(n− n1 − n2)!

1

3n

]2

≤ 1

22n

(
2n

n

)
max

(n1,n2):
0≤n1+n2≤n

n!

n1!n2!(n− n1 − n2)!

1

3n
. (4.3.15)

We have used the fact that the numbers in the brackets add up to one.

Lemma 4.3.5. There exists C > 0 such that

max
(n1,n2):

0≤n1+n2≤n

n!

n1!n2!(n− n1 − n2)!

1

3n
≤ C

n
. (4.3.16)
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Proof. As can be easily verified, the denominator in (4.3.16) dec-
reases when the difference between the three numbers n1, n2, n−n1−n2

is reduced. One can therefore bound the maximum over all triples in
which each term lies within distance at most one from n

3 . This implies
that for large n, the Stirling Formula can be used for each of the terms
apearing in the ratio, which proves the lemma. �

Using the lemma and again the Stirling Formula for the first term in
(4.3.15),

P (S2n = 0) ≤ D

n
3
2

.

With (4.3.12), we conclude that the simple random walk on Z3 is
transient. The proof that the walk is transient in higher dimensions
is left as an exercise. �

Observe that all the estimates we have obtained above for P (S2n = 0)
follow from a more general Local Limit Theorem, valid in all dimension
(see Exercise 4.19):

P (S2n = 0) ∼ 1√
(2πn)d

.

4.4. Equilibrium: Stationary Distributions

Theorems (4.3.1) and 4.3.2 give a first general picture of what the
asymptotic behaviour of a Markov chain looks like: starting from an
arbitrary point x, it either falls into one of the recurrence classes Rj , or
remains transient forever. Our next objective is to take a closer look
at what can happen in each of these cases. More precisely, we will look
at things such at the average time spent by the chain at each point
x ∈ S, leading to the natural notion of invariant measure. Before
this we to introduce some notations for probability distributions on
(S,P(S)).

4.4.1. Invariant Measures. Let µ be a measure on (S,P(S)), i.e.
a collection of non-negative numbers (µ(x))x∈S. To avoid misleading
it with Eµ, which acts on random variables living in another space,
we denote the expectation, with respect to µ, of a positive bounded
measurable function f : S → R by either of the symbols

∫
fdµ = µ(f) :=

∑

x∈S
µ(x)f(x) .
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It is sometimes useful to think of functions f : S → R as column
vectors and of measures µ on S as row vectors. The expectation µ(f)
can then be naturally written as an inner product:

〈f, µ〉 :=
∑

x∈S
µ(x)f(x) .

If Q is a transition probability matrix, we define a new measure µQ
by

µQ(x) :=
∑

y∈S
µ(y)Q(y, x) . (4.4.1)

Remembering (4.1.13):

Q(n)f(x) :=
∑

y∈S
Q(n)(x, y)f(y) , (4.4.2)

we have the following identity:

〈f, µQ〉 = 〈Qf, µ〉 .
It does then make sense to say thatQ act from the left on functions and
from the right on measures. If µ is a probability (i.e.

∑
x µ(x) = 1),

then µQ is again a probability. Going back to Markov chains: if µ
is the probability distribution of X0 for the Markov chain (Xn)n≥0

whose transition matrix is Q, i.e. Pµ(X0 = x) = µ(x), then µQ is the
distribution of X1. Indeed, by Lemma 4.1.1,

Pµ(X1 = x) =
∑

y∈S
Pµ(X1 = x,X0 = y) =

∑

y∈S
µ(y)Q(y, x) ≡ µQ(x) .

Similarly, the distribution of Xn is given by µQ(n):

Pµ(Xn = x) = µQ(n)(x) .

We see that understanding the large-n-behaviour of the chain goes
through the study of the limits

π(x) := lim
n→∞

µQ(n)(x) . (4.4.3)

Giving a meaning to (4.4.3), conditions under which this limit exists,
and its possible independence of µ, will be done in details later.

There is also a formula for the expectation of f(Xn) with respect to
Eµ:

Eµ(f(Xn)) =
∑

x∈S
Pµ(Xn = x)f(x) = µQ(n)(f) . (4.4.4)
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(4.4.4) says that the expectation of an observable made on the evolu-
tion can be obtained by an expectation of this observable over S with
respect to the measure µQ(n). Observe that µQ(n)(f) = 〈f, µQ(n)〉 =
〈Q(n)f, µ〉 = µ(Q(n)f). To motivate the following definition, assume
for a while that the limit defining π in (4.4.3) exists for all x ∈ S.
Then for all bounded f ,

〈f, πQ〉 = 〈Qf, π〉 = lim
n→∞

〈Qf, µQ(n)〉 = lim
n→∞

〈f, µQ(n+1)〉 = 〈f, π〉 ,
which implies that πQ = π. This motivates the following definition.

Definition 4.4.1. Let Q be a transition matrix, µ a measure on
(S,P(S)). If

µQ = µ , (4.4.5)

then µ is called invariant with respect to Q.

(4.4.5) is sometimes called the balance relation. Consider the random
walk of Example 4.1.3, with Q(x, y) = p(y − x). Then the counting
measure (µ(x) = 1 for all x) is invariant:

µQ(x) =
∑

y∈S
Q(y, x) =

∑

y∈S
p(y − x) = 1 = µ(x) .

By induction we see that if µ is invariant, then µQ(n) = µ for all n ≥ 1.
Moreover, when the initial distribution µ of a Markov chain (Xn)n≥0

with transition matrix Q is invariant under Q, then Xn has the same
distribution as X0. Namely, by (4.4.4),

Eµ(f(Xn)) = µQ(n)(f) = µ(f) ≡ Eµ(f(X0)) .

In such a case, i.e. when the distribution of the chain is insensitive
to the evolution under the transition matrix Q, we say that Xn is at
equilibirum for all n ≥ 1. Invariant measures will play an important
role in the study of the asymptotics of the chain.

We will first be interested in the existence of invariant measures, then
of invariant probability measures, and then we shall move on to the
study of the existence of the limits (4.4.3).

4.4.2. Existence of Invariant Measures. Finding an invariant
measure means, for the time being, solving a system of equations for
(µ(x))x∈S:

µ(x) =
∑

y∈S
µ(y)Q(y, x) ∀x ∈ S .
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Definition 4.4.2. A measure µ is reversible (with respect to Q) if

µ(x)Q(x, y) = µ(y)Q(y, x) ∀x, y ∈ S . (4.4.6)

The set relations (4.4.6) are sometimes called the relation of detailed
balance, since it is stronger than (4.4.5). Observe that if µ is reversible,
then for all x ∈ S,

µQ(x) =
∑

y∈S
µ(y)Q(y, x) =

∑

y∈S
µ(x)Q(x, y) = µ(x) .

We have thus shown

Lemma 4.4.1. If µ is reversible, then it is invariant.

This result gives an easy way of finding invariant measures. For
example, consider the uniform random walk on the graph, introdu-
ced in Example 4.1.4. Then the measure µ(x) := |Ax| is invariant.
Namely, if {x, y} ∈ E,

µ(x)Q(x, y) = |Ax|
1

|Ax|
= 1 = |Ay|

1

|Ay|
= µ(y)Q(y, x) .

Another example is the simple random walk on Z with Q(x, x+ 1) =
p < 1. It easy to verify, using the above criterium, that the measure

µ(x) =
( p

1 − p

)x
, ∀x ∈ Z

is invariant. Observe that µ(x) is bounded if and only if p = 1
2
. When

p > 1
2 (resp. p < 1

2), then µ gives unbounded weight to points far to
the right (resp. left), which reflects the transience of the walk. As
an exercise, the reader can also compute an invariant measure for the
Ehrenfest Model of Example 4.1.5 (Exercise 4.24).

The following result shows that the existence of at least one recurrent
point x guarantees the existence of an invariant measure.

Theorem 4.4.1. Let x ∈ S be recurrent. For all y ∈ S, define

νx(y) := Ex

[ Tx−1∑

k=0

1{Xk=y}
]
≡ Ex[Ny, Ty < Tx] . (4.4.7)
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Then νx is an invariant measure 3. Moreover, νx(y) > 0 if and only
if y belongs to the recurrence class of x. Finally, νx(y) < ∞ for all
y ∈ S.

Proof. Observe that νx(x) = Ex(1) = 1. We compute, for all
z ∈ S,

∑

y∈S
νx(y)Q(y, z) =

∑

y∈S

∑

k≥0

Ex[1{k<Tx}1{Xk=y}]Q(y, z)

=
∑

y∈S

∑

k≥0

Ex[1{k<Tx}1{Xk=y}1{Xk+1=z}] (4.4.8)

=
∑

k≥0

Ex[1{k<Tx}1{Xk+1=z}] .

This identity (4.4.8) is justified by observing that, since 1{k<Tx}1{Xk=y}
is Fk-measurable, the Markov Property at time k gives

Ex[1{k<Tx}1{Xk=y}1{Xk+1=z}] = Ex[1{k<Tx}1{Xk=y}1{X1=z} ◦ θk]
= Ex[1{k<Tx}1{Xk=y}EXk

[1{X1=z}]]

= Ex[1{k<Tx}1{Xk=y}Ey[1{X1=z}]]

= Ex[1{k<Tx}1{Xk=y}]Q(y, z) .

Now, if z 6= x, then clearly 1{k<Tx}1{Xk+1=z} = 1{k+1<Tx}1{Xk+1=z}, and
so

∑

y∈S
νx(y)Q(y, z) =

∑

k≥0

Ex[1{k+1<Tx}1{Xk+1=z}] = Ex

[ Tx−2∑

k=0

1{Xk+1=z}
]

= νx(z) .

On the other hand, when z = x, then Ex[1{k<Tx}1{Xk+1=x}] = Px(Tx =
k + 1), and so, since x is recurrent,
∑

y∈S
νx(y)Q(y, x) =

∑

k≥0

Px(Tx = k + 1) = Px(Tx <∞) = 1 = νx(x) .

This proves that νx is invariant. Then, if y belongs to the recurrence
class of x, there exists some m ≥ 1 such that Q(m)(x, y) > 0, and so

νx(y) =
∑

z∈S
νx(z)Q

(m)(z, y) ≥ νx(x)Q
(m)(x, y) > 0 .

On the other hand, if y is not in the recurrence class of x, then Ny = 0
i.e. 1{Xk=y} = 0 for all k ≥ 0 Px-a.s. by Theorem 4.3.1, and so

3To see that νx is not completely trivial, i.e. that νx(y) < ∞ for all y ∈ S, see [R.88] p. 301. of
Neveu p. 50.
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νx(y) = 0. To show that νx(y) is finite, observe that invariance of νx
implies that νx = νxQ

(n) for all n ≥ 1. In particular,

1 = νx(x) = νxQ
(n)(x) ≥ νx(y)Q

(n)(y, x) ∀y ∈ S ,

which implies νx(y) <∞ if n ≥ 1 is such that Q(n)(y, x) > 0. But this
is true for at least one n when y belongs to the recurrence class of x.
If y is not in the recurrence class of x, we have νx(y) = 0 <∞, as seen
above. �

Observe that if there is more than one recurrence class, then the the-
orem above allows to construct invariant measures with disjoint sup-
ports.

Theorem 4.4.2. Let the chain be irreducible and all points be recur-
rent. Then the invariant measure (which exists by Theorem 4.4.1) is
unique, up to a multiplicative constant.

Proof. Let x ∈ S and consider the invariant measure νx of Theo-
rem 4.4.1. We will show that for any other invariant measure µ,

µ(y) ≥ µ(x)νx(y) ∀y ∈ S . (4.4.9)

Assume for a while that this is true. We have, for all n ≥ 1,

µ(x) =
∑

z∈S
µ(z)Q(n)(z, x) ≥

∑

z∈S
µ(x)νx(z)Q

(n)(z, x) = µ(x) ,

which gives
∑

z∈S
[µ(z) − µ(x)νx(z)]Q

(n)(z, x) = 0 .

Therefore, µ(z) = µ(x)νx(z) each time Q(n)(z, x) > 0 for some n ≥ 1.
But this is guaranteed by the irreducibility of the chain. Therefore,
µ = cνx, with c = µ(x), proving the theorem. To obtain (4.4.9), we
will show, by induction on p ≥ 0, that (a ∧ b := min{a, b})

µ(y) ≥ µ(x)Ex

[ p∧(Tx−1)∑

k=0

1{Xk=y}
]
. (4.4.10)

From this, (4.4.9) follows by taking p→ ∞. The inequality (4.4.10) is
an equality when y = x, so we may always consider y 6= x. For p = 0,
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the inequality is trivial. Assuming (4.4.10) holds for p,

µ(y) =
∑

z∈S
µ(z)Q(z, y) ≥ µ(x)

∑

z∈S
Ex

[ p∧(Tx−1)∑

k=0

1{Xk=z}
]
Q(z, y)

= µ(x)
∑

z∈S

p∑

k=0

Ex[1{k<Tx}1{Xk=z}]Q(z, y) .

= µ(x)
∑

z∈S

p∑

k=0

Ex[1{k<Tx}1{Xk=z}1{Xk+1=y}]

(4.4.11)

= µ(x)

p∑

k=0

Ex[1{k<Tx}1{Xk+1=y}]

In (4.4.11) we used the Markov Property, as in the proof of Theorem
4.4.1. Now, since y 6= x,

p∑

k=0

Ex[1{k<Tx}1{Xk+1=y}] =

p∑

k=0

Ex[1{k+1<Tx}1{Xk+1=y}]

=

p+1∑

l=1

Ex[1{l<Tx}1{Xl=y}] = Ex

[ (p+1)∧(Tx−1)∑

l=0

1{Xl=y}
]
.

This proves (4.4.10) for p+ 1. �

Now that the existence and uniqueness of invariant measures is sett-
led, we turn to the problem of determining whether there exist finite
measures, i.e. for which µ(S) <∞, or, which is equivalent, to finding
probability distributions on S invariant under Q. This will require
a further distinction among recurrent points. Before this, we give a
simple result showing that invariant probability measures concentrate
on recurrent points. From now on, invariant probability measures will
be denoted by π.

Lemma 4.4.2. Assume there exists an invariant probability π, then
each point x ∈ S with π(x) > 0 is recurrent.

Proof. Since π is invariant we have πQ(n) = π for all n ≥ 1.
Assume π(x) > 0. Then, using Fubini’s Theorem and recalling the
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definition (4.3.6),

∞ =
∑

n≥1

π(x) =
∑

n≥1

∑

y∈S
π(y)Q(n)(y, x) ≤

∑

y∈S
π(y)u(y, x) ≤ u(x, x) .

We used (3) of Lemma 4.3.2 and the fact that π is a probability. By
(2) of the same lemma, we conclude that x is recurrent. �

Proposition 4.4.1. If the chain is irreducible and if there exists an
invariant probability π, then it has the form

π(x) =
1

Ex(Tx)
∀x ∈ S . (4.4.12)

Proof. If there exists an invariant probability, then all points are
recurrent. Indeed, if there existed a transient point then all points
would be transient (since the chain is irreducible), and so π(x) = 0 for
all x by Lemma 4.4.2, a contradiction. We choose any x ∈ S and show
that π(x) has the form (4.4.12). By Theorem 4.4.1 there exists an
invariant measure νx, given in (4.4.7). By Theorem 4.4.2 the invariant
measure is unique up to a multiplicative constant. Therefore, if there
exists an invariant probability π, then the total mass of νx must be
finite, νx(S) <∞, and π have the form π = νx

νx(S). But

νx(S) =
∑

y∈S
νx(y) = Ex

[ Tx−1∑

k=0

∑

y∈S
1{Xk=y}

]
≡ Ex(Tx) .

In particular, π(x) = νx(x)
Ex(Tx) = 1

Ex(Tx). This shows the theorem. �

The previous result shows that for an invariant measure to exist, one
must have Ex(Tx) < ∞ for all recurrent point x. This leads to the
following distinction among recurrent points.

Definition 4.4.3. A recurrent point x ∈ S is called

• positive-recurrent if Ex(Tx) <∞,
• null-recurrent if Ex(Tx) = ∞.

For example, the simple symmetric random walk on Z is recurrent,
but null-recurrent, as we saw in Theorem 2.1.1. Positive recurrence
is a class property: points belonging to the same recurrence class are
either all positive-recurrent, or all null-recurrent.

Lemma 4.4.3. Let the chain be irreducible. Then the following are
equivalent.
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(1) There exists one positive-recurrent point x ∈ S.
(2) There exists an invariant probability π.
(3) All points x ∈ S are positive-recurrent.

Proof. (1) implies (2): Assume x ∈ S is positive-recurrent. Con-
sider the invariant measure νx. Then νx(S) = Ex[Tx] < ∞, and so
π := νx(S)−1νx is an invariant probability. (2) implies (3): As we saw
in Lemma 4.4.2, the existence of an invariant probability implies that
π(x) > 0 for all x. But π(x) = Ex[Tx]

−1 by Proposition 4.4.1, and so
Ex[Tx] <∞. (3) implies (1) trivially. �

We gather the results about invariant for irreducible chains in a theo-
rem.

Theorem 4.4.3. Let the chain be irreducible and all points be recur-
rent. Then

(1) either each point is positive-recurrent, and there exists a unique
invariant probability measure π, π(S) = 1, given by

π(x) =
1

Ex(Tx)
∀x ∈ S , (4.4.13)

(2) or each point is null-recurrent, and any invariant measure µ
has infinite mass (µ(S) = ∞).

4.5. Approach to Equilibrium

We now turn to the study of how equilibrium is approached along the
time evolution of a Markov chain. Our main purpose is to show that
the distribution of the chain converges, in the limit n → ∞, to the
invariant measure constructed in Theorem 4.4.3. We will therefore
study the limits which appeared in (4.4.3). A detailed study of the
convergence to equilibrium can be found in [Str05].

The convergence of distribution will be in the sense of the total variation
norm, defined, for each ρ : S → R, by

‖ρ‖TV :=
∑

x∈S
|ρ(x)| . (4.5.1)

We will say that a sequence of measures (µn)n≥1 on (S,P(S)) converges
to µ if ‖µn−µ‖TV → 0. As a short hand, we write µn⇒µ. Our aim is
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to find under which conditions can one obtain, for a recurrent chain
with unique invariant probability π,

µQ(n) ⇒ π .

We will present a standard proof based on a coupling argument.

Consider a Markov chain with state space S and transition matrix
Q. A coupling consists in building two copies of this chain on the
cartesian product S := S × S. We endow S with the σ-field P(S). If
µ, ν are probability distributions on S, µ⊗ ν denotes the probability
distribution on S defined by (µ⊗ν)(x, y) := µ(x)ν(y). We then define
the following transition matrix on S:

Q((x, y), (x′y′)) := Q(x, x′)Q(y, y′) . (4.5.2)

By Theorem 4.1.2, we can construct a canonical version of a Markov
chain (Xn, Yn)n≥0 with state space S, initial distribution µ ⊗ ν and
transition matrix Q. We denote the associated measure by Pµ⊗ν. It
is clear that under Pµ⊗ν, the coupled chain (Xn, Yn)n≥0 describes two
independent copies of the original markov chain. Its marginals are
given by

Pµ⊗ν(Xn+1 = x′|Xn = x) = Q(x, x′) , Pµ⊗ν(Xn = x) = µQ(n)(x) ,

Pµ⊗ν(Yn+1 = y′|Yn = y) = Q(y, y′) , Pµ⊗ν(Yn = y) = νQ(n)(y) .

A key idea is then to choose ν := π, where π is the invariant measure
of Q. This implies that under Pµ⊗ν , (Yn)n≥0 is at equilibrium for all
n ≥ 0:

Pµ⊗π(Yn = y) = πQ(n)(y) = π(y) = Pµ⊗π(Y0 = y) .

Therefore,

Pµ(Xn = y) − π(y) = Pµ⊗π(Xn = y) − Pµ⊗π(Yn = y)

= Eµ⊗π
[
1{Xn=y} − 1{Yn=y}

]
.

Let now T define the stopping time at which Xn and Yn meet for the
first time:

T := inf{n ≥ 1 : Xn = Yn} .
In other words, T is the first time the chain (Xn, Yn)n≥0 hits the diago-
nal {(x, x) : x ∈ S}. The point is that if the two chains meet at some
time N , then the Markov Property implies that they become proba-
bilistically undistinguishable for times > N . We therefore decompose
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the last expectation with respect to the stopping time T and to the
position of the chain at time T:

Eµ⊗π
[
1{Xn=y} − 1{Yn=y}

]
= Eµ⊗π

[
1{T>n}(1{Xn=y} − 1{Yn=y})

]

+
n∑

k=1

∑

z∈S
Eµ⊗π

[
1{T=k,Xk=Yk=z}(1{Xn=y} − 1{Yn=y})

]
.

This last sum is zero. Indeed, using twice the Markov Property at
time k,

Eµ⊗π[1{T=k,Xk=Yk=z}1{Xn=y}] = Eµ⊗π[1{T=k,Xk=Yk=z}1{Xn−k=y} ◦ θk]
= Eµ⊗π[1{T=k,Xk=Yk=z}]Q

(n−k)(z, y)

= Eµ⊗π[1{T=k,Xk=Yk=z}1{Yn−k=y} ◦ θk]
= Eµ⊗π[1{T=k,Xk=Yk=z}1{Yn=y}] .

Therefore,
∑

y∈S
|Pµ(Xn = y) − π(y)| =

∑

y∈S

∣∣Eµ⊗π
[
1{T>n}(1{Xn=y} − 1{Yn=y})

]∣∣

≤ 2
∑

y∈S
Eµ⊗π[1{T>n}1{Yn=y}] = 2Pµ⊗π(T > n) ,

We are left with

‖µQ(n) − π‖TV ≤ 2Pµ⊗π(T > n) , (4.5.3)

which is the standard coupling inequality. We will thus obtain µQ(n) ⇒
π if we can show that the chain (Xn, Yn)n≥0 is recurrent. The most
general way of obtaining this recurrence is under a condition on the
chain S called aperiodicity, to which we shall turn in a while. Before
this we consider a more restrictive condition, but which gives a rate
of convergence for the speed at which ‖µQ(n) − π‖TV → 0.

Lemma 4.5.1. Assume the chain S satisfies the following condition:
there exists ℓ ≥ 1 such that

inf
x,y∈S

Q(ℓ)(x, y) ≥ δ > 0 . (4.5.4)

Then, for all probability distributions µ, ν, we have

Pµ⊗ν(T > kℓ) ≤ (1 − δ)k , ∀k ≥ 1 . (4.5.5)
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Proof. We will prove the lemma for Dirac masses µ = δx, ν = δy,
in which case the measure is denoted P(x,y). That is, we will show that
for all k ≥ 1,

P(x,y)(T > kℓ) ≤ (1 − δ)k , ∀(x, y) ∈ S . (4.5.6)

The general case (4.5.5) then follows by summation over (x, y) ∈ S 4.
We show (4.5.6) by induction on k. Consider first the case k = 1. For
any pair (x, y), we have, by (4.5.4),

P(x,y)(T ≤ ℓ) ≥ P(x,y)(Xℓ = Yℓ) =
∑

z∈S
P(x,y)(Xℓ = Yℓ = z)

=
∑

z∈S
Q(ℓ)(x, z)Q(ℓ)(y, z) ≥ δ

∑

z∈S
Q(ℓ)(y, z) = δ ,

which shows (4.5.6) for k = 1. Assume then that (4.5.6) holds for k
and for all pair (x, y). Then,

P(x,y)(T > (k + 1)ℓ) =
∑

(s,t)∈S

P(x,y)(T > (k + 1)ℓ,Xkℓ = s, Ykℓ = t) .

Using the Markov Property at time kℓ,

P(x,y)(T > (k+1)ℓ,Xkℓ = s, Ykℓ = t) = P(x,y)(T > kℓ,Xkℓ = s, Ykℓ = t)P(s,t)(T > ℓ) .

Using P(s,t)(T > ℓ) ≤ 1 − δ, resumming over (s, t) ∈ S and using the
induction hypothesis yields (4.5.6) for k + 1. �

A direct corollary is then

Theorem 4.5.1. Assume the chain S is irreducible and positive re-
current and satisfies (4.5.4) for some δ > 0, ℓ ≥ 1. Let π denote the
unique invariant probability measure. Then

‖µQ(n) − π‖TV ≤ 2(1 − δ)⌊
n
ℓ
⌋ (4.5.7)

uniformly in all initial distribution µ. In particular, µQ(n) ⇒ π.

To emphasize the fact that a chain as above forgets about its ini-
tial condition, consider two distinct initial distributions µ, µ′. By the
triangle inequality,

‖µQ(n) − µ′Q(n)‖TV ≤ ‖µQ(n) − π‖TV + ‖π − µQ(n)‖TV → 0 ,

and so the distribution of Xn with initial distribution µ becomes,
asymptotically, indistinguishable from the one started with µ′.

4A mettre en exercice!
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Assumption (4.5.4) is a strong mixing condition. It forces trajectories
to meet, in the sense that any pair of points (x, y) can be joined during
a time interval of length ℓ with positive probability. This implies that
two trajectories meet at some of the times ℓ, 2ℓ, 3ℓ, . . . , and so the
coupled chain S is recurrent. Clearly, (4.5.4) is not realistic when S
is infinite, and one can cook up simple examples in which it is not
satisfied even in case where S is finite. Consider for example the case
where S are the vertices of a square, where the particle can jump to
either of its two nearest neighbours with probability 1

2 .

Definition 4.5.1. Let x ∈ S be recurrent. Let I(x) := {n ≥ 1 :
Q(n)(x, x) > 0} be the set of times at which a return to x is possible
when starting from x. The greatest common divisor of I(x), denoted
d(x), is called the period of x.

Since x is recurrent, u(x, x) = ∞ > 0, and so Q(n)(x, x) > 0 for
infinitely many ns. Therefore, I(x) contains an infinite number of
numbers. Moreover, observe that I(x) is stable under addition: if
n,m ∈ I(x) then by the Chapman-Kolmogorov Equation (4.2.3),

Q(n+m)(x, x) ≥ Q(n)(x, x)Q(m)(x, x) > 0 ,

and so n+m ∈ I(x).

Lemma 4.5.2. If x, y ∈ S belong to the same recurrence class, then
d(x) = d(y).

Proof. Since x, y are in the same class, there exists K ≥ 1 such
that Q(K)(x, y) > 0 and L ≥ 1 such that Q(L)(y, x) > 0. Therefore,

Q(K+L)(y, y) ≥ Q(L)(y, x)Q(K)(x, y) > 0 ,

which means that K + L ∈ I(y), and therefore, d(y) divides K + L.
Then, consider any n ∈ I(x). We have

Q(K+n+L)(y, y) ≥ Q(L)(y, x)Q(n)(x, x)Q(K)(x, y) > 0 ,

which means that K+n+L ∈ I(y) and therefore, d(y) divides K+n+
L. Therefore, d(y) divides n. Since this holds for all n ∈ I(x), d(y) is
a divisor of I(x). As a consequence 5, d(y) divides d(x). Changing the
roles of y and x shows that d(x) divides d(y), and so d(x) = d(y). �

Lemma 4.5.3. If d(x) = 1, then there exists m0 such that Q(n)(x, x) >
0 for all n ≥ m0.

5Ça je l’ai pas encore bien compris.
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Proof. We first show that when d(x) = 1, I(x) must contain two
consecutive integers. So let n0, n0 + k ∈ I(x). If k = 1 then there is
nothing to do. If k > 1 then (since k > d(x)) there must exist some
l ∈ I(x) which k does not divide. Write l = km + r, 0 < r < k.
Since I(x) is stable under addition, the two numbers (m+ 1)(n0 + k),
(m + 1)n0 + n1, are both in I(x). But these numbers differ by less
than k:

(m+ 1)(n0 + k)− (m+ 1)n0 +n1 = (m+ 1)k− (km+ r) = k− r < k .

Proceeding by induction we finally obtain a number N such that
{N,N + 1} ∈ I(x). Let m0 := N2. Then each n ≥ N2 can be
written as n = N2 + kN + r for some k ≥ 0, 0 ≤ r < N . We can
therefore write n as n = (N + 1)r +N(N − r + k), which shows that
n ∈ I(x). �

This lemma says that any point with d(x) = 1 can come back to its
original position in an arbitray number n of steps, as long as n is
sufficiently large. This clearly means that if two independent walks
are started at points x, x′ with d(x) = d(x′) = 1, they can meet at
any y ∈ S at time n with positive probability, as soon as n is taken
sufficiently large. Of course, depending on x, y, n might have to be
taken larger. This shows that imposing d(x) = 1 for all x ∈ S leads to
the same recurrence property as (4.5.4), without uniformity in x, y.

Definition 4.5.2. If d(x) = 1 for all x ∈ S, the chain is called ape-
riodic.

Aperiodicity is an algebraic property that turns all initial conditions
equivalent; it does entail that two trajectories started at two different
points have a positive probability of meeting along the evolution, but
only just (with no uniformity on the time or points). This is enough
to guarantee convergence to equilibrium.

Theorem 4.5.2. Let the chain be irreducible and aperiodic. Assume
π is an invariant probability. Then for all initial distribution µ,

‖µQ(n) − π‖TV → 0 .

Proof. We first show that S is irreducible. So let (x, y), (x′, y′) be
points in S. Since the original chain is irreducible there exist K ≥ 1
such that Q(K)(x, x′) > 0 and L ≥ 1 such that Q(L)(y, y′) > 0. By
Lemma 4.5.3 there exists n0 ≥ 1 such that Q(n)(x, x) > 0 for all
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n ≥ n0, and m0 ≥ 1 such that Q(m)(y, y) > 0 for all m ≥ m0. For all
n ≥ max{n0, m0}, we have

Q(K+L+n)((x, y), (x′, y′)) = Q(K+L+n)(x, x′)Q(K+L+n)(y, y′)

≥ Q(L+n)(x, x)Q(K)(x, x′)Q(K+n)(y, y)Q(L)(y, y′) > 0 .

Then, since π ⊗ π is an invariant probability for Q, the chain S is re-
current (Lemma 4.4.2). By the coupling inequality (4.5.3), this shows
that ‖µQ(n) − π‖TV → 0. �

Observe that there exists a chain which is irreducible, aperiodic, re-
current, but in which two copies don’t necessarily meet (see [R.88] p.
313).

4.6. The Ergodic Theorem

The notion of invariant measure, together with the convergence pro-
perties described in Theorems 4.5.1 and 4.5.2, gives a fairly satisfac-
tory description of the asymptotic behaviour of an irreducible Markov
chain. What still needs to be done is to see how the empirical quanti-
ties relate to this asymptotic behaviour. For example: what is, up to
time n, the time spent by a chain at a site y ∈ S?

Theorem 4.6.1 (Ergodic Theorem). Assume the chain is irreducible
and positive recurrent. Let π denote the unique invariant probability
measure, and consider a non-negative function f : S → R, integrable
with respect to π:

∫
|f |dπ <∞. Then for all x ∈ S,

1

n

n−1∑

k=0

f(Xk) −→
∫
fdπ , Px-a.s. (4.6.1)

This results answers the previous question (in the case of an irredu-
cible, positive recurrent chain). Namely, take f = δy. Then

∫
fdπ =

π(y) and by (4.6.1), the fraction of time spent by the chain at y is

1

n
♯{0 ≤ k ≤ n− 1 : Xk = y} =

1

n

n−1∑

k=0

1{Xk=y} −→ π(y) , Px-a.s.

(4.6.2)
This is very different from the convergence obtained in the previous
section. Namely, in the aperiodic case for example, we had obtained
‖µQ(n) − π‖TV → 0, which implies Pµ(Xn = y) → π(y) for all y ∈ S,
which is a probability of what happens at time n. On the other hand,
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(4.6.2) gives an almost sure convergence of the time the trajectory
spends at y up to time n.

Proof of Theorem 4.6.1: Let x ∈ S. We consider the partition
of the trajectory into the successive returns of the chain at x:

0 =: T 0
x < T 1

x < T 2
x < . . . ,

where T 1
x := Tx, and for k ≥ 2,

T kx := inf{n > T k−1
x : Xn = x} .

Since the chain is irreducuble and since there exists an invariant proba-
bility, the chain is recurrent (Lemma 4.4.2), and each T kx is Px-almost
surely finite. The result will follow from the fact that the events hap-
pening during the time intervals [T kx , T

k+1
x ) are independent, and from

the Law of Large Numbers. Fix f : S → R and define, for all k ≥ 0,

Zk :=

T
(k+1)
x −1∑

j=T
(k)
x

f(Xj) .

Clearly, Zk = Z0 ◦ θT (k)
x

.

Lemma 4.6.1. The sequence (Zn)n≥0 is i.i.d.

Proof. First observe that for all positive measurable bounded g :

R → R, the Markov Property at time T
(k)
x gives

Ex[g(Zk)] = Ex[(g ◦ Z0) ◦ θT (k)
x

] = Ex[g(Z0)] ,

and so the Zks are identically distributed. For the independence, it is
sufficient to show that for all k ≥ 0,

Ex[g0(Z0) . . . gk(Zk)] = Ex[g0(Z0)] . . .Ex[gk(Z0)] , (4.6.3)

where gj : R → R, j = 0, 1, . . . , k are arbitrary bounded functions.
This is trivially true when k = 0, so assume (4.6.3) holds for k −
1. Using again the Markov property at time T

(k)
x and the induction

hypothesis,

Ex[g0(Z0) . . . gk(Zk)] = Ex[g0(Z0) . . . gk−1(Zk−1)]Ex[gk(Z0)]

= Ex[g0(Z0)] . . . Ex[gk(Z0)] .

This shows (4.6.3) for k. �
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Now, observe that since π is invariant it must have the form π = π(x)νx
for all x, where νx is the invariant measure of Theorem 4.4.1. This
implies that

Ex[|Z0|] = Ex[Z0] = Ex

[ Tx−1∑

j=0

f(Xj)
]

=
∑

y∈S
f(y)Ex

[ Tx−1∑

j=0

1{Xj=y}
]

=

∫
fdνx =

1

π(x)

∫
fdπ <∞ .

Therefore, by the Strong Law of Large Numbers,

1

n

n−1∑

k=0

Zk −→
1

π(x)

∫
fdπ Px-a.s. (4.6.4)

Let Nx(n) be the number of visits of the chain at x up to time n. Then

T
Nx(n)
x ≤ n < T

Nx(n)+1
x , and since f is non-negative,

1

Nx(n)

T
Nx(n)
x −1∑

k=0

f(Xk) ≤
1

Nx(n)

n∑

k=0

f(Xk) ≤
1

Nx(n)

T
Nx(n)
x +1∑

k=0

f(Xk) ,

which is the same as

1

Nx(n)

Nx(n)−1∑

j=0

Zj ≤
1

Nx(n)

n∑

k=0

f(Xk) ≤
1

Nx(n)

Nx(n)∑

j=0

Zj ,

By (4.6.4) and since Nx(n) → ∞ Px-a.s. when n → ∞ (Proposition
4.3.1),

1

Nx(n)

n∑

k=0

f(Xk) −→
∫
fdνx .

The same expression with f = 1 gives n
Nx(n) → νx(S) = 1

π(x) . This

finishes the proof. �

4.7. Exercises

Generalities.

Exercise 4.1. [GS05] p. 219. A Die is rolled repeatedly. Which
of the following are Markov chains? For those that are, supply the
transition matrix.
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• The largest number Xn shown up to time n.
• The number Nn of sixes in n rolls.
• At time r, the time Cr since the most recent six.
• At time r, the time Br until the next six.

Exercise 4.2. [GS05] p. 219. Let (Xn)n≥0 be the simple random
walk starting at the origin. Are (|Xn|)n≥0 and (Mn)n≥0 Markov chains?
(We defined Mn := max{Xk : 0 ≤ k ≤ n}.) When this is the case,
compute the transition matrix. Show that Yn := Mn − Xn defines a
Markov chain. What happens if X0 6= 0.

Exercise 4.3. [GS05] p. 220. LetXn, Yn be Markov chains on S = Z.
is Xn + Yn necessarily a Markov chain?

Exercise 4.4. [GS05] p. 220. Let Xn be a Markov chain. Show that
for all 1 < r < n,

P (Xr = x|Xi = xi, i = 1, 2, . . . , r − 1, r + 1, . . . , n)

= P (Xr = x|Xr−1 = xr−1, Xr+1 = xr+1) .

Exercise 4.5. Consider “Markov’s Other chain” ([GS05] p. 218):
let Y1, Y3, Y5, . . . be a sequence of independent identically distributed
random variables such that

P (Y2k+1 = −1) = P (Y2k+1 = +1) =
1

2
.

Define then Y2k := Y2k−1Y2k+1. Check that Y2, Y4, Y6, . . . are identically
distributed, with the same distribution as above. Is (Yk)k≥1 a Markov
chain? Enlarge the state space to {±1}2 and define Zn := (Yn, Yn+1).

Exercise 4.6. [R.88] p.281. Two state Markov chain. Let S = {0, 1}
with transition matrix

Q =

[
1 − α α
β 1 − β

]

For example, if Xn represents the weather on day n, with say 0 being
bad weather, 1 being nice weather, a reasonable optimistic choice is
α = 0.6, β = 0.2.
Let µ be a probability distribution on S. Show by induction that

Pµ(Xn = 0) =
β

β + α
+ (1 − α− β)n

(
µ(0) − β

β + α

)
.
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Compute n → ∞. Set pn := Px(Xn = 1), and show that when 0 <
α+ β < 2, (voir les notes de Durrett)

|pn −
β

β + α
| ≤ |1 − α− β|n

In which cases does pn not converge? Hint: set pn := Px(Xn = 1).
Use the Markov Property, write pn = (1 − α)pn−1 + (1 − pn−1)β, and
show that

pn −
β

β + α
=

(
pn−1 −

β

β + α

)
(1 − α− β)

Exercise 4.7. Let (Yn)n≥0 be i.i.d., P (Yk = 0) = 1 − P (Yk = 1) =
1
2. Show that Xn := (Yn, Yn+1) is a Markov chain and compute its

transition probability matrix Q. What is Q(2)?

Exercise 4.8. Prove Lemma 4.1.1: (Xn)n≥0 is a Markov chain with
transition matrix Q if and only if for all n ≥ 1 and all x0, . . . , xn ∈ S,

P (X0 = x0, . . . , Xn = xn) = P (X0 = x0)Q(x0, x1) . . .Q(xn−1, xn) .

Exercise 4.9. The Canonical Markov Chain.

(1) Show the equivalence between the σ-algebra generated by the
coordinate maps σ(Xk)n≥0 and the one generated by cylinders.

(2) Show that the shift θ is measurable.
(3) Show the equivalence between (4.2.1) and (4.2.2).
(4) Let ψ : Ω → R be measurable, positive, bounded. Show that

x 7→ Ex(ψ) is measurable.

The Markov Property.

Exercise 4.10. Fill in the details at the end of the proof of Theorem
4.2.1.

Exercise 4.11. (Durrett p. 283) Using the Markov Property, show
that if A ∈ σ(X0, . . . , Xn) and B ∈ σ(Xn, Xn+1, . . . ), then

Pµ(A ∩B|Xn) = Pµ(A|Xn)Pµ(B|Xn) .

Hint: Write the left-hand side as Eµ(Eµ(1A1B|Fn)|Xn).

Exercise 4.12. Stopping times.

(1) Show that FT is a σ-algebra.
(2) Show that XT is FT -measurable.
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Exercise 4.13. Let Ty := inf{n ≥ 1 : Xn = y}. Use the Strong
Markov Property to show that

Px(Xn = y) =
n∑

m=1

Px(Ty = m)Py(Xn−m = y) .

Compare with the Chapman-Kolmogorov Equation, whose proof requi-
res only the Simple Markov Property.

Recurrence and Classification.

Exercise 4.14. Dacunha-Castelle p.185. Classify the states of the
Markov chains on S = {1, 2, 3, 4} whose transition matrices are given
respectively by

Q =




1 0 0 0
0 0 1

2
1
2

0 1 0 0
0 1 0 0


 ,




0 1
2 0 1

2
1
2 0 1

2 0
0 1

2 0 1
2

1
2 0 1

2 0


 ,




1
6

1
6

1
6

1
2

1
6

1
6

1
6

1
2

1
6

1
6

1
6

1
2

0 0 0 1




Exercise 4.15. Classify the states of the Markov chain of Exercise
4.6 in function of α and β.

Random Walks.

Exercise 4.16. [Str05] p. 16. Prove the Cauchy-Schwartz Inequality:
for any pair of sequences (an)n∈Z, (bn)n∈Z,

∑

n∈Z

|anbn| ≤
(∑

n∈Z

a2
n

) 1
2
(∑

n∈Z

b2n

) 1
2

(1) Show that it is sufficient to consider the case in which an =
bn = 0 for all but a finite number of ns.

(2) Given f(x) = Ax2 + 2Bx + C, show that f ≥ 0 if and only if
C ≥ 0 and B2 ≤ AC.

(3) In the case where an = bn = 0 for all but a finite number of ns,
set g(x) =

∑
n(anx+ bn)

2 and apply the previous step.

Exercise 4.17. Consider a random walk on Zd given by a transition
matrix

Q(x, y) =
1

2d

d∏

i=1

1|xi−yi|=1 .

Study the recurrence of this chain (in function of the dimension) by
computing Q(n)(0, 0).
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Exercise 4.18. Dacunha-Castelle p. 193. Consider the simple sym-
metric random walk on Zd starting at the origin. Let Tn be the number
of visits of the walk at the origin up to time n. Study the asymptotics
of E[Tn] for large n, for the cases d = 1, 2, 3. For example, show that
in d = 1,

E[Tn] ∼
2√
π

√
n .

Hint: First, observe that {Tn = k} = {T (k)
0 ≤ n, T

(k+1)
0 > n}, and so

P (Tn = k) = P (T
(k)
0 ≤ n) − P (T

(k+1)
0 ≤ n), which gives

E[Tn] =
∑

k≥1

P (T
(k)
0 ≤ n) =

2n∑

j=1

P (Xj = 0) .

Exercise 4.19. Consider a random walk on Zd, S0 = 0, Sn = X1 +
· · · + Xn, whose increments Xk have the distribution P (Xk = x) =
p(x). The purpose of this exercise to show the following Recurrence
Criterium (compare with (4.3.12)):

The walk is recurrent ⇔
∫

[−π,π]d

1

1 − ϕ(ξ)
dξ = ∞ . (4.7.1)

Here, ϕ(ξ) = E[eiξ·X1], ξ ∈ Rd, is the characteristic function of X1.

(1) For any Zd-valued random variable Z, define pZ(x) := P (Z =
x), and denote the characteristic function of Z by ϕZ . Prove
the inversion formula:

pZ(x) =
1

(2π)d

∫

[−π,π]d
e−iξ·xϕZ(ξ)dξ

(2) Compute P (Sn = 0) and
∑

n P (Sn = 0), prove the recurrence
criterium (Hint: compute first

∑
n θ

nP (Sn = 0) and then take
θ → 1−).

(3) Apply the criterium to show that the simple symmetric random
walk is recurrent for d = 1, 2, and transient for all d ≥ 3. Hint:
once you have computed the characteristic function ofX1, show
that 1 − cosx ≥ x2

4 when |x| ≤ π
3 .

(4) Apply the criterium to the random walk of Exercise 4.17.

Invariant Distributions.
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Exercise 4.20. Vares-Olivieri Chap. 4.3. Show that if a distribution
is reversible with respect to a birth and death chain, then it is inva-
riant. Find an example of a distribution which is invariant but not
reversible.

Exercise 4.21. Total Variation Norm. Let S be countable and ρ : S →
R. Define

‖ρ‖TV :=
∑

x∈S
|ρ(x)| .

(1) Show that ‖ · ‖TV is a norm.
(2) Consider the normed vector space M1 := {ρ : S → R : ‖ρ‖TV <

∞}. Let Q be a transition probability matrix on S. Show
that for all ρ ∈ M1, ρQ : S → R is well defined: ρQ(x) :=∑

y∈S ρ(y)Q(y, x), and that ‖ρQ‖TV ≤ ‖ρ‖TV.

(3) A sequence (ρn)n≥1 in M1 is Cauchy if for all ǫ > 0 there exists
N0 such that ‖ρn − ρm‖TV ≤ ǫ for all n,m ≥ N0. Show that
M1 is complete: (ρn)n≥1 is Cauchy if and only if there exists ρ
such that ‖ρn − ρ‖TV → 0.

Exercise 4.22. ([GS06] p. 77) Find an invariant probability measure
for the Markov chain of Exercise 4.6. Suppose that 0 < αβ < 1. Find
Q(n). Fix some initial distribution µ and study ‖µQ(n)−π‖TV for large
n. For what values of α, β is the chain reversible in equilibrium?

Exercise 4.23. [R.88] p. 305 Show that the random walk on a graph
(see Example 4.1.4) is irreducible if and only if the graph is connected.
Show that the walk is positive-recurrent if and only if the graph is
finite. In this case, show that the invariant probability measure is

given by µ(x) = d(x)
N

, where d(x) is the degree of the vertex x and N
is the number of vertices of the graph ([GS05] p. 236, ex. 6).

Exercise 4.24. Ehrenfest Urn Model.

(1) Compute the invariant measure of the Ehrenfest model. (Voir
p.187 de Dacunha-Castelle ou Le Gall p.19.)

(2) Does Pµ(Xn = x) converge? Why? Find two distributions µ, ν
for which

lim inf
n

‖µQ(n) − νQ(n)‖TV > 0 .

Exercise 4.25. Give an example of a Markov chain and of a distri-
bution which is invariant but not reversible.
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Exercise 4.26. [GS06] p. 69 Let (Sn)n≥0, (S ′
n)n≥0 be two copies of

the simple symmetric random walk. Let Zn := (Sn, S
′
n) be constrained

to lie in the region Sn ≥ 0, S ′
n ≥ 0, Sn+S

′
n ≤ a, for some integer a ≥ 1.

Find the stationary distribution of Zn. What happens when a→ ∞?

Exercise 4.27. ([GS06] p. 77) Let S = {0, 1, 2, . . .} and Q(x, x +
1) = px, Q(x, 0) = 1 − px, where 0 < px < 1. Let bx = p0p1 . . . px−1.
Show that the chain is

(1) recurrent if and only if bx → 0 when x→ ∞,
(2) non-null recurrent if and only if

∑
x bx <∞,

and write down the stationary distribution if the latter condition holds.
Then, let a, β > 0 and assume px = 1 − ax−β. Show that the chain is

(1) transient if β > 1,
(2) non–null recurrent if β < 1,

and that if β = 1,

(1) non-null recurrent if a > 1,
(2) null recurrent if a ≥ 1.

VOIR AUSSI NEVEU p. 78., Varadhan p. 145

Exercise 4.28. Birth and Death chains. Voir Durrett p. 297, Le Gall
p. 23. ET NEVEU p. 81., VARADHAN p. 145 Let S = {0, 1, 2, . . .},
with the transition matrixQ(x, x+1) = px, Q(x, x−1) = qx, Q(x, x) =
rx, q0 = 0, px + qx + rx = 1 for all x.

(1) Show that µ(0) := p1,

µ(x) =
p0p1 . . . px−1

q1q2 . . . qx
∀x ≥ 1

is the only invariant measure (up to a multiplicative constant).
(2) Consider the particular case rx = 0, px = 1 − qx = p. For

which ps is the measure µ finite? For which ps is the chain
null-recurrent? recurrent? transient? (Hint: use Lemma 4.4.2)

Exercise 4.29. [GS05] ex. 7, p. 236. Show that the random walk
on the infinite binary tree is transient. Hint: use either Exercise 4.28.

Exercise 4.30. [R.88] p. 313. The Bernoulli-Laplace Model of Diffu-
sion. Consider two boxes having each N particles, b of which are black
(we assume b ≤ N), 2N − b of which are white. At each time n, we
pick a ball from each box and interchange them. Let Xn denote the
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number of black particles in the left box. Compute the transition mat-
rix of the Markov chain (Xn)n≥1. Study convergence to equilibrium.
See www.math.uah.edu/stat/markov/index.xhtml.

Exercise 4.31. [R.88] p. 302. Consider the simple symmetric ran-
dom walk on Z starting at the origin. Show that the expected number
of visits to a site x 6= 0 before the time of first return is 1. Hint: use
Theorems 4.4.1 and 4.4.2. Il suffit de prendre la fomule en page 47

de Neveu: Ex(N
x
y ) = µ(y)

µ(x) , donc ici puisque la mesure de comptage est

invariante ca montre le resultat.

Exercise 4.32. [R.88] p. 302.

(1) Show that νx(y)νy(z) = νx(z).
(2) Let wxy = Px(Ty < Tx). Show that

νx(y) =
wxy
wyx

∀y ∈ S .

Use this to solve Exercise 4.31.

Exercise 4.33. [R.88] p. 305. Compute the expected number of
moves it takes a knight to return to its initial position if it starts
in a corner of the chessboard, assuming there are no other pieces on
the board, and each time it chooses a move at random from its legal
moves. Hint: a chessboard has S = {0, 1, . . . , 7}2. A knight’s move
is L-shaped: two steps in one direction followed by one step in a
perpendicular direction. Same with a king.

Exercise 4.34. [GS06] p. 68 A particle performs a random walk on
the bow tie ABCDE drawn on Figure 2, where C is the knot. From any
vertex the next step is equally likely to be any neighbouring vertex.
The particle starts at A. Find the expected value of

(1) the time of first return to A
(2) the number of visits to D before returning to A
(3) the number of visits to C before returning to A
(4) the time of first return to A, given no prior visit by the particle

to E
(5) the number of visits to D before returning to A, given no prior

visit by the particle to E.

Exercise 4.35. [GS06] p. 68. A particle performs a symmetric ran-
dom walk on the square graph of Figure 2, starting from A. Find the
expected number of visits to B before it returns to A.
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A

B

D

E

C

Figure 2

Exercise 4.36. [R.88] p. 279, 304. Show that an irreducible renewal
chain is positive recurrent if and only if

∑
k kfk <∞.

Exercise 4.37. (Dacunha-Castelle, p. 191) Consider the successive

return times at a given site x: T
(1)
x < T

(2)
x < . . . . Define

g(s) =
∑

n≥0

Q(n)(x, x)sn , h(s) =
∑

n≥1

Px(Tx = n)sn .

Express g as a function of h. The following formula might be useful:

Qn(x, x) =
n∑

k=1

Px(T = k)Q(n−k)(x, x)

What should g satisfy in order for T to be almost surely finite? Show
that for all sequence n1 < n2 < . . . ,

Px(T
(1)
x = n1, T

(2)
x −T (1)

x = n2 . . . , T
(k)
x − T (k−1)

x = nk)

=
k∏

j=1

Px(T
(j)
x − T (j−1)

x = nj, T
(j)
x <∞)

=
k∏

j=1

Px(T
(1)
x = nj) . (4.7.2)

Assume x is transient. Show that the chain visits x almost surely
a finite number of times (hint: use (4.7.2) and Borel-Cantelli for

the sequence of events {T (k)
x < ∞}). From (4.7.2), deduce that the

sequence (T
(k)
x − T

(k−1)
x )k≥1 is i.i.d.

Exercise 4.38. Stroock [Str05] p. 28., Lindvall [Lin92] p. 54. Doe-
blin’s Coupling. Let Q be a transition probability matrix on S. The
aim of this exercise is to show the following result, due to Doeblin
([Doe38], 1938): Assume there exists y0 ∈ S, ǫ > 0 such that

inf
x∈S

Q(x, y0) ≥ ǫ . (4.7.3)
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Then Q has a unique invariant distribution π, and for any initial
distribution µ,

‖µQ(n) − π‖TV ≤ 2(1 − ǫ)n .

We use the notations and results of Exercise 4.21.

(1) Show first that if (4.7.3) holds, and if ρ : S → R is such that∑
x∈S ρ(x) = 0, then

‖ρQ‖TV ≤ (1 − ǫ)

Hint: Write
∑

x∈S ρ(x)Q(x, y) =
∑

x∈S ρ(x)(Q(x, y)− ǫδy,y0).
(2) By induction, show that for all n ≥ 1,

‖ρQ(n)‖TV ≤ (1 − ǫ)n‖ρ‖TV .

(3) Let µ be an initial distribution, set µn := µQ(n). Show that
{µn}n≥1 is a Cauchy sequence to conclude that π := limn µQ

(n)

exists. Hint: for n ≥ m, write µn − µm = (µQ(n−m) − µ)Q(m).
(4) Show that π is stationary. Conclude.

Show the following generalization of the previous theorem: Assume
there exists y0 ∈ S, M ≥ 1 and ǫ > 0 such that

inf
x∈S

Q(M)(x, y0) ≥ ǫ . (4.7.4)

Then Q has a unique invariant distribution π, and for any initial
distribution µ,

‖µQ(n) − π‖TV ≤ 2(1 − ǫ)⌊
n
M
⌋ .

(1) Set Q̃ := Q(M), apply the preceding theorem.
(2) Write any n as n = mM + r, 0 ≤ r < M , µQ(n) − π =

(µQ(r) − π)Q̃(m), and use the first part of the proof of the first
theorem to conclude.

(3) Compute the rate of convergence for some of the finite state
Markov chains encountered above.

Exercise 4.39. Consider the Ehrenfest model of Exercise 4.24, toget-
her with its invariant measure π. Although we saw in Exercise 4.24
that P (Xn = k) has no limit when n → ∞, show that the average
time spent by the chain at k has a limit when n→ ∞. Compute this
limit.

Exercise 4.40. [Str05] p. 124. Gibbs Distributions. Voir aussi Olivieri-
Vares, p. 250 pour le champ moyen.
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Exercise 4.41. http : //faculty.uml.edu/jpropp/584/, bouquin de
Charles M. Grinstead and J. Laurie Snell p. 418., The Fundamental
Matrix for absorbing chains.



CHAPTER 5

Martingales

Many probabilists specialize in limit theorems, and much
of applied probability is devoted to finding such results.
The accumulated literature is vast and the techniques
multifarious. One of the most usefull skills for estab-
lishing such results is that of martingale divination, be-
cause the convergence of martingales is guaranteed.

G. Grimmet and D. Stirzaker, [GS05].

Consider the simple random walk on Z: Sn = Y1 + · · · + Yn, where
P (Yk = +1) = 1 − P (Yk = −1) = p, with p ∈ (0, 1). Observe that
|Sn| ≤ n and so

Sn ∈ L1 ∀n ≥ 1 . (5.0.5)

Moreover, if we define (Fn)n≥1 by Fn := σ(Y1, . . . , Yn), then

E[Sn+1|Fn] = E[Sn + Yn+1|Fn] = Sn +E[Yn+1|Fn] = Sn + 2p− 1 .
(5.0.6)

In particular, if p = 1
2, then

E[Sn+1|Fn] = Sn ∀n ≥ 1 . (5.0.7)

(5.0.5) and (5.0.7) are the two properties defining a martingale.

5.1. Definition and Examples

Martingales describe sequences of integrable random variables (Xn)n≥1

which respect a condition of the type (5.0.7): interpreting n as disc-
rete time, the expectation of Xn+1, conditionned on the information
encoded in the variables X1, . . . , Xn, is equal to Xn. We will describe
a slightly more general situation, where the sequence (Fn)n≥1 is defi-
ned a priori, without necessary reference to a sequence of variables.
Throughout this section, (Ω,F, P ) is an arbitrary probability space.

Definition 5.1.1. A filtration is an increasing sequence (Fn)n≥1 of
sub-σ-algebras F1 ⊂ F2 ⊂ · · · ⊂ F. A sequence of random variables
(Xn)n≥1 on (Ω,F) is adapted to (Fn)n≥1 if Xn is Fn-measurable for all

95
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n ≥ 1. A double sequence (Xn,Fn)n≥1, where (Fn)n≥1 is a filtration
and (Xn)n≥1 is adapted to (Fn)n≥1, is called a stochastic sequence 1.

When, as above, a filtration is associated to a sequence of random
variables as Fn := σ(Y1, . . . , Yn), we call it the natural (or canonical)
filtration associated to (Yn)n≥1.

Definition 5.1.2. A stochastic sequence (Xn,Fn)n≥1 in which Xn ∈
L1 is called

(1) a martingale if for all n ≥ 1:

E[Xn+1|Fn] = Xn , (5.1.1)

(2) a submartingale if for all n ≥ 1:

E[Xn+1|Fn] ≥ Xn , (5.1.2)

(3) a supermartingale if for all n ≥ 1:

E[Xn+1|Fn] ≤ Xn , (5.1.3)

When the filtration under consideration is clear in the context, we will
write (Xn)n≥1 rather than (Xn,Fn)n≥1. We have omitted to mention
that each of the expressions (5.1.1)-(5.1.3) holds P -almost everywhere.
We will continue to do so in the sequel, unless when the specification
of the measure P will be necessary.

There is a condition equivalent to (5.1.1) called the martingale property,
which characterizes a martingale. Namely: for all n ≥ 1,

∫

A

Xn dP =

∫

A

Xm dP , ∀A ∈ Fn , ∀m ≥ n . (5.1.4)

In particular, using this identity with A = Ω, we see that

E[Xn] = E[X1] , ∀n ≥ 1 . (5.1.5)

Considering submartingales (resp. supermartingales), the same holds
with = in (5.1.4)-(5.1.5) replaced by ≥ (resp. ≤).

Observe that sequences of independent random variables don’t, in ge-
neral, form martingales. The simplest example of a submartingale is
provided by a non-decreasing sequence (an)n≥1: if Xn = an for all n,
then (Xn)n≥1 is a submartingale with respect to any filtration. Let us

1This terminology is taken from Shiryayev [Shi84]
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give more interesting examples to which we will come back often in
the sequel.

Example 5.1.1. Consider the random walk (Sn)n≥1 described above,
with its natural filtration. Then (5.0.6) shows that (Sn)n≥1 is a martin-
gale when p = 1

2
, a submartingale when p > 1

2
, and a supermartingale

when p < 1
2.

Example 5.1.2. A similar construction can be done with products:
let Mn = Y1Y2 · · ·Yn, where the Yk are independent, non-negative, and
E[Yk] = 1. Then E[Mn] = E[Y1]

n = 1 < ∞. If Fn = σ(Y1, . . . , Yn),
then (Mn,Fn)n≥1 is a martingale. Namely, sinceMn is Fn-measurable 2,

E[Mn+1|Fn] = E[MnYn+1|Fn] = MnE[Yn+1|Fn] = MnE[Yn+1] = Mn .

Example 5.1.3. Let (Fn)n≥1 be any filtration, X ∈ L1. Set Xn :=
E[X|Fn]. Then (Xn,Fn)n≥1 is a martingale. Namely,Xn is Fn-measurable
and

E[|Xn|] = E[|E[X|Fn]|] ≤ E[E[|X||Fn]] = E[|X|] <∞ ,

which implies Xn ∈ L1. Then, since Fn ⊂ Fn+1,

E[Xn+1|Fn] = E[E[X|Fn+1]|Fn] = E[X|Fn] = Xn .

Martingales of this type are called closed. Xn can be interpreted as
the best approximation of X given the partial information contained
in the occurence or non-occurence of the events in Fn. Intuitively,
Xn should converge to X, which will be confirmed in Lévy’s Upward
Theorem.

The following example shows that martingales will also be useful in
the study of purely measure-theoretical problems.

Example 5.1.4. Consider the probability space ([0, 1),B([0, 1)), λ),
where B([0, 1)) denotes the Borel σ-algebra, and λ the Lebesgue me-
asure. Consider the dyadic intervals Ink = [k−1

2n ,
k
2n ) and the associated

dyadic filtration (Fn)n≥1, defined by

Fn := σ
(
Ink : i = 1, 2, . . . , 2n

)
.

If µ is any finite measure on ([0, 1),B([0, 1))), we define the random
variables

Xn :=
2n∑

i=1

µ(Ink )

λ(Ink )
1In

k
. (5.1.6)

2We refer the reader to Chapter 1 for the general properties of conditional expectation that are
used throughout the present chapter.
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For large n, these random variables give accurate local comparisons
of the measures µ and λ. Observe that Xn ∈ L1(λ) and that for all
A ∈ Fn, ∫

A

Xn+1dλ = µ(A) ≡
∫

A

Xndλ , (5.1.7)

which is (5.1.4). This shows that (Xn)n≥1 is a martingale with respect
to the dyadic filtration. By writing

µ(A) =

∫

A

Xndλ ∀A ∈ Fn , (5.1.8)

we see that Xn is a good candidate for the construction of a density
of µ with respect to λ. For (5.1.8) to hold for all A ∈ B([0, 1)), we see
that a limiting procedure n → ∞ is necessary.

Example 5.1.5. Consider the Branching Process of Example 4.1.8:

Xn+1 =

Xn∑

k=1

Y
(n)
k ,

where the Y
(n)
k are i.i.d. with distribution P (Y

(n)
k = j) = ρ(j), j ≥

0. Assume λ := E[Y
(n)
k ] =

∑
j≥0 jρ(j) < ∞. Consider the natural

filtration

Fn := σ(Y
(k)
i , i ≥ 1, k ≤ n) .

We have Xn ∈ L1 since

E[Xn+1] =
∑

k≥1

E[1{k≤Xn}Y
(n)
k ] =

∑

k≥1

E[1{k≤Xn}]E[Y
(n)
k ] = λE[Xn] = λn <∞ .

Similarly,

E[Xn+1|Fn] =
∑

k≥1

1{k≤Xn}E[Y
(n)
k |Fn] = λ

∑

k≥1

1{k≤Xn} = λXn ,

we see that Zn := λ−nXn is a non-negative martingale.

5.2. Martingale Transforms

If Xn is a martingale, what about |Xn|? More generally, what about
φ(Xn)? We call (φ(Xn)) a transformation of (Xn). For example, convex
functions transform martingales into submartingales:

Lemma 5.2.1. Let (Xn)n≥1 be a martingale (resp. submartingale), and
let φ = φ(x) be a convex (resp. convex and non-decreasing) function
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such that φ ◦Xn ∈ L1 for all n ≥ 1. Then (φ(Xn))n≥1 is a submartin-
gale. In particular, (X+

n )n≥1, (X−
n )n≥1 and (|Xn|)n≥1 are submartin-

gales, and if Xn ∈ L2, then (X2
n)n≥1 is a submartingale.

Proof. This follows at once from the conditional version of Jen-
sen’s Inequality: if (Xn)n≥1 is a martingale and φ is convex, then

φ(Xn) = φ(E[Xn+1|Fn]) ≤ E[φ(Xn+1)|Fn] .

If φ is non-decreasing and (Xn)n≥1 is a submartingale, then

φ(Xn) ≤ φ(E[Xn+1|Fn]) ≤ E[φ(Xn+1)|Fn] .

The final statement is a consequence of the first. �

Transformations that will play a fundamental role later are those which
measure in a certain sense the increments of a martingale, i.e. Xn −
Xn−1. See (5.2.1) hereafter.

Definition 5.2.1. Let (Fn)n≥0 (observe that n ≥ 0) be a filtration.
A sequence of random variables (Cn)n≥1 is called predictable if Cn is
Fn−1-measurable for all n ≥ 1.

A typical example of predictable sequence is given in gambling terms:
Cn is the amount of money the gambler bets on the game at time n,
which is of course based on the knowledge of all the games up to time
n− 1. If (Xn)n≥0 is adapted and (Cn)n≥1 is predictable, we define the
transformation of (Xn)n≥0 by (Cn)n≥1 as the sequence ((C · X)n)n≥1,
where

(C ·X)n :=

n∑

k=1

Ck(Xk −Xk−1) . (5.2.1)

Lemma 5.2.2. Let (Cn)n≥1 be predictable and bounded.

(1) If (Xn)n≥0 is a martingale, then (C ·X)n is a martingale.
(2) If (Xn)n≥0 is a sub/super-martingale and if Cn ≥ 0, then (C ·

X)n is a sub/super-martingale.

Proof. Let Zn = (C ·X)n. Clearly, Zn is adapted to Fn, and since
Cn is bounded, Zn ∈ L1. Then, since (Cn) is predictable,

E[Zn+1|Fn] = Zn +E[Cn+1(Xn+1 −Xn)|Fn]

= Zn + Cn+1E[(Xn+1 −Xn)|Fn] . �

Transformations by predictable sequences will play a crucial role in
the following section.
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5.3. Doob’s Optional Stopping Theorem

We have seen in (5.1.5) that the expectation of a martingaleXn, E[Xn],
does not depend on time: E[Xn] = E[X1] for all n ≥ 1. A deep pro-
perty of martingales is that this remains true when the time n becomes
a random variable. This property is the key to all convergence results
that will be derived in further sections, and turns martingales a po-
werful tool in many applications.

Modeling a random time is done using the notion of stopping time,
which we already encountered in the study of Markov chains. Here we
define them with respect to an arbitrary filtration (Fn)n≥1, which we
fix throughout the section.

Definition 5.3.1. Let (Fn)n≥1 be a filtration. A {1, 2, . . .} ∪ {∞}-
valued random variable T is a stopping time with respect to (Fn)n≥1

if
{T ≤ n} ∈ Fn , ∀n ≥ 1 . (5.3.1)

Observe that the defining condition (5.3.1) can be replaced by

{T = n} ∈ Fn , ∀n ≥ 1 . (5.3.2)

We also have {T < ∞} =
⋃
n{T = n} ∈ F and so {T = ∞} = {T <

∞}c ∈ F.

Consider the random walk of Example 5.1.1. Let I be any subset of
Z. Then TI := inf{n ≥ 1 : Xn ∈ I}, the first visit at I, is a stopping
time with respect to the natural filtration. Observe that the last visit
at I, sup{n ≥ 1 : Xn ∈ I} is not a stopping time. The proof of the
following lemma is left as an exercise.

Lemma 5.3.1. If T is a stopping time and if k ≥ 1 is any integer then
T ∧k is a stopping time. If T1, T2 are two stopping times, then T1+T2,
T1 ∧ T2, T1 ∨ T2 are stopping times.

For each stopping time T , define the collection

FT :=
{
A ∈ F : A ∩ {T ≤ n} ∈ Fn , ∀n ≥ 1

}
. (5.3.3)

Lemma 5.3.2. Let T be a stopping time.

(1) FT ⊂ F is a σ-algebra called the stopped σ-field generated by
T ,

(2) T is FT -measurable,
(3) If T1 ≤ T2, then FT1

⊂ FT2
,
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Proof. Clearly, ∅ and Ω belong to FT , and if A ∈ FT , then Ac ∩
{T ≤ n} = {T ≤ n} ∩ (A ∩ {T ≤ n})c ∈ Fn, i.e. Ac ∈ FT . The
stability under countable unions is immediate. This shows that FT is
a σ-algebra. It is trivial to verify that T is FT -measurable. Finally,
assume T1 ≤ T2 and take A ∈ FT1

. We have, for all n ≥ 1,

A∩{T2 ≤ n} =

n⋃

k=0

A∩{T2 = k} =

n⋃

k=0

k⋃

j=1

A ∩ {T1 ≤ j}︸ ︷︷ ︸
∈Fj

∩{T2 = k}︸ ︷︷ ︸
∈Fk

∈ Fn ,

since Fj,Fk ⊂ Fn. Therefore A ∈ FT2
. �

When considering the observation of a random sequence X1, X2, . . .
at some random time T , the output is XT , where XT : Ω → R is

XT (ω) :=

{
Xn(ω) if T (ω) = n ,

0 if T (ω) = ∞ ,
(5.3.4)

which can also be written

XT (ω) =
∑

n≥1

Xn1{T=n}(ω) .

In this form, it is clear that XT is a random variable. Then, for each
x ∈ R,

{XT ≤ x} ∩ {T ≤ n} =

n⋃

j=1

{Xj ≤ x} ∩ {T = j} ∈ Fn ,

since {Xj ≤ x} ∈ Fj and {T = j} ∈ Fj. Since this holds for all n, this
shows that {XT ≤ x} ∈ FT : XT is FT -measurable.

Here is a first concrete use of stopping times, which doesn’t yet involve
the concept of martingale. If X1, X2, . . . are i.i.d. and integrable,
Sn := X1+ · · ·+Xn, then, by linearity, E[Sn] = nE[X1]. The following
gives a generalization of this fact to the situation where n is changed
into a stopping time T .

Theorem 5.3.1 (Wald’s Identity). Let X1, X2, . . . be i.i.d. with X1 ∈
L1, Sn := X1 + · · · + Xn. Let T be a stopping time with respect to
the natural filtration Fn = σ(X1, . . . , Xn), integrable: T ∈ L1. Then
E[ST ] = E[T ]E[X1].
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Proof. Since T ∈ L1 it is a.s. finite. We first consider the case
Xk ≥ 0:

E[ST ] =
∑

k≥1

E[Sk1{T=k}] =
∑

k≥1

k∑

j=1

E[Xj1{T=k}] =
∑

j≥1

E[Xj1{T≥j}] .

Since {T ≥ j} = {T ≤ j − 1}c ∈ Fj−1 and since Xj is independent of
Fj−1, we have E[Xj1{T≥j}] = E[Xj]E[1{T≥j}]. The result follows since
E[Xj] = E[X1] and

∑
j≥1E[1{T≥j}] = E[T ]. In the general case, we

must justify the interchange of the sums over j and k. Observe that

∞ > E[|X1|]E[T ] =
∑

j≥1

E[|Xj|]P (T ≥ j) =
∑

j≥1

∑

k≥j
E[|Xj|]P (T = k) .

By Fubini’s Theorem, the change of order of summation is therefore
justified. �

Wald’s Identity has the following interesting consequence. Let (Sn)
denote the simple symmetric random walk starting at the origin. Let
T := inf{n ≥ 1 : Sn = 1}. By recurrence of the walk, P (T < ∞) = 1.
Since ST = 1 on {T < ∞}, we have P (ST = 1) = 1, i.e. E[ST ] = 1.
Since the walk is symmetric, E[X1] = 0 for all n. If T ∈ L1, the
previous theorem would imply that E[ST ] = 0, a contradiction. The-
refore, E[Tx] = ∞.

Let us move to the major tool of Martingale Theory, which says that
the property (5.1.5) is preserved when the martingale is observed at
random times. The central ingredient is the following lemma.

Lemma 5.3.3. Let (Xn)n≥0 be a martingale (resp. a supermartingale),
T a stopping time. Then (Xn∧T )n≥0 is again a martingale (resp. su-
permartingale).

Proof. For all n ≥ 1, define Cn := 1{T≥n} . Since {T ≥ n} =
{T < n}c ∈ Fn−1, (Cn)n≥1 is predictable. By explicit computation,
(C ·X)n = Xn∧T −X0. Therefore,

Xn∧T = (C ·X)n +X0 ∀n ≥ 0 . (5.3.5)

Since Cn is bounded, the result follows from Lemma 5.2.2. �

Theorem 5.3.2 (Doob’s Optional Stopping Theorem). Let (Xn)n≥0

be an adapted sequence, T a stopping time. Consider the following
conditions:
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(1) T is bounded,
(2) T is a.s. finite and (Xn) is bounded,
(3) T ∈ L1 and the increments (Xn −Xn−1) are bounded,
(4) T is a.s. finite and Xn ≥ 0 .

If (Xn) is a supermartingale, and if either of the conditions (1)-(4) is
satisfied, then XT ∈ L1 and E[XT ] ≤ E[X0].
If (Xn) is a martingale, and if either of the conditions (1)-(3) is sa-
tisfied, then XT ∈ L1 and E[XT ] = E[X0].

Proof. We first consider the case of supermartingales. Under (1),
there exists K such that T ≤ K. Therefore, XT = XK∧T and so, by
Lemma 5.3.3, XT ∈ L1 and E[XT ] = E[XK∧T ] ≤ E[X0]. Assume then
that (2) holds, i.e. |Xn| ≤M . Then

E[|XT |] =

∫

T<∞
|XT |dP ≤M ,

and so XT ∈ L1. By Dominated Convergence and the supermartingale
property ({T ≤ n} ∈ Fn),

E[XT ] =

∫

T<∞
XTdP = lim

n→∞

∫

T≤n
Xn∧TdP ≤ lim sup

n→∞

∫

T≤n
X0dP = E[X0] .

Assume (3) holds. Then T is a.s. finite and |Xn − Xn−1| ≤ M .
Therefore,

|Xn∧T | ≤ |X0| + |Xn∧T −X0| ≤ |X0| +
n∧T∑

k=1

|Xk −Xk−1| ≤ |X0| +MT .

This implies Xn∧T ∈ L1. Since limnXn∧T = XT a.s., by the Lemma of
Fatou,

∫
|XT |dP ≤ lim inf

n→∞

∫
|Xn∧T |dP ≤ E[|X0|] +ME[T ] <∞

and so XT ∈ L1. Then, by Dominated Convergence,

E[XT ] = lim
n→∞

∫

T≤n
Xn∧TdP ≤ lim sup

n→∞

∫

T≤n
X0dP = E[X0] .

Under (4), we use again the Lemma of Fatou:

E[|XT |] = E[XT ] ≤ lim inf
n→∞

∫
Xn∧TdP ≤

∫

T<∞
X0dP = E[X0] .
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Now if (Xn) is a martingale then both (Xn) and (−Xn) are supermar-
tingales, and therefore, under either of the conditions (1)-(3), E[XT ] ≤
E[X0] and E[−XT ] ≤ E[−X0]. This implies E[XT ] = E[X0]. �

The Optional Stopping Theorem applies when the stopping time sa-
tisfies some finiteness condition, and the following example shows that
the result can be wrong without such restrictions. Let again (Sn)n≥0

denote the simple symmetric random walk starting at the origin. Con-
sider the stopping time T := inf{n ≥ 1 : Sn = 1}. Then we saw that
E[ST ] = 1, which is obviously different from E[S0] = 0. This is due to
the fact that T is not integrable.

The following lemma gives a useful criterium to verify the finiteness
of T in concrete situations.

Lemma 5.3.4. Assume T is a stopping time with respect to (Fn) for
which there exist an integer N > 0 and an ǫ > 0 such that, almost
surely,

P (T ≤ n+N |Fn) ≥ ǫ ∀n ≥ 0 . (5.3.6)

Then P (T > kN) ≤ (1 − ǫ)k for all k ≥ 1. In particular, T ∈ L1.

Condition (5.3.6) means that whatever happened up to a fixed time
n, the probability of T occuring before the next N steps is always at
least ǫ.

Proof. If k = 1, P (T ≤ N) = E[P (T ≤ N |F0)] ≥ ǫ. So assume
the result has been shown for k.

P (T > (k + 1)N) = E[1{T>kN}1{T>(k+1)N}]

= E[E[1{T>kN}1{T>(k+1)N}|FkN ]]

= E[1{T>kN}P (T > (k + 1)N |FkN)] .

But P (T > (k + 1)N |FkN) = 1 − P (T ≤ kN +N |FkN) ≤ 1 − ǫ. This
implies P (T > (k + 1)N) ≤ (1 − ǫ)P (T > kN) ≤ (1 − ǫ)k+1. �

We now present applications of the Stopping Theorem.

5.3.1. Application: the Second Heart Problem. In a deck of
52 cards, well shuffled, we turn the cards from the top until the first
hearts appears. If we turn one more card, what is the probability that
this card is hearts again? Answer: 1

4 .
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We describe the experience by a finite sequence X0, X1, . . . , X51, where
Xk is the fraction of hearts left in the deck after the kth card was
drawn: X0 = 13

52 = 1
4, and for k = 1, . . . , 51 (observe that the number

of cards left after the kth card was dran is 52 − k),

Xk =
#{hearts remaining in the deck after kth card was drawn}

52 − k
.

Observe that since we assume the deck to be well shuffled,Xk is exactly
the probability that a hearts is drawn at time k + 1. We claim that
(Xk)

51
k=0 is a martingale with respect to its natural filtration. Namely,

by considering separately the cases in which the nth card drawn is a
hearts or not,

E[Xn|Fn−1] =
Xn−1(52 − (n− 1)) − 1

52 − n
Xn−1 +

Xn−1(52 − (n− 1))

52 − n
(1 −Xn−1)

= Xn−1 .

Define the stopping time T as the first time a hearts is drawn. The
probability we are interested in is E[XT ]. Since T is bounded (T ≤ 52)
the Stopping Theorem gives: E[XT ] = E[X0] = 1

4.

5.3.2. Application: The Gambler’s Ruin. This section rede-
rives the results obtained in Exercise 2.9 in a completely different
way. The martingales introduced hereafter were apparently introdu-
ced first by De Moivre. Consider i.i.d. random variables Y1, Y2, . . . with
P (Yk = +1) = 1−P (Yk = −1) = p, 0 < p < 1. We consider the simple
random walk starting at some x > 0: S0 := x, Sn := x+Y1 + · · ·+Yn,
and denote its law by Px. We fix some N > x and study the probabi-
lity that the walk reaches 0 before N , that is Px(ST = 0). This can be
done by introducing the first time at which the walk exits the interval
[1, N − 1]:

T := inf{n ≥ 1 : Sn ∈ {0, N}} .
First, we show that T ∈ L1, which is intuitively true since for T to
be very large the walk must stay in the middle of the box for a long
period of time, a very rare event. Wherever the walk is at time n, the
probability that it exits the interval [1, N−1] during the next N steps
is bounded below by the probability that it exits the interval through
N , which is itself bounded below by pN ≡ ǫ > 0. By Lemma 5.3.4,
T ∈ L1.
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When p = 1
2
, Sn is a martingale, and |Sn − Sn−1| = 1. By the Stop-

ping Theorem, Ex(ST ) = Ex(S0) = x. Since ST ∈ {0, N}, we have
Ex(ST ) = 0 ·Px(ST = 0) +N ·Px(ST = N), and get Px(ST = N) = x

N
,

i.e. Px(ST = 0) = 1 − x
N

.

When p 6= 1
2, Sn we need to find another martingale which “cancels”

the asymmetry between p and 1−p. The following is left as an exercise:

Lemma 5.3.5. Nn = Sn − (p− q)n and Mn =
(
q
p

)Sn are martingales.

As can be verified easily, supn |Mn −Mn−1| ≤ βN <∞, and therefore

by Theorem 5.3.2, E[MT ] = E[M0]. Since MT ∈ {1,
(
q
p

)N} almost
surely, we easily get as before

P (ST = 0) =

(
q
p

)x −
(
q
p

)N

1 −
(
q
p

)N ,

as we had obtained in Exercise 2.9.

5.3.3. Application: first appearance in a random sequence.
The following is a generalization of the problem known as “The first
run of three sixes”. Let (Xn)n≥1 be an i.i.d. sequence taking values
in the finite set S = {±1}, with P (Xk = +1) = p, P (Xk = −1) = q,
p + q = 1. We always assume that 0 < p < 1. Denote by Fn the
natural filtration Fn := σ(X1, . . . , Xn).

Fix a word of size l, a = (a1, a2, . . . , al), with ai ∈ S. Let T be the
first time the word a appears in the sequence (Xn)n≥1, that is

Ta := inf{n ≥ l : (Xn−l+1, . . . , Xn) = a} .
Clearly, Ta is a stopping time with respect to the natural filtration, and
it is easy to show using Lemma 5.3.4 that Ta ∈ L1. We are interested
in computing E[Ta]. For example, we will show that for the word
a = (−1, . . . ,−1) (l times the symbol −1),

E[Ta] = q−1 + q−2 + · · · + q−l (5.3.7)

To study this problem, we construct martingales and use the Stopping
Theorem. We introduce an auxiliary process as follows. Consider the
numbers

K+ := p−1 , K− := q−1 ,
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which will be rates associated to the appearance of +1 or −1 in the
sequence Xn. Assume first that a is an infinite sequence (a1, a2, . . . ).
Just before each time n, a gambler enters the game with an initial

having of H
(n)
0 := 1 (Brazilian reais, say), and bets H

(n)
0 reais on the

event that Xn will be a1. If he loses, that is if Xn 6= a1, his new havings

become H
(n)
1 := 0, and he leaves the game. If he wins, i.e. if Xn = a1,

he wins K+H
(n)
0 if a1 = +1, and K−H

(n)
0 if a1 = −1. His havings thus

become H
(n)
1 := Ka1

H
(n)
0 . At the next step, just before n+ 1, he bets

H
(n)
1 on the event that Xn+1 will be a2. If he loses then H

(n)
2 := 0 (and

he quits the game) and if he wins, his new having is H
(n)
2 := Ka2

H
(n)
1 ,

etc. After k steps,

H
(n)
k+1 =

{
0 if Xn+k 6= ak+1 ,

Kak+1
H

(n)
k if Xn+k = ak+1 .

Observe that whether ak+1 is +1 or −1, the havings of the player
remain equal to 1 on average.

For n ≥ 1, let Zn denote the total havings of all players that entered
the game up to time n:

Zn := H(1)
n +H

(2)
n−1 + · · · +H

(n−1)
2 +H

(n)
1 ≡

n∑

j=1

H
(j)
n−j+1 .

Define also Z0 := 0. Since the havings of each player remain constant
on average, and since at time n exactly n reais have been invested by
the players in the game, we expect that the sequence (Mn)n≥0 defined
by Mn := Zn − n forms a martingale with respect to the natural
filtration Fn. Indeed, since for all j = 1, . . . , n,

E[H
(j)
n+1−j+1|Fn] = E[KXn+1H

(j)
n−j+1|Fn] = H

(j)
n−j+1E[KXn+1|Fn] = H

(j)
n−j+1 ,

and since E[H
(n+1)
1 |Fn] = H

(n+1)
0 ≡ 1, we get

E[Zn+1|Fn] =

n∑

j=1

E[H
(j)
n+1−j+1|Fn] + E[H

(n+1)
1 |Fn]

=
n∑

j=1

H
(j)
n−j+1 + 1 ≡ Zn + 1 .

This shows that Mn is a martingale.
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If T ∈ L1 is a stopping time with respect to the filtration Fn, we can
then stop Mn at T . The Stopping Theorem gives E[MT ] = E[M0] = 0,
which implies

E[T ] = E[ZT ] . (5.3.8)

Consider for example the case a = (−1,−1, . . . ,−1) (l times the sym-
bol −1), then at time Ta the player who entered at time Ta − l lost his
first bet and quit the game immediately, but the player who entered
at time Ta− l+1 won all his bets up to time Ta, and his fortune is thus
exactly K l

−. The fortune of the player who entered at time Ta − l + 2

is exactly K l−1
− , etc., until the player who entered just before time Ta,

whose havings equal K−. We then have ZTa
= K l

− +K l−1
− + · · ·+K−.

By (5.3.8), this proves (5.3.7).

5.3.4. Application: The Secretary Problem. N candidates
present themselves for a job interview. According to the employer’s
criteria, the ith candidate’s suitability for the job is a number between
0 and 1. At time i, the employer interviews candidate i and determines
its suitability exactly. Immediately after the interview, he must decide
whether to accept or reject the candidate, since no recall is possible.
What strategy should the employer adopt in order to maximize his
chance of choosing a good candidate?

In probabilistic terms, the suitabilities of the candidates can be mo-
delized by an i.i.d. sequence X1, . . . , XN where each Xk has uniform
distribution over [0, 1]. Finding the best strategy is to find a stop-
ping time T which maximizes E[XT ]. This best stopping time is given
hereafter.

Theorem 5.3.3. Consider the sequence α1, . . . , αN defined by αN := 0,

and for k = N, . . . , 1, αk−1 := 1
2 +

α2
k

2 . Let T ∗ := inf{n ≥ 1 : Xn > αn}.
Then

E[XT ] ≤ E[XT ∗] (5.3.9)

for any stopping time T .

Observe that α1 depends on N , and that αk is decreasing. As an
example, in the case N = 5, we have approximately:

k 1 2 3 4 5
αk 0.742 0.695 0.625 0.500 0

INCLUIR O ARGUMENTO INTUITIVO DO GUGU.
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Proof of Theorem 5.3.3: By a simple computation we have,
for all 0 ≤ α ≤ 1,

E[Xn ∨ α] =
1

2
+
α2

2
∀n = 1, . . . , N . (5.3.10)

For each stopping time T (with respect to the natural filtration as-
sociated to (Xk)

N
k=1), we define a sequence (Y T

n )Nn=0, where Y0 := α0,
and

Y T
n := Xn∧T ∨ αn .

Claim 1: (Y T
n )Nn=0 is a supermartingale. On {T ≤ n− 1},

E[Y T
n |Fn−1] = E[XT ∨ αn|Fn−1] = XT ∨ αn ≤ XT ∨ αn−1 = Y T

n−1 ,

and on {T > n− 1},

E[Y T
n |Fn−1] = E[Xn∨αn|Fn−1] = E[Xn∨αn] =

1

2
+
α2
n

2
= αn−1 ≤ Y T

n−1 .

Claim 2: (Y T ∗
n )Nn=0 is a martingale. On {T ∗ ≤ n− 1},
E[Y T ∗

n |Fn−1] = E[XT ∗ ∨ αn|Fn−1] = XT ∗ ∨ αn
But by the definition of T ∗, XT ∗ > αT ∗. Since αk is decreasing,
αT ∗ ≥ αn−1 ≥ αn. This means that E[Y T ∗

n |Fn−1] = XT ∗ ∨ αn =
XT ∗ = XT ∗ ∨ αn−1 = Y T ∗

n−1. Now on {T ∗ > n − 1}, as before we get
E[Y T ∗

n |Fn−1] = αn−1 = Y T ∗
n−1.

Now for any stopping time T , Theorem 5.3.2 and Claim 1 give E[YT ] ≤
E[Y0]. On the other hand, by Claim 2, E[YT ∗] = E[Y0], which proves
the theorem. �

5.3.5. More on Optional Stopping. We saw before that lo-
oking at a martingale at a random time preserves expectations: E[XT ] =
E[X0]. We now show a stronger result stating thaf if a martingale is
considered at random times T1 ≤ T2 ≤ . . . , then the sequence (XTk

)k≥1

is again a martingale. This implies, in particular, that E[XTk
] =

E[X0]. We first consider a particular case, that of closed martingales.
Again, (Fn)n≥1 is a fixed filtration.

Theorem 5.3.4 (General Optional Stopping for Closed Martingales).
Let (Xn)n≥1 be a closed martingale, i.e. Xn = E[X|Fn] for some
integrable random variable X. Let T1 ≤ T2 ≤ . . . be a sequence of a.s.
finite stopping times. Then

XTk
= E[X|FTk

] . (5.3.11)
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That is, (XTk
)k≥1 is again a closed martingale.

Proof. By a previous lemma, (XTk
)k≥1 is adapted to (FTk

)k≥1. To
verify (5.3.11), fix k ≥ 1 and denote for simplicity T := Tk. Take
A ∈ FT . Since T is a.s. finite, we can write

∫

A

XT dP =
∑

n≥0

∫

A∩{T=n}
XT dP =

∑

n≥0

∫

A∩{T=n}
E[X|Fn] dP .

Since A ∩ {T = n} = (A ∩ {T ≤ n}) ∩ (A ∩ {T ≤ n − 1})c ∈ Fn, we
have

∑

n≥0

∫

A∩{T=n}
E[X|Fn] dP =

∑

n≥0

∫

A∩{T=n}
X dP =

∫

A

X dP ,

which shows that XT = E[X|FT ], i.e. (5.3.11). Then each XTk
is

integrable since

E[|XTk
|] = E[|E[X|FTk

]|] ≤ E[E[|X||FT ]] = E[|X|] <∞ , (5.3.12)

and the martingale property is verified since

E[XTk+1
|FTk

] = E[E[X|FTk+1
]|FTk

] = E[X|FTk
] = XTk

.

�

We then turn to the general case. Observe that the difference with the
preceding theorem is that the stopping times must now be bounded.

Theorem 5.3.5 (General Optional Stopping Theorem). Let (Xn)n≥1

be a martingale (resp. submartingale) and let T1 ≤ T2 ≤ . . . be a
sequence of bounded stopping times. Then (XTk

)k≥1 is again a mar-
tingale (resp. submartingale). In particular, (in the case of submar-
tingale, replace everywhere = by ≥)

E[XTk+1
]=E[XTk

] = E[X1] (5.3.13)

Proof. For simplicity, consider the case k = 1. To verify that
E[XT2|FT1] = XT1, i.e. that

∫

A

XT2
dP =

∫

A

XT1
dP , ∀A ∈ FT1

, (5.3.14)

it is sufficient to verify, since T1 is a.s. finite, that
∫

Bj

XT2
dP =

∫

Bj

XT1
dP , ∀A ∈ FT1

, (5.3.15)
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where Bj := A ∩ {T1 = j}. Then, (5.3.14) follows by summing over
j ≥ 1. To obtain (5.3.15) we shall prove the validity of the following
expression for all k ≥ j:

∫

Bj∩{T2=k}
XT2

dP =

∫

Bj∩{T2≥k}
Xk dP −

∫

Bj∩{T2≥k+1}
Xk+1 dP .

(5.3.16)
Namely from it follows, by summing (5.3.16) over k = j, . . . , N , for
some sufficiently large N (larger than max{maxT1,maxT2}), that

∫

Bj∩{T1≥j}
XT2

dP =

∫

Bj∩{T1≥j}
XT1

dP , ∀A ∈ FT1
, (5.3.17)

which is exactly (5.3.15) since T1 ≤ T2 implies

Bj ∩ {T1 ≥ j} = A ∩ {T1 = j} ∩ {T1 ≥ j} = A ∩ {T1 = j} = Bj .

To show (5.3.16), first write
∫

Bj∩{T2≥k}
Xk dP =

∫

Bj∩{T2=k}
Xk dP +

∫

Bj∩{T2≥k+1}
Xk dP .

Obviously, the first term equals
∫

Bj∩{T2=k}
Xk dP =

∫

Bj∩{T2=k}
XT2

dP .

For the second, first use the fact that (Xk,Fk)k≥1 is a martingale:
∫

Bj∩{T2≥k+1}
Xk dP =

∫

Bj∩{T2≥k+1}
E[Xk+1|Fk] dP .

Now note that Bj ∈ Fj and {T2 ≥ k+1} = {T2 ≤ k}c ∈ Fk. Therefore,
Bj ∩ {T2 ≥ k + 1} ∈ Fk. This yields

∫

Bj∩{T2≥k+1}
E[Xk+1|Fk] dP =

∫

Bj∩{T2≥k+1}
Xk+1 dP .

We have thus proved (5.3.16). To show (5.3.13) let N ≥ supω Tk(ω)
and compute

E[XTk
] =

N∑

j=1

∫

{Tk=j}
XTk

dP =

N∑

j=1

∫

{Tk=j}
Xj dP

=
N∑

j=1

∫

{Tk=j}
XN dP = E[XN ] = E[X1] ,
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where we have used two times the fact that (Xn)n≥1 is a martingale.
�

5.4. The Doob-Kolmogorov Inequality and L2-martingales

In this section we prove the Doob-Kolmogorov Inequality, which will
give convergence of L2-martingales. (In the following section, the Upc-
rossing Inequality will imply convergence of L1-martingales.)

Theorem 5.4.1 (Doob-Kolmogorov Inequality). Let (Sn,Fn)n≥1 be a
martingale, λ > 0. Then for all n ≥ 1,

P
(

max
1≤k≤n

|Sk| ≥ λ
)
≤ E[S2

n]

λ2
. (5.4.1)

Proof. The proof is analogous to what was done to obtain (2.4.9)
Define A0 := Ω, Ak := {|Sj| < λ, j = 1, . . . , k}. Let Bk := Ak−1 ∩
{|Sk| ≥ λ} be the event in which |Sj| passes over λ for the first time.
We have Ak ∪ B1 ∪ · · · ∪Bk = Ω. Therefore,

E[S2
n] ≥

n∑

k=1

∫

Bk

S2
ndP .

Writing, for each k, S2
n = (Sn − Sk)

2 + 2Sk(Sn − Sk) + S2
k, we have

∫

Bk

S2
ndP ≥ 2

∫

Bk

(Sn − Sk)SkdP +

∫

Bk

S2
kdP

For the first term, since Bk ∈ Fk,∫

Bk

(Sn − Sk)SkdP =

∫

Bk

E[(Sn − Sk)Sk|Fk]dP

=

∫

Bk

SkE[Sn − Sk|Fk]dP = 0

since E[Sn − Sk|Fk] = 0 by the martingale property. Then observe
that on Bk, |Sk| ≥ λ and so the second term equals

∫

Bk

S2
kdP ≥ λ2P (Bk).

Therefore, E[S2
n] ≥ λ2

∑n
k=1 P (Bk) = λ2P

(
max1≤k≤n |Sk| ≥ λ

)
. �

The Doob-Kolmogorov suggests that some control on the convergence
of Sn might be obtained by imposing that E[S2

n] be bounded uniformly
in n.
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5.4.1. Convergence of L2-Martingales. In this section we study
martingales which have the property of being L2-bounded, i.e. supnE[|Sn|2] <
∞. For these, convergence follows from the Doob-Kolmogorov Inequ-
ality. First,

Lemma 5.4.1. A martingale (Xn)n≥0 is bounded in L2 if and only if
∑

k≥1

E[(Xk −Xk−1)
2] <∞ . (5.4.2)

Proof. First, write Xn = X0 +
∑n

k=1(Xk −Xk−1) and expand:

X2
n = X2

0+2

n∑

k=1

X0(Xk−Xk−1)+2
∑

1≤i<k≤n
(Xi−Xi−1)(Xk−Xk−1)+

n∑

k=1

(Xk−Xk−1)
2 .

Now, by the martingale property, all the mixed terms vanish:

E[X0(Xk −Xk−1)] = E[X0E[(Xk −Xk−1)|Fk−1]] = 0 .

In the same way, E[(Xi −Xi−1)(Xk −Xk−1)] = 0. �

Theorem 5.4.2. Let (Sn,Fn)n≥1 be a martingale bounded in L2. Then
there exists a random variable S such that

Sn → S almost surely and in L2 . (5.4.3)

Proof. Observe that Sn(ω) converges if and only if ω ∈ A, where

A :=
⋂

l≥1

⋃

m≥1

⋂

j≥1

{|Sm+j − Sm| ≤ l−1} .

We show that P (Ac) = 0 or, which is equivalent, that limm→∞ P (Al(m)) =
0 for all l ≥ 1, where

Al(m) :=
⋃

j≥1

{|Sm+j − Sm| > ǫl} ,

and ǫl := l−1. Observe that for a givenm ≥ 1, P (Al(m)) = limn P
(
max1≤k≤n |Yk| ≥

ǫl
)
, where Yj := Sm+j − Sm. It is easy to see that (Yk)k≥1 is a martin-

gale: for all B ∈ Fk,∫

B

Yk+1dP =

∫

B

E[Yk+1|Fm+k]dP

=

∫

B

E[Sm+k+1|Fm+k]dP −
∫

B

E[Sm|Fm+k]dP

=

∫

B

Sm+kdP −
∫

B

SmdP =

∫

B

YkdP .
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We can thus apply the Doob-Kolmogorov Inequality to Yk:

P
(

max
1≤k≤n

|Yk| ≥ ǫl
)
≤ E[Y 2

n ]

ǫl2
=
E[(Sm+n − Sm)2]

ǫl2
=
E[S2

m+n] − E[S2
m]

ǫl2
,

(5.4.4)

where we used again the martingale property of Sn:

E[S2
m+n] = E[S2

m] + E[(Sm+n − Sm)2] + 2E[Sm(Sm+n − Sm)]

= E[S2
m] + E[(Sm+n − Sm)2] + 2E[SmE[Sm+n − Sm|Fm]]

= E[S2
m] + E[(Sm+n − Sm)2] .

This also shows that the sequence E[S2
n] is non-decreasing in n. Since

it is at the same time bounded in n, define M := limnE[S2
n]. Taking

n→ ∞ in (5.4.4), we get

P (Al(m)) ≤ M − E[S2
m]

ǫl2
,

and therefore limm P (Al(m)) = 0, which shows that S := limn Sn
exists almost surely. To show that the convergence is also in L2, use
Fatou:

E[(S−Sn)2] ≤ lim inf
m→∞

E[(Sn+m−Sn)2] = lim inf
m→∞

E[S2
n+m]−E[S2

n] = M−E[S2
n] ,

which goes to zero when n→ 0. �

As a corollary, we have a convergence result for random series.

Theorem 5.4.3. Let X1, X2, . . . be a sequence of independent random
variables with E[Xk] = 0 and varXk <∞ for all k ≥ 1. If

∑
k varXk <

∞, then
∑

kXk converges a.s.

Proof. We consider the natural filtration associated to (Xk), and
let Mn := X1 + · · · +Xn. Since E[Xk] = 0, (Mn) is a martingale. We
also have that E[(Mk−Mk−1)

2] = E[X2
k ] = varXk. If

∑
k varXk <∞,

then (Mn) is bounded in L2 by Lemma 5.4.1 and by Theorem 5.4.2,
limnMn exists almost surely. �

As an example, consider the random harmonic series
∑

n
ǫn
n
, where the

ǫn = ±1 independently with probability 1
2
. Setting Xn := ǫn

n
we have

varXn = 1
n2 , and therefore

∑
n
ǫn
n

converges almost surely.
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5.4.2. Application to Markov Chains. As another application
of Theorem 5.4.2, let (Xn)n≥0 be a Markov chain with state space
S an transition matrix Q. Assume that the chain is irreducible and
recurrrent. It can be shown (Exercise 5.7) that if ψ : S → R is
harmonic , i.e. Qψ = ψ, then (ψ(Xn))n≥0 is a martingale. If we assume
moreover that ψ is bounded, then (ψ(Xn))n≥0 is bounded in L2, and
by the previous theorem, limn ψ(Xn) exists almost surely. Since the
chain is recurrent, P (Xn = x i.o.) = 1 for all x ∈ S. But, since {Xn =
x} ⊂ {ψ(Xn) = ψ(x)}, this means that P (ψ(Xn) = ψ(x) i.o.) = 1.
Therefore, we must have

lim
n→∞

ψ(Xn) = ψ(x) ∀x ∈ S ,

which is possible only if ψ is constant. We have thus shown:

Theorem 5.4.4. Let (Xn)n≥0 be a Markov chain with state space S
an transition matrix Q. If the chain is irreducible and recurrent, then
the only bounded harmonic functions ψ : S → R are the constants.

5.5. Upcrossings and L1-boundedness

We now take a closer look at the oscillations of the sequenceX1(ω), X2(ω), . . .
for a fixed ω ∈ Ω, where (Xn) is a (sub)martingale.

Definition 5.5.1. Let (xn)n≥1 be a sequence of real numbers, a < b
two real numbers. We say that (xn)n≥1 upcrosses [a, b] at least k times
if there exist 2k integers 1 ≤ n1 < n′1 < n2 < n′2 < · · · < nk < n′k such
that xnj

≤ a, xn′
j
≥ b for all j = 1, . . . , k. If (xn)n≥1 crosses [a, b] at

least one time, the number of upcrossings of (xn)n≥1 across [a, b], K, is
the largest integer k such that (xn)n≥1 upcrosses [a, b] at least k times.
If this largest k doesn’t exist, we set K := +∞ and we say that (xn)n≥1

oscillates endlessly across [a, b].

Observe that lim infn xn < lim supn xn if and only if there exist two
numbers a < b such that (xn)n≥1 oscillates endlessly across [a, b]. The-
refore, (xn)n≥1 converges if and only if its number of upcrossings across
any interval [a, b] is finite.

Theorem 5.5.1 (Upcrossing Inequality). Let (Xn,Fn)n≥1 be a submar-
tingale. Let a < b two real numbers, and for each ω ∈ Ω, let Ua,b(ω)
denote the number of upcrossings of the sequence (Xn(ω))n≥1 across



116 5. MARTINGALES

[a, b]. Then

E[Ua,b] ≤ sup
n≥1

E
[
(Xn − a)+

]

b− a
. (5.5.1)

Proof. Obviously, the number of upcrossings of (Xn)n≥1 across
[a, b], is equal to the number of upcrossings of (Yn)n≥1 across [0, 1],
where

Yn :=
(Xn − a)+

b− a
.

By Lemma 5.2.1, (Yn)n≥1 is a submartingale. We define a sequence of
stopping times T−

1 < T+
1 < T−

2 < T+
2 < . . . as follows (see Figure 1):

T−
1 := inf{n ≥ 1 : Yn = 0} ,
T+

1 := inf{n > T−
1 : Yn ≥ 1} ,

and, for k ≥ 2,

T−
k := inf{n > T+

k−1 : Yn = 0}
T+
k := inf{n > T−

k : Yn ≥ 1}
We call each interval [T−

k , T
+
k ] an upcrossing interval. Since the number

Xn

a

b

T
−

1
T

+

1
T

+

2
T

−

2
T

+

3
T

−

3

Figure 1. The construction of the stopping times T−

k
, T+

k
.

of upcrossings of (Yn)n≥1 can be infinite, we take N large and consider

U
(N)
a,b , the number of upcrossing intervals of the sequence (Yn)n≥1 across

[0, 1] entirely contained in [1, N ]. To express U
(N)
a,b using (Yn)n≥1, we

introduce for each n ≥ 1 a variable Cn which determines whether n
belongs to an upcrossing interval:

Cn :=

{
1 if n ∈ (T−

k , T
+
k ] for some k ,

0 otherwise.
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Observe that the sequence Cn is predictable since

{Cn = 1} =
⋃

k≥1

{T−
k < n}∩{T+

k ≥ n} =
⋃

k≥1

{T−
k ≤ n−1}∩{T+

k ≤ n−1}c .

They key is to observe that one can bound U
(N)
a,b by (set Y0 := 0)

U
(N)
a,b ≤

N∑

k=1

Ck(Yk − Yk−1) .

The fact that there is an inequality comes from the fact that we might
be considering ks at the end of the interval [1, N ] for which Ck = 1
but for which the last upcrossing inside [1, N ] hasn’t been completed.
Now this last sum is exactly the Nth term of the transform of (Yn) by
(Cn), considered at time N :

N∑

k=1

Ck(Yk − Yk−1) ≡ (C · Y )N .

The Let C̃n := 1 − Cn, which is also predictable. By Lemma 5.2.2.
(C̃ · Y )n is a submartingale, which implies

E[(C̃ · Y )N ] ≥ E[(C̃ · Y )1] = 0 ,

since C1 = 0. Therefore,

E[U
(N)
a,b ] ≤ E[(C · Y )N ] = E[YN ] − E[Y0] −E[(C̃ · Y )N ] ≤ E[YN ] .

We thus have

E[U
(N)
a,b ] ≤ E[YN ] ≤ sup

n≥1
E[Yn] .

Since U
(N)
a,b is increasing in N and Ua,b = limN U

(N)
a,b , Monotone Con-

vergence gives (5.5.1). �

The Upcrossing Inequality suggests that convergence of a (sub)martingale
(Xn)n≥1 might hold under some uniformity assumptions on the expecta-
tions of |Xn|.

A sequence (Xn)n≥1 is bounded in L1 if

sup
n≥1

E[|Xn|] <∞ . (5.5.2)

Observe that if (Xn)n≥1 is a submartingale then

E[|Xn|] = E[X+
n +X−

n ] = 2E[X+
n ] − E[Xn] ≤ 2E[X+

n ] − E[X1] ,
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and therefore it is L1-bounded if and only if supnE[X+
n ] < ∞. For

an arbitrary filtration (Fn)n≥1, let F∞ be the σ-algebra generated by
(Fn)n≥1, i.e. F∞ = σ

(⋃
n Fn

)
.

Theorem 5.5.2. Let (Xn)n≥1 be a submartingale, bounded in L1. Then
there exists X∞ ∈ L1, F∞-measurable, such that

Xn → X∞ , a.s. (5.5.3)

Proof. Consider the set M of ωs for which (Xn(ω))n≥1 converge.
That is,

M c :=
{
ω ∈ Ω : lim inf

n→∞
Xn(ω) < lim sup

n→∞
Xn(ω)

}

=
⋃

a,b∈Q
a<b

{ω ∈ Ω : Ua,b(ω) = +∞} .

Since (Xn)n≥1 is L1-bounded, we have

sup
n≥1

E[(Xn − a)+]

b− a
≤ sup

n≥1

E[|Xn − a|]
b− a

≤ a

b− a
+ sup

n≥1

E[|Xn|]
b− a

<∞ .

By the Upcrossing Inequality, this gives E[Ua,b] <∞ and therefore Ua,b
is finite almost everywhere, i.e. P (Ua,b = +∞) = 0 and so P (M c) = 0.
Then, define

X∞(ω) :=

{
limn→∞Xn(ω) if ω ∈M ,

0 if ω ∈M c.

Clearly,X∞ is F∞-measurable. Using Fatou’s Lemma and L1-boundedness,

E[|X∞|] = E[ lim
n→∞

|Xn|] ≤ lim inf
n→∞

E[|Xn|] <∞ ,

which shows that X∞ ∈ L∞. �

Corollary 5.5.1. Let (Xn)n≥1 be a non-negative supermartingale.
Then there exists X∞ ∈ L1, F∞-measurable, such that

Xn → X∞ a.s. (5.5.4)

Proof. Yn := −Xn is a submartingale. Since E[|Yn|] = E[Xn] ≤
E[X1] <∞, it is bounded in L1 and so the previous theorem applies.

�

If Sn denotes the simple symmetric random walk, then Sn is a mar-
tingale but it doesn’t converge, since it visits any site of Z an infinite
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number of times. Of course, Sn is not bounded in L1.

Now if this same random walk starts at x = 1, Let T denote the
time of first visit at the origin. Then Xn := Sn∧T is a non-negative
martingale (Lemma 5.3.3). Therefore, almost surely, X∞ := limn Sn∧T
exists (by Corollary 5.5.1) and equals to 0 since the symmetric simple
walk is recurrent. But E[Xn] = E[X0] = 1, which is different from
E[X∞] ≡ 0. This shows that the a.s. convergence in (5.5.4) may not
be in L1. We will encounter a similar phenomenon in Section 5.6.1.

5.6. Uniformly Integrable Martingales

As we just saw, some stonger hypothesis seems necessary in order to
obtain convergence in L1. This is desirable for various reasons that
will become clear in the following sections.

Definition 5.6.1. A sequence (Xn)n≥1 is uniformly integrable (UI) if

lim
K→∞

sup
n≥1

∫

|Xn|≥K
|Xn| dP = 0 . (5.6.1)

If (Xn)n≥1 is UI, then for K large enough,

sup
n≥1

∫

|Xn|≥K
|Xn| dP ≤ 1 ,

and therefore

E[|Xn|] =

∫

|Xn|<K
|Xn| dP +

∫

|Xn|≥K
|Xn| dP ≤ K + 1 <∞ .

This shows that uniform integrability implies L1-boundedness. The
converse can be wrong, as will be seen in Exercise 5.21. Nevertheless,
we have

Lemma 5.6.1. Let (Xn)n≥1 be L1-bounded. Then (Xn)n≥1 is UI if and
only if for all ǫ > 0 there exists δ > 0 such that P (A) ≤ δ implies∫
A
|Xn|dP ≤ ǫ for all n ≥ 1.

Proof. Assume first that the sequence is UI and take some ǫ > 0.
Let K be such that

sup
n≥1

∫

|Xn|≥K
|Xn|dP ≤ ǫ

2
.
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Take δ := ǫ
2K . If P (A) ≤ δ, then for any n ≥ 1,

∫

A

|Xn|dP =

∫

A∩{|Xn|≥K}
|Xn|dP +

∫

A∩{|Xn|≤K}
|Xn|dP ≤ ǫ .

Going the other way, fix ǫ > 0. Let δ > 0 be such that P (A) ≤ δ
implies

∫
A
|Xn|dP ≤ ǫ for all n ≥ 1. If M := supn≥1E[|Xn|], let K be

large enough so that MK−1 ≤ δ. Then, by Chebychev’s Inequality,
P (|Xn| ≥ K) ≤ δ. Therefore with A = {|Xn| ≥ K},

∫
|Xn|≥K |Xn|dP ≤

ǫ, and so (Xn)n≥1 is UI. �

Lemma 5.6.2. Let (Xn)n≥1, Xn ∈ L1 be a sequence converging in pro-

bability: Xn
P→ X. If (Xn)n≥1 is UI, then Xn

L1

→ X.

Proof. We show that (Xn)n≥1 is Cauchy in L1. DecomposeE[|Xn−
Xm|] as
∫

{|Xn−Xm|≤ǫ}
|Xn−Xm|dP+

∫

{ǫ<|Xn−Xm|≤K}
|Xn−Xm|dP+

∫

{|Xn−Xm|>K}
|Xn−Xm|dP

The first integral is bounded by ǫ, the second by KP (|Xn−Xm| ≥ ǫ).
But since {|Xn −Xm| ≥ ǫ} ⊂ {|Xn −X| ≥ ǫ/2} ∪ {|X −Xm| ≥ ǫ/2},
and since Xn

P→ X, we have lim supm,n P (|Xn − Xm| ≥ ǫ) = 0. To
study the third integral, let δ > 0 be as in Lemma 5.6.1 (remember
that UI implies L1-boundedness). Then, take m,n large enough so
that P (|Xn −Xm| ≥ K) ≤ δ. We have with A = {|Xn −Xm| > K},

∫

{|Xn−Xm|>K}
|Xn −Xm|dP ≤

∫

A

|Xn|dP +

∫

A

|Xm|dP ≤ 2ǫ .

Therefore, lim supm,nE[|Xn −Xm|] ≤ 3ǫ. �

We can now extend the almost everywhere convergence of Theorem
5.5.2 to convergence in L1 for UI martingales.

Theorem 5.6.1. Let (Xn)n≥1 be a UI submartingale. Then there exists
X∞ ∈ L1, F∞-measurable, such that

Xn → X∞ a.s. and in L1 . (5.6.2)

Moreover, if (Xn)n≥1 is a martingale, then Xn = E[X∞|Fn].

Proof. Since (Xn) is UI it is bounded in L1, so Theorem 5.5.2 gu-
arantees the almost everywhere convergence of Xn → X∞. Since this
implies convergence in probability, Lemma 5.6.2 implies convergence
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in L1. To show that Xn = E[X∞|Fn] if Xn is a martingale, we must
show that ∫

A

XndP =

∫

A

X∞dP ∀A ∈ Fn .

But, since Xn → X∞ in L1, we have, for all A ∈ Fn,
∣∣∣
∫

A

X∞dP −
∫

A

XmdP
∣∣∣ ≤

∫

A

|X∞ −Xm|dP ≤
∫

|X∞ −Xm|dP → 0

when m→ ∞. Therefore, using the martingale property,
∫

A

X∞dP = lim
m→∞

∫

A

XmdP =

∫

A

XndP . �

We can now state a representation result for UI martingales.

Proposition 5.6.1. A martingale is closed if and only if it is UI.

Proof. Let X ∈ L1, and (Fn)n≥1 be an arbitrary filtration, such
that Xn := E[X|Fn]. We have |Xn| ≤ E[|X||Fn], which implies

∫

A

|Xn|dP ≤
∫

A

E[|X||Fn]dP =

∫

A

|X|dP ∀A ∈ Fn . (5.6.3)

With A = Ω, this gives E[|Xn|] ≤ E[|X|], and so by Chebychev,

P (|Xn| ≥ K) ≤ E[|Xn|]
K

≤ E[|X|]
K

.

Lemma 5.6.3. Let X ∈ L1. Given any ǫ > 0, there exists δ > 0 such
that if A ∈ F is such that P (A) ≤ δ, then

∫
A
|X|dP ≤ ǫ.

Proof. Assume the result is false: there exists some ǫ0 > 0 and a
sequence of events An such that P (An) ≤ 2−n and

∫
An

|X|dP > ǫ0 for

all n. Take A := lim supnAn. By Borel-Cantelli, P (A) = 0. By Fatou,
∫

A

|X|dP =

∫
|X|dP − lim inf

n→∞

∫

Ac
n

|X|dP ≥ ǫ0 ,

which is impossible. �

Fix ǫ > 0. Let δ > 0 be as in the lemma. Take K large enough such
that E[|X|] ≤ Kδ. Then P (|Xn| ≥ K) ≤ δ, and using (5.6.3) with
A = {|Xn| ≥ K},

∫

|Xn|≥K
|Xn|dP ≤

∫

|Xn|≥K
|X|dP ≤ ǫ .
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This shows thatXn is UI. On the other hand, ifXn is UI, then we know
from Theorem 5.6.1 that there exists X∞ ∈ L1 such that Xn → X∞
(a.s. and in L1), and that Xn = E[X∞|Fn]. �

5.6.1. Application to the branching process. Consider the
branching process (Xn) of Example 5.1.5. The basic properties of
extinction and survival were obtained in Exercise 2.11 using moment
generating functions. Here we derive the same properties using only
martingale theory. As usual, we assume that the number of offsprings

Y
(n)
j satisfies p0 = P (Y

(n)
j = 0) > 0, E[Y

(n)
j ] = λ > 0. Moreover, we

will assume that

σ2 := varY
(n)
j > 0 .

Let Xn denote the size of the population of the nth generation (X0 =
1). As we already saw, Zn := λ−nXn is a martingale. Since it is non-
negative, it converges by Corollary 5.5.1: there exists Z∞ ∈ L1 such
that

Zn → Z∞ a.s.

We consider separately the cases λ ≤ 1, λ = 1 and λ > 1.

Case λ < 1: In this case, λ−n ր +∞, so in order for Zn to converge
to a finite value, and since Xn takes values in {0, 1, 2, . . .}, the only
possibility is that Xn = 0 for large n, which means almost sure extinc-
tion of the population.

Case λ = 1: In this case, Xn is a non-negative martingale. In par-
ticular, E[Xn] = E[X0] = 1, and again X := limnXn exists a.s. by
Corollary 5.5.1. Since Xn is integer-valued, there must almost surely
exist some integer K ≥ 0 such that Xn = K for n sufficiently large.
For each K ≥ 0,

P (Xn = K for large enough n) ≤
∑

N

P (Xn = K ∀n ≥ N) .

We will show that K is necessarily equal to zero, by showing that if
K ≥ 1, then P (Xn = K ∀n ≥ N) = 0 for all N . We have, by the
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Markov Property,

P (Xn = K ∀n ≥ N) = lim
L→∞

P (Xn = K ∀n ∈ {N, . . . , N + L})

= lim
L→∞

P (XN = K)

N+L−1∏

n=N

P (Xn+1 = K|Xn = K)

≤ lim sup
L→∞

N+L∏

n=N

P (Xn+1 = K|Xn = K) .

But

P (Xn+1 6= K|Xn = K) ≥ P (Y
(n)
j ≥ 2, j = 1, . . . , K) = (1 − p0 − p1)

K ,

which is > 0. Namely, K ≥ 1, and if 1 − p0 − p1 = 0 were true, then
necessarily λ = p1 < 1. Therefore, P (Xn = K ∀n ≥ N) = 0 when
K ≥ 1, and so the only possibility is X = K = 0: the process dies out
in a finite time. Observe that in particular, E[X] = 0, and therefore
E[Xn] does not converge to E[X]: this gives another case where the
convergence Xn → X of Theorem 5.5.2 does not necessarily take place
in L1.

Case λ > 1: We show that P (Z∞ > 0) > 0. To do so, we will show
that Zn is uniformly integrable, which implies convergence in L1 by
Theorem 5.6.1, and so

E[Z∞] = lim
n→∞

E[Zn] = 1 .

This implies P (Z∞ > 0) > 0. To check uniform integrability, we show
that Zn is bounded in L2 (see Exercise 5.21).

(Zn − Zn−1)
2 = λ−2n(Xn − λXn−1)

2

= λ−2n
{Xn−1∑

j=1

(Y
(n)
j − λ)

}2

= λ−2n
{Xn−1∑

j=1

(Y
(n)
j − λ)2 + 2

∑

1≤i<j≤Xn−1

(Y
(n)
i − λ)(Y

(n)
j − λ)

}
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Now, by independence and since E[Y
(n)
j ] = λ,

E
[ ∑

1≤i<j≤Xn−1

(Y
(n)
i −λ)(Y

(n)
j − λ)

]

= E
[
E

[ ∑

1≤i<j≤Xn−1

(Y
(n)
i − λ)(Y

(n)
j − λ)|Fn−1]

]

= E
[ ∑

1≤i<j≤Xn−1

E
[
(Y

(n)
i − λ)(Y

(n)
j − λ)|Fn−1]

]
= 0 .

Therefore, since E[(Y
(n)
j − λ)2] = varY

(n)
j = σ2,

E[(Zn − Zn−1)
2] = λ−2nE

[Xn−1∑

j=1

(Y
(n)
j − λ)2

]

= λ−2nE
[
E

[Xn−1∑

j=1

(Y
(n)
j − λ)2|Fn−1

]]

= λ−2nE[σ2Xn−1]

= σ2λ−2nE[λn−1Zn−1] = σ2λ−n−1

By Lemma 5.4.1, this shows that Zn is bounded in L2, which in turn
implies that it is also uniformly integrable. Therefore, the event {Z∞ >
0} has positive probability, and on it we have, for large enough n,
Xn = λnZn ≥ Z∞

2 λ
n ր +∞ exponentially fast. It can be verified by

the reader that Z∞ > 0 on the whole non-extinction set.

5.6.2. Application to measure theory. The convergence theo-
rems for martingales allow to give a probabilistic proof of the Radon-
Nikodým Theorem. For ease of presentation, we will prove this famous
result of measure theory in the particular case where the σ-algebra is
countably generated. The minor modifications needed to cover the
general case can be found in [Wil91].

Theorem 5.6.2. Let (Ω,F, P ) be a probability space in which F is
countably generated, i.e. there exists a countable family of sets An ∈ F

such that F = σ(An, n ≥ 1). Let Q be a finite measure on (Ω,F)
which is absolutely continuous with respect to P . Then there exists
X ∈ L1(Ω,F, P ), X ≥ 0, called the Radon-Nikodým derivative of Q
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with respect to P , such that

Q(B) =

∫

B

XdP , ∀B ∈ F . (5.6.4)

Proof. The countability assumption allows to consider the filtra-
tion Fn := σ(A1, . . . , An). We denote the atoms of Fn by {Cn,1, . . . , Cn,kn

}.
Consider the random variable Xn : Ω → R defined as follows: if
ω ∈ Cn,j, then

Xn(ω) :=

{
Q(Cn,j)
P (Cn,j)

if P (Cn,j) > 0 ,

0 if P (Cn,j) = 0 .

Let n ≥ m and A ∈ Fm. Then
∫

A

XndP =
∑

j:C
(n)
j ⊂A

P (C
(n)
j )>0

∫

C
(n)
j

XndP =
∑

j:C
(n)
j ⊂A

P (C
(n)
j )>0

Q(C
(n)
j ) = Q(A) .

This last equality follows from the absolute continuity of Q with res-
pect to P . We have thus shown that

Q(A) =

∫

A

XndP ∀A ∈ Fn. (5.6.5)

In particular, since Xn is constant on the atoms of Fn+1, (Xn)n≥1 is a
martingale with respect to (Fn)n≥1 (and to the measure P ). We show
that (Xn)n≥1 is uniformly integrable. Fix some ǫ > 0. There exists
δ > 0 such that if A ∈ F is such that P (A) ≤ δ, then Q(A) ≤ ǫ.
(The existence of this δ can be shown exactly as in Lemma 5.6.3.
Namely, assume the claim is wrong. Then there exists some ǫ0 > 0
and a sequence Dn such that P (Dn) ≤ 2−n and Q(Dn) ≥ ǫ0. Let
D := lim supnDn. Then P (D) = 0 by Borel-Cantelli, but by Fatou

Q(D) =

∫

D

dQ =

∫
lim sup
n→∞

1Dn
dQ ≥ 1 − lim inf

n→∞
Q(Dc

n) ≥ ǫ0 ,

a contradiction with the absolute continuity of Q with respect to P .)
Let K be large enough such that Q(Ω) ≤ δK. By Chebychev and
(5.6.5) with A = Ω,

P (Xn ≥ K) ≤ E[Xn]

K
=
Q(Ω)

K
≤ δ .
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Therefore, using (5.6.5) with A = {Xn ≥ K},
∫

Xn≥K
XndP = Q(Xn ≥ K) ≤ ǫ ,

which shows that Xn is uniformly integrable. By Theorem 5.6.1, there
exists X ∈ L1 such that Xn → X in L1. In particular, for all A ∈ Fn,

∫

A

XdP = lim
n→∞

∫

A

XndP = Q(A) .

Therefore, the measures Q and Q̃ := XP coincide on the algebra⋃
n≥1 Fn. Since this algebra generates F, we have Q = Q̃. This proves

the theorem. �

We considered in Example 5.1.4 the case where Ω = [0, 1), with the
dyadic filtration

Fn := σ
([i− 1

2n
,
i

2n
)

: i = 1, 2, . . . , 2n
)
.

Clearly the Borel σ-field B([0, 1)) is generated by
⋃
n Fn, and the pre-

vious theorem applies.

5.6.3. Lévy’s Upward Convergence Theorem. We are now
ready to state the main convergence result promised at the beginning
of our study of martingales, for closed martingales. Nevertheless, we
formulate it without using martingales’ terminology.

Theorem 5.6.3 (Lévy’s Upward Theorem). Let X ∈ L1 on a pro-
bability space (Ω,F, P ). Let (Fn)n≥1 be a filtration, F∞ = σ(

⋃
n Fn).

Then

E[X|Fn] → E[X|F∞] a.s. and in L1 . (5.6.6)

Proof. By Proposition 5.6.1, E[X|Fn] is uniformly integrable. By
Theorem 5.6.1, it converges to someX∞ ∈ L1, andE[X|Fn] = E[X∞|Fn].
We need to show that X∞ = E[X|F∞], that is

∫

A

X∞ dP =

∫

A

X dP , ∀A ∈ F∞ . (5.6.7)

First, assume X ≥ 0 and define two measures on (Ω,F∞):

µ(A) :=

∫

A

X∞ dP , ν(A) :=

∫

A

X dP .
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Let A ∈ Fn. Then,∫

A

X dP =

∫

A

E[X|Fn] dP =

∫

A

E[X∞|Fn] dP =

∫

A

X∞ dP .

Therefore, µ and ν agree on the algebra
⋃
n Fn. By Carathéodory’s

Extension Theorem, they also agree on F∞, which shows (5.6.7). In
the general case, simply decompose X = X+ −X−. �

As an application of the Upward Theorem, we prove the 0-1 Law of
Theorem 3.2.1, Section 3:

Kolmogorov’s 0-1 Law. If (Xn)n≥1 is i.i.d., and if

T∞ :=
⋂

n≥1

σ(Xn, Xn+1, . . . )

denotes its tail-σ-field, then any A ∈ T∞ is trivial: P (A) ∈ {0, 1}.
Proof. Consider the natural filtration Fn associated to (Xn)n≥1.

Take A ∈ T∞, and set X := 1A. Since X is T∞-measurable, it is
independent of Fn for all n, and so E[X|Fn] = E[X] = P (A). Since
X ∈ L1 we get by the Upward Theorem,

P (A) = E[X|Fn] → E[X|F∞] = X a.s.

since X is T∞-measurable and since T∞ ⊂ F∞. Therefore P (A) =
1A ∈ {0, 1}. �

5.6.4. Lévy’ Backward Convergence Theorem. In a similar
way, one can show a version of Lévy’ Theorem but for decreasing
sequence of σ-algebras.

Theorem 5.6.4 (Lévy’s Backward Theorem). Let X ∈ L1 on a pro-
bability space (Ω,F, P ). Let (Tn)n≥1 be decreasing sequence of sub-σ-
algebras: T1 ⊃ T2 ⊃ . . . . Define T∞ =

⋂
n Tn. Then

E[X|Tn] → E[X|T∞] a.s. and in L1 . (5.6.8)

Proof. Think backwards: for all large integer N ≥ 1, define, for
k = 0, 1, . . . , N , Fk := TN−k. Then Fk ⊂ Fk+1. Define Zk := E[X|Fk].

Clearly, (Zk,Fk)
N
k=1 is a martingale. For each N , let U

(N)
a,b denote the

number of upcrossings of the sequence Z0, Z1, . . . , ZN across [a, b]. By
the Upcrossing Inequality,

E[U
(N)
a,b ] ≤ E[(ZN − a)+] ≤ E[|ZN |] + a ≤ E[|X|] + a <∞ .
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This shows that Z := limnE[X|Tn] exists almost surely. Exactly as we
did in Proposition 5.6.1, we can show that E[X|Tn] is UI. Therefore,
E[X|Tn] → Z also in L1 by Lemma 5.6.2. To verify that Z = E[X|T∞],
take any A ∈ T∞. Then A ∈ Tn since T∞ ⊂ Tn for all n ≥ 1, and so∫

A

ZdP = lim
n→∞

∫

A

E[X|Tn]dP = lim
n→∞

∫

A

XdP =

∫

A

XdP .

This finishes the proof. �

As an application of the Backward Theorem, we prove the (pas comp-
ris... VOIR LEGALL FIMZINHO)

Strong Law of Large Numbers: let X1, X2, . . . be an i.i.d. sequence such
that X1 ∈ L1, Sn := X1 + · · · +Xn. Then

Sn
n

→ E[X1] a.s.

Proof. Define Tn := σ(Sn, Sn+1, . . . ), T∞ :=
⋂
n Tn. We have

Sn
n

= E
[Sn
n

∣∣Tn
]

=
1

n

n∑

k=1

E[Xk|Tn] = E[X1|Tn] .

By the Backward Theorem, Z = limn
Sn

n
exists almost surely and in

L1. Observe that since,

Z = lim
n→∞

X1 + · · · +Xn

n
= lim

n→∞
Xk + · · · +Xn+k−1

n
,

Z is Tk-measurable for all k. In particular, it is T∞-measurable. By
Theorem 3.2.2, Z is therefore almost surely constant: P (Z = c) = 1.
To compute c,

c = E[Z] = lim
n→∞

E
[Sn
n

]
= E[X1] .

�

5.7. Doob Decomposition (EMPTY)

5.8. Martingales and Markov Chains

In this section we see interesting applications of martingale techniques
to the qualitative study of Markov chains, as we already encountered
in Section 5.4.2. We follow Varadhan [Var00].
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Generally speaking, there are various ways of associating martingales
to a stochastic process. Let (Xn)n≥1 be a sequence of random variab-
les and let (Fn)n≥1 denote its natural filtration. Let f : R → R be
arbitrary but measurable and bounded. For all k ≥ 0, define

hk(X0, . . . , Xk) := Ex[f(Xk+1)|Fk] − f(Xk) .

Let △k := f(Xk+1)− f(Xk)− hk(X0, . . . , Xk) which, by the definition
of hk satisfies Ex[△k|Fk] = 0. Let

Zn :=
n−1∑

k=0

△k = f(Xn) − f(X0) −
n−1∑

k=0

hk(X0, . . . , Xk) , (5.8.1)

then Ex[Zn+1 − Zn|Fn] = Ex[△n|Fn] = 0, and so Zn is a martingale.
In fact, Zn is nothing but the martingale obtained by the Doob de-
composition of f(Xn) (see previous section).

Consider now the case where Xn is a Markov chain with state space
S and transition matrix Q. For simplicity, assume that the chain is
irreducible. Remind that if f is a bounded function on S,

Qf(x) :=
∑

y∈S
Q(x, y)f(y) .

Then, on {Xn = z} we get

Ex[f(Xn+1)|Fn] =
∑

y∈S
f(y)Px(Xn+1 = y|Fn)

=
∑

y∈S
f(y)Q(z, y) = Qf(Xn) , (5.8.2)

and so hk(X0, . . . , Xk) = hk(Xk) ≡ h(Xk), where

h := Qf − f . (5.8.3)

The associated martingale thus takes the form

Zn = f(Xn) − f(X0) −
n−1∑

k=0

h(Xk) . (5.8.4)

Another way to associate martingales to a Markov chain is to consider
functions f with special properties. A function f is called harmonic if
Qf = f , superharmonic if Qf ≤ f , and subharmonic if Qf ≥ f . The
following lemma follows directly from (5.8.2):
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Lemma 5.8.1. Let (Xn)n≥0 be an irreducible Markov chain on S with
transition matrix Q. Let f : S → R be such that Ex[|f(Xn)|] <∞ for
all n ≥ 0. Then

f is





harmonic

superharmonic

subharmonic

⇐⇒ (f(Xn))n≥0 is





a martingale

a supermartingale .

a submartingale

5.8.1. The Discrete Dirichlet Problem. Let S be countable,Q
be a transition matrix on S. Let A ⊂ S be a non-empty set. Consider
the following problem, called Dirichlet problem: find a bounded function
f : S → R+ such that

Qf − f = 0 on Ac , (5.8.5)

f = 1 on A . (5.8.6)

A solution to this problem can be given using ideas from Markov chains
and martingales. LetXn the Markov chain on S with transition matrix
Q. Define the first visit time at A: TA := inf{n ≥ 0 : Xn ∈ A}. For all
x ∈ S, let

φA(x) := Px(TA <∞) .

Clearly, φA = 1 on A. If x ∈ Ac, write

φA(x) =
∑

y∈S
Px(TA <∞, X1 = y)

If y ∈ A then {X1 = y} ⊂ {TA <∞} and

Px(TA <∞, X1 = y) = Px(X1 = y) = Q(x, y) = Q(x, y)φA(y) .

If y ∈ Ac, we use the Markov Property at time n = 1:

Px(TA <∞, X1 = y) = Ex[1{X1=y} · 1{TA<∞} ◦ θ]
= Ex[1{X1=y}EX1

[1{TA<∞}]]

= Px(X1 = y)Py(TA <∞) ≡ Q(x, y)φA(y) .

This shows that φA = QφA on Ac. Therefore, φA is a solution for the
Dirichlet problem. The following result shows that any other solution
dominates φA, which is useful in practical situations.

Lemma 5.8.2. If f is a solution of the Dirichlet Problem, then f ≥ φA.
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Proof. Let f be a solution of the Dirichlet Problem. Define F :=
f ∧ 1. We show that F is superharmonic. Clearly, F = 1 on A. Then,
if x ∈ Ac,

QF (x) =
∑

y∈S
Q(x, y)F (y) ≤

∑

y∈S
Q(x, y)f(y) = Qf(x) = f(x) .

Since we always have QF (x) =
∑

y∈S Q(x, y)F (y) ≤ ∑
y∈S Q(x, y) =

1, this shows that QF ≤ F . Consider the supermartingale F (Xn).
Since F ≤ 1, the Optional Stopping Theorem implies that for any
bounded stopping time T ,

Ex[F (XT )] ≤ Ex[F (X0)] = F (x) .

Since TA might not be bounded, we consider first its truncated versions
TA∧N , for large N ≥ 1. Remembering that TA∧N is also a stopping
time (Lemma 5.3.1),

f(x) ≥ F (x) ≥ Ex[F (XTA∧N )] .

We then take the limit N → ∞ in the previous expression:

f(x) ≥ lim sup
N→∞

∫
F (XTA∧N)dPx ≥ lim sup

N→∞

∫

{TA<∞}
F (XTA∧N)dPx .

Now observe that on {TA <∞}, TA∧N → TA and so F (XTA∧N) → 1.
Since F is bounded, Bounded Convergence gives

f(x) ≥
∫

{TA<∞}
F (XTA

)dPx = Px(TA <∞) = φA(x) . �

The upper bound φA(x) ≤ f(x) of Theorem 5.8.1 could be useful if
one knew something about the way in which f behaves when x→ ∞.
As an application, consider the simple symmetric random walk on
S = Zd, d ≥ 3. Let 0 < α < d− 2 and consider the function

Φ(x) :=

{
‖x‖−α if x 6= 0 ,

1 if x = 0 .

We claim that Φ is superharmonic far from the origin: if ‖x‖ is large,
then

QΦ(x) ≤ Φ(x) . (5.8.7)

Namely, let e1, . . . , ed denote the unit vectors of Zd and write

QΦ(x) =
1

2d

d∑

j=1

{ 1

‖x+ ei‖α
+

1

‖x− ei‖α
}

= Φ(x)
1

2d

d∑

j=1

gi(x̂, ‖x‖−α) ,
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where x̂ = x
‖x‖, and

gi(x̂, t) :=
1

‖x̂+ tei‖α
+

1

‖x̂− tei‖α
.

We clearly have gi(x̂, 0) = 2, and it can be verified by direct compu-
tation that

∂

∂t
gi(x̂, t)

∣∣
t=0

= 0 ,
∂2

∂2t
gi(x̂, t)

∣∣
t=0

= −2α
(
1 − x̂2

i (α+ 2)
)
.

Together with 0 < α < d− 2, these bounds imply that

1

2d

d∑

j=1

gi(x̂, t) ≤ 1

when |t| is small enough, which shows (5.8.7).

Now take some large integer L ≥ 1, consider the Euclidian sphere
BL = {x ∈ Zd : ‖x‖ ≤ L}, and run the random walk Sn starting
from a point x ∈ Bc

L. Until hitting BL, Φ(Sn) is a supermartingale.
Consider the first hitting time of BL: TL := inf{n ≥ 0 : Sn ∈ BL}. By
the Optional Stopping Theorem,

Ex[Φ(STL∧N)] ≤ Ex[Φ(S0)] = Φ(x)

for all N ≥ 1. But since

Ex[Φ(STL∧N)] ≥
∫

TL≤N
Φ(STL

)dPx ≥ Px(TL ≤ N) inf
y∈BL

Φ(y) .

Since infy∈BL
Φ(y) > 0, this gives the following upper bound, uniformly

in N :

Px(TL ≤ N) ≤ Φ(x)

infy∈BL
Φ(y)

which becomes, as N → ∞,

Px(TL <∞) ≤ Φ(x)

infy∈BL
Φ(y)

.

Since Φ(x) → 0 when ‖x‖ → ∞, this shows in particular that Px(TL <
∞) < 1 when ‖x‖ is large enough: the walk is transient in dimension
d ≥ 3.
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Consider now the Modified Dirichlet problem: if g : A→ R+ is bounded,
find a bounded function f : S → R+ such that

Qf − f = 0 on Ac , (5.8.8)

f = g on A . (5.8.9)

Theorem 5.8.1. Assume φA = 1, i.e. TA < ∞ Px-almost surely for
all x ∈ S. Then for any g : A → R, the solution of the modified
Dirichlet problem (if any) is unique, and given by

f∗(x) = Ex[g(XTA
)] . (5.8.10)

Proof. We study the function x 7→ Ex[g(XTA
)], under the assump-

tion that Px(TA <∞) = 1 for all x ∈ S, and show that Ex[g(XTA
)] =

f(x) for any solution f of the modified problem. First, if x ∈ A then
TA = 0 and so Ex[g(XTA

)] = Ex[g(X0)] = g(x) = f(x) since f = g on
A. We need thus only consider from now on the case x ∈ Ac. Consider
the martingale defined in (5.8.1):

Zn = f(Xn) − f(X0) +

n−1∑

k=0

h(Xk) , n ≥ 1 .

By the Stopping Theorem, Ex[ZTA∧N ] = Ex[Z1], but

Ex[Z1] = Ex[f(X1)−f(X0)+h(X0)] = Qf(x)−f(x)+h(x) = 2h(x) = 0

since h = Qf − f = 0 on Ac. Now, since h(Xk) = 0 for all k < TA,
ZTA∧N = f(XTA∧N ) − f(X0). Then, observe that on {TA < ∞} we
have f(XTA∧N) → f(XTA

) = g(XTA
). But since we are assuming that

Px(TA <∞) = 1, Bounded Convergence gives

lim
N→∞

Ex[f(XTA∧N)] = lim
N→∞

∫

{TA<∞}
f(XTA∧N)dPx = Ex[g(XTA

)]

Since Ex[f(X0)] = f(x), we have proved that Ex[g(XTA
)] = f(x). �

5.8.2. Application: recurrence of birth and death chains.
Consider the birth and death chain (Xn)n≥0 with state space S =
{0, 1, 2, . . .} and transition matrix

Q(x, x+ 1) = px , Q(x, x− 1) = qx , Q(x, x) = rx ,

with px + qx + rx = 1 and q0 := 0. We will assume that 0 < px < 1,
0 < qx < 1, so that the chain is irreducible.
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We look for a recurrence criterium in function of the triples {(qx, rx, qx)}x≥0.
First, we look for a harmonic function ϕ : S → R+ which will allow to
use the martingale ϕ(Xn). Set ϕ(0) := 0, ϕ(1) := 1. In order to have
Qϕ(x) = ϕ(x) for each x ∈ {1, 2, . . .}, we must have

pxϕ(x+ 1) + rxϕ(x) + qxϕ(x− 1) = ϕ(x) .

Using the fact that rx = 1 − px − qx, this can be written

ϕ(x+ 1) − ϕ(x) =
qx
px

(ϕ(x)− ϕ(x− 1)) .

Since ϕ(1) − ϕ(0) = 1, we get

ϕ(x) =
x−1∑

k=0

qkqk−1 . . . q2q1
pkpk−1 . . . p2p1

,

where the fraction is defined to be 1 when k = 0.

The harmonic function ϕ, although it is not necessarily bounded,
allows to compute hitting probabilities. For example, fix two inte-
gers 0 ≤ a < b < ∞, and consider the probability that the chain
starting at x, a < x < b, hits a before b, i.e. Px(Ta < Tb) where
Ty := inf{n ≥ 0 : Xn = y}.
Lemma 5.8.3.

Px(Ta < Tb) =
ϕ(b) − ϕ(x)

ϕ(b)− ϕ(a)
. (5.8.11)

Proof. With ϕ at hand, this is a direct application of Theorem
5.8.1, with A = {a, b}. We first show that Px(TA < ∞) = 1. Namely,
at any time n ≥ 1, the chain has a probability of reaching (say) b

bounded below by
∏b

y=a+1 py. Then Px(TA < ∞) = 1 follows by
Lemma 5.3.4.
We modify ϕ in such a way that it satisfies the modified Dirichlet
problem with g on {a, b} defined by g(a) := 1, g(b) := 0. Since Qϕ = ϕ
on (a, b), the same will hold with α + βϕ. As can be seen easily, a

proper choice of α and β shows that ϕ̃(x) := ϕ(b)−ϕ(x)
ϕ(b)−ϕ(a) coincides with

g on {a, b}; ϕ̃ solves the modified Dirichlet problem. Since we saw in
Theorem 5.8.1 that the solution to this problem is unique, one must
have ϕ̃(x) = Ex[g(XTA

)]. But

Ex[g(XT )] = Px(XT = a)g(a)+Px(XT = b)g(b) = Px(XT = a) ≡ Px(Ta < Tb) .

�
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Observe that one could have obtained (5.8.11) by simply applying the
Optional Stopping Theorem to the martingale ϕ(Xn), as we did in
Section 5.3.2: Ex[ϕ(XT )] = Ex[ϕ(X0)] = ϕ(x), but

Ex[ϕ(XTA
)] = Px(XT = a)ϕ(a) + Px(XT = b)ϕ(b) .

Nevertheless, the method we used applies in more general situations,
where A contains more than two points.

Let us consider the particular case a = 0, b = L. Since ϕ(0) = 0,
(5.8.11) gives

Px(T0 < TL) = 1 − ϕ(x)

ϕ(L)
.

Observe that TL ≥ L−x Px-a.s., and so we have the following charac-
terization of recurrence for the origin:

Theorem 5.8.2. Define ϕ(∞) := limL→∞ ϕ(L), possibly infinite. Then

Px(T0 <∞) = 1 − ϕ(x)

ϕ(∞)
. (5.8.12)

We apply this result in a particular case in Exercise 5.26.

5.8.3. Application: Exit Times for Random Walk. Let R >
0, and IR := [−R,+R]. We consider the simple symmetric random
walk started at some x ∈ IR and study the time it takes to exit IR:

TR := inf{n ≥ 0 : Sn 6∈ IR} .
Of course, we start looking for a useful martingale. Let Fn denote the
natural filtration associated to Sn. Observe that since

E[cos(λSn+1)|Fn] =
1

2
cos(λ(Sn + 1)) +

1

2
cos(λ(Sn − 1)) = cos(λ) cos(λSn) ,

the sequence

Zn :=
cos(λSn)

(cosλ)n

is a martingale. We assume that 0 < cosλ < 1. By Lemma 5.3.4,
TR is Px-almost surely finite, but since Zn is unbounded, we use the
Stopping Theorem for the bounded stopping time TR ∧N :

Ex[ZTR∧N ] = Ex[Z0] = cos(λx) .

If we choose λ < π
2R , then cos(λx) ≥ cos(λR) for all x ∈ IR and so

ZTR∧N =
cos(λSTR∧N)

(cosλ)TR∧N ≥ cos(λR)

(cosλ)TR∧N



136 5. MARTINGALES

By defining σ := − log(cosλ) > 0, we can therefore write

Ex[e
σTR∧N ] ≤ cos(λx)

cos(λR)
.

Since TR is finite, we can take the limit N → ∞ and obtain

Ex[e
σTR] ≤ cos(λx)

cos(λR)
.

One can then estimate the distribution of the exit time by using Che-
bychev:

Px(TR > K) = Px
(
eσTR > eσK

)
≤ e−σK

cos(λx)

cos(λR)
.

Taking for example λ = λR = π
4R

, and considering the associated σR,
we have

Px(TR > K) ≤
√

2e−σRK .

As can be easily verified, this gives Ex[TR] ≤ cR2 for some c > 0. RE-
FAIRE LA MEME CHOSE AVEC L’IDENTITE DE WALD, (VOIR
GRIMMET PAGE 494)

5.9. Exercises

Generalities.

Exercise 5.1. Durrett p.229 Let (Xn,Fn)n≥1 be a martingale. If Gn ⊂
Fn for all n ≥ 1, show that (Xn,Gn)n≥1 is a martingale.

Exercise 5.2. Let (Sn)n≥1 denote the simple random walk on {0, 1, 2, . . .}
with a reflecting barrier at the origin: P (Sn+1 = 1|Sn = 0) = 1. De-
termine, in function of p, whether (Sn)n≥1 is sub-/super-martingale.

Exercise 5.3. [GS05] p. 338. LetX1, X2, . . . be i.i.d. with zero mean
and finite variance, satisfying E[Xn+1|X1, . . . , Xn] = aXn + bXn−1

where 0 < a, b < 1 and a + b = 1. Find a value of α for which
Zn = αXn +Xn−1 defines a martingale.

Exercise 5.4. Consider an increasing sequence of finite countable
measurable partitions of Ω: B1 ⊂ B2 ⊂ . . . . Let Fn be the σ-algebra
generated by Bn. Let Q be a probability measure on (Ω,F). Define

Xn :=
∑

B∈Bn:
P (B)>0

Q(B)

P (B)
1B .
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Show that (Xn,Fn)n≥1 is a supermartingale, and that if Q is abso-
lutely continuous with respect to P , Q ≪ P , then (Xn,Fn)n≥1 is a
martingale.

Exercise 5.5. [RS85] p. 140. Consider the simple random walk Sn
with parameter p ∈ [0, 1]. Consider the the convex function φ(x) = |x|.

(1) If p = 1
2 , then Sn is a martingale and φ(Sn) a submartingale.

(2) If p > 1
2 , then Sn is a submartingale. What about φ(Sn)?

Exercise 5.6. [GS05] p. 334. Let (Xn)n≥0 be the Branching process
with parameter λ > 0 (see Example 4.1.8). Is (Xn) a martingale?
Show that Wn := Xn

E[Xn] and Vn := λXn are martingales.

Exercise 5.7. [GS05] p. 335. Let (Xn)n≥0 be a Markov Chain with
state space S and transition matrix Q. Call ψ : S → R harmonic if
Qψ = ψ. Show that if ψ is harmonic, then (ψ(Xn))n≥0 is a martingale.

Exercise 5.8. Consider the martingale Xn of Exercise 5.1.4. Show
that if µ ≪ λ, then Xn is closed: Xn = Eλ(f |Fn), where f is the
Radon-Nikodým density of µ with respect to λ.

Stopping Times, Optional Stopping.

Exercise 5.9. If T ∈ L1, then P (T <∞) = 1.

Exercise 5.10. (1) If T is a stopping time and if k ≥ 1 is any
integer then T ∧ k is a stopping time.

(2) If T1, T2 are two stopping times, then T1 + T2, T1 ∧ T2, T1 ∨ T2

are stopping times.
(3) FT ⊂ F is a sub-σ-algebra called the stopped σ-field generated

by T ,
(4) T is FT -measurable,
(5) If T1 ≤ T2, then FT1

⊂ FT2
.

(6) XT is FT -measurable.

Exercise 5.11. Consider the random walk on Z. For I ⊂ Z, show
that T := inf{n ≥ 1 : Sn ∈ I} is a stopping time with respect to the
natural filtration. Why is T ′ := sup{n ≥ 1 : Sn ∈ I} not a stopping
time?

Exercise 5.12. Show Wald’s Identity. Show that if T is not integra-
ble, or if it is not integrable, then the result is wrong.

Exercise 5.13. If Sn denotes the simple random walk on Z, then

Nn = Sn − (p− q)n and Mn =
(
q
p

)Sn are martingales.
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Exercise 5.14. [RS85] p. 141. Consider an independent sequence
Dn, P (Dn = 4n) = 1 − P (Dn = −4n) = 1

2. Set S0 := 0, Sn :=
D1 + · · · +Dn.

(1) Show that Xn is a martingale.
(2) Let T := {n ≥ 0 : Sn < 0}. Show that T has geometric

distribution P (T = n) = 2−n, so that T ∈ L1.
(3) Show that E[|XT |] = +∞. Is there a contradiction with the

Optional Stopping Theorem?

Exercise 5.15. ABRACADABRA

Convergence.

Exercise 5.16. Show that the Doob-Kolmogorov Inequality implies
the Kolmogorov Inequality: If X1, X2, . . . is a sequence of independent
random variables, Sn := X1 + . . . Xn, then

P
(

max
1≤k≤n

|Sk| ≥ λ
)
≤ 1

λ2

n∑

k=1

varXk . (5.9.1)

Exercise 5.17. Durrett p. 234 Give an example of a martingale Xn

with Xn → −∞. Hint: take Xn = Y1 + · · · + Yn with E[Yk] = 0 (the
Yks not being identically distributed).

Exercise 5.18. Durrett p. 235 Let Y1, Y2, . . . be i.i.d. with Yk ≥ 0,
P (Yk = 1) < 1.

(1) Show that Xn := Y1Y2 · · ·Yn is a martingale.
(2) Use Theorem 5.5.2 and a contradiction argument to show that

Xn → 0 a.s.
(3) Use the Strong Law of Large Numbers to show that 1

n
logXn →

−c < 0 a.s.

Exercise 5.19. Durrett p. 235 Let (Xn) and (Yn) be adapted to (Fn).
Assume

E[Xn+1|Fn] ≤ (1 + Yn)Xn ,

and
∑

n Yn <∞ a.s. Prove that Xn converges a.s. to a finite limit by
finding a closely related supermartingale to which Theorem 5.5.2 can
be applied.

Exercise 5.20. Durrett p. 237 Let (Xn) and (Yn) be positive, in L1,
adapted to (Fn). Assume

E[Xn+1|Fn] ≤ Xn + Yn ,
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and
∑

n Yn < ∞ a.s. Prove that Xn converges a.s. to a finite limit.

Hint: let T := inf{k ≥ 1 :
∑k

i=1 Yi > M} and stop your supermartin-
gale at time T .

Exercise 5.21. Uniform integrability. Show the following affirmations.

(1) Constant sequences are UI.
(2) If Xn is uniformly integrable, then it is bounded in L1. Show

that the contrary is false (Hint: consider Xn := n1[0, 1
n
]).

(3) If Xn is Lp-bounded for p > 1, then it is uniformly integrable.
(4) If Xn is such that there exists Y ≥ 0, Y ∈ L1, such that

|Xn| ≤ Y , then Xn is uniformly integrable.

CHERCHER DES CONTRE-EXEMPLES.

Exercise 5.22. Prove the Uprcrossing Inequality without introducing
the predictable sequence Cn, by writing

U
(N)
a,b ≤

∑

j≥1

YT+
j ∧N − YT−

j ∧N .

Exercise 5.23. Le Gall, série d’exercises (avec corrigé). SoitX1, X2, . . .
une suite de v.a. indépendantes, telles que Xk ∈ L2. Soit Mn :=
X1 + · · · +Xn. On note Fn la filtration canonique associée a Mn.

(1) Montrer queMn est une martingale si et seulement si E[Xk] = 0
pour tout k. Dans la suite on suppose que cette condition est
toujours satisfaite.

(2) Soit σk := E[X2
k ]

1
2 , sn := σ2

1 + · · · + σ2
n. Montrer que M2

n − sn
est une martingale.

(3) En supposant que s :=
∑

k σ
2
k < ∞, montrer que Mn converge

p.s. et dans L2, et que pour tout a > 0,

P
(
sup
n

|Mn| > a
)
≤ s

a2
.

(4) Dans la suite, on suppose que les variables Xk ont même distri-
bution, sont à valeurs dans {1, 0,−1,−2, . . .}, et que P (X1 =
1) > 0. Soit λ > 0 et ψ(λ) = logE[eλX1]. Montrer que
exp(λMn−nψ(λ)) est une martingale. Cette martingale est-elle
fermée?

(5) Soit b ≥ 1 et Tb := inf{n ≥ 0 : Mn = b}. En considérant la
martingale positive b − Mn∧Tb

, montrer que Tb < ∞ presque
sûrement.
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(6) Montrer que pour tout λ > 0,

E[exp(−ψ(λ)Tb)] = exp(−λb) .

En déduire la valeur de E[exp(−αTb)] pour tout α > 0, en
particulier dans le cas où P (X1 = 1) = P (X1 = −1) = 1

2 .

Exercise 5.24. Durrett p.271 Consider the assymetric random walk
on Z: S0 := 0, Sn := Y1 + · · · + Yn, where P (Yk = +1) = p, P (Yk =
−1) = 1 − p = q, with p 6= q.

(1) Assume 0 < p < 1, define ϕ(x) :=
(

1−p
p

)x
. Show that ϕ(Sn) is

a martingale.
(2) Let Tx := inf{n ≥ 1 : Sn = x}, a < 0 < b. Show that

P (Ta < Tb) =
ϕ(b) − ϕ(0)

ϕ(b) − ϕ(a)
.

Hint: define T ′ := Ta ∧ Tb. Show that T ′ is almost surely finite
and apply the Optional Stopping Theorem.

(3) Assume 1
2 < p < 1. If a < 0, show that P (Ta < ∞) =

(
1−p
p

)|a|
,

if b > 0 show that P (Tb <∞) = 1.
(4) Assume 1

2
< p < 1. If b > 0, show that E[Tb] = b

2p−1
. Hint:

consider the martingale Zn := Sn − (p− q)n.

Compare these results with Exercise 2.9.

Exercise 5.25. Voir Williams. Polya’s urn model.

Exercise 5.26. Birth and Death chains, Durrett p. 292. Consider
the markov chain (Sn)n≥0 with state space {0, 1, 2, . . .} and transition
matrix

Q(x, x+ 1) = px , Q(x, x− 1) = qx , Q(x, x) = rx ,

with px + qx + rx = 1 and q0 := 0. Let T := inf{n ≥ 0 : Sn = 0}. We
study Px(T <∞) in the following situations.

(1) Assume px = p, rx = 0, qx = q = 1 − p. Let x ≥ 1. Show that

Px(T <∞)

{
= 1 if p ≤ 1

2 ,

=
(

1−p
p

)x
if p > 1

2 .
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(2) Assume px = 1
2

+ ǫx, rx = 0, qx = 1
2
− ǫx, where ǫx → 0 as

ǫx ∼ βx−α. Show that

The chain is





recurrent if α > 1 ,

transient if α < 1 ,

recurrent if α = 1 and β < 1
4 ,

transient if α = 1 and β > 1
4 .

Exercise 5.27. [Chu01] p 371. voir aussi Grimmett p. 504. Like-
lihood ratios. Let (Xn)n≥1, (Yn)n≥1 be sequences of random variables
with respective N -dimensional distributions pN and qN . Define

Zn :=
qn(Y1, . . . , Yn)

pn(X1, . . . , Xn)

if the denominator is positive, zero otherwise. Show that (Zn)n≥1 is a
supermartingale that converges a.e.

Exercise 5.28. Dacunha Castelle Ex. XI.13 p.199., Ex. XI.16 p.203.
Martingales and Markov Chains. Let (Xn)n≥0 be a Markov chain with
transition matrix Q.

(1) Show that if f and g are superharmonic, then f ∧ g is super-
harmonic.

(2) If f is (super)harmonic, show that (f(Xn))n≥0 is a (super)martingale
with respect to the natural filtration and to Pµ for any initial
distribution µ.

(3) If the chain is irreducible recurrent, show that all superharmo-
nic functions are constant.

(4) Assume the chain is transient. Consider the potential

U(x, y) :=
∑

n≥0

Q(n)(x, y) .

For a function f : S → R, we call potential of f the function
Uf : S → R defined by

Uf(x) :=
∑

y∈S
U(x, y)f(y) .

Show that if f is superharmonic, then f̂ := limn→∞Q(n)f exists
and defines a harmonic function. Show that for any superhar-
monic function f there exists a decomposition f = h + Ug,
where h is harmonic. Show that this decomposition is unique.
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(5) Let A ⊂ S and let TA the first visit of the chain at A. Show
that ϕA(x) := Px(TA < ∞) is superharmonic. Interpret the
decomposition of φA = h+ Ug.

Exercise 5.29. Let (Xn)n≥0 be a submartingale adapted to a filtration
(Fn)n≥0. Define A0 := 0, and

An+1 := An + E[Xn+1 −Xn|Fn] .

(1) Show that (An)n≥0 is almost surely increasing, that it is pre-
dictable, and that Mn := Xn − An is a martingale. Show that
these properties and A0 = 0 characterize An (up to almost
everywhere equivalence). The decomposition

Xn = Mn + An

is called the Doob Decomposition of Xn.
(2) Let a > 0 and let Ta := inf{n ≥ 0 : An+1}. Show that Ta is a

stopping time, and that E[Xn∧Ta
] ≤ a.

(3) Show that Xn converges almost surely to a finite limit on the
set {Ta = +∞}. Conclude that if A∞ := limnAn, then Xn

converges to a finite limit, almost surely on the set {A∞ <∞}.
(4) Assume E

[
supn≥1 |Xn+1 −Xn|

]
<∞. Show that the following

three conditions are almost surely equivalent:
(a) Xn converges to a finite limit
(b) Xn is bounded
(c) A∞ <∞.
Hint: introduce the stopping time τa := inf{n ≥ 0 : Xn > a}.

Exercise 5.30. Durrett p. 235 Let Xn =
∑

m≤n 1Bm
, where Bm ∈ Fm.

Compute the Doob decomposition of Xn.

Exercise 5.31. Bovier. Let Xn be a Markov chain with transition
matrix Q on a countable space S. Let f : S → R be bounded. Show
that that the Doob decomposition of the process f(Xn) is given by
f(Xn) = Mn + An, where

Mn = f(Xn) − f(X0) −
n−1∑

k=0

h(Xk) , (5.9.2)

where h := Qf − f .

Exercise 5.32. Bovier. Let S be a countable set, Q a transition
matrix on S. Let Xn be an S-valued process adapted to a filtration
Fn. Show that Xn is a Markov chain with transition matrix Q if and
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only if for all bounded function f : S → R, the process defined in
(5.9.2) is a martingale.





CHAPTER 6

Stationary and Ergodic Processes

Let (Ω,F, P ) denote an arbitrary probability space. In this chapter we
consider discrete time stochastic processes (Xn)n≥0 with the property
that the law of (Xn)n≥0 is the same as that of (Xn+k)n≥0. In other
words, these sequences are such that the randomness is the same at
any place the sequence is looked at.

6.1. Definition and Examples

Definition 6.1.1. A stochastic process (Xn)n≥0 is stationary if and
only if for all n ≥ 0 and all k ≥ 1, (Xn, . . . , Xn+k) has the same
distribution as (X0, . . . , Xk). That is, for any Borel set B ∈ B(Rk),

P ((Xn, . . . , Xn+k) ∈ B) = P ((X0, . . . , Xk) ∈ B) . (6.1.1)

In the case where Xn takes values in a finite or countable alphabet S,
stationarity means that for all n ≥ 0 and all k ≥ 1,

P (Xn = a0, . . . , Xn+k = ak) = P (X0 = a0, . . . , Xk = ak) , (6.1.2)

for all a0, . . . , ak ∈ S. Assume (6.1.1) holds for n = 1 and all k ≥ 1.
Then for all B ∈ B(Rk),

P ((X2, . . . , X2+k) ∈ B) = P ((X1, X2, . . . , X2+k) ∈ R ×B)

= P ((X0, X1, . . . , X1+k) ∈ R ×B)

= P ((X1, . . . , X1+k) ∈ B)

= P ((X0, . . . , Xk) ∈ B) .

To verify stationarity, it therefore suffices to test (6.1.1) for n = 1. Let
us consider a few examples.

Example 6.1.1. In the case where the variables Xn are independent
and identically distributed, we get

P (Xn ∈ B0, . . . , Xn+k ∈ Bk) = P (Xn ∈ B0) . . . P (Xn+k ∈ Bk)

= P (X0 ∈ B0) . . . P (Xk ∈ Bk)

= P (X0 ∈ B0, . . . , Xk ∈ Bk) ,

which implies that the sequence is stationary.

145
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Example 6.1.2. Let the sequence (Xn)n≥0 form a Markov chain taking
values in a countable set S, with transition matrix Q. Let assume
that there exists an invariant distribution π, πQ = π, and that X0 has
distribution π. Let a0, . . . , ak ∈ S. By Lemma 4.1.1,

P (X1 = a0, . . . , X1+k = ak) =
∑

b0∈S
P (X0 = b0, X1 = a0, . . . , X1+k = ak)

=
∑

b0∈S
π(b0)Q(b0, a0)Q(a0, a1) . . .Q(ak−1, ak)

= πQ(a0)Q(a0, a1) . . .Q(ak−1, ak)

= π(a0)Q(a0, a1) . . .Q(ak−1, ak)

≡ P (X0 = a0, . . . , Xk = ak) ,

which shows that (Xn)n≥0 is stationary. Observe that if π isn’t inva-
riant, this might not hold.

Example 6.1.3. Let T : Ω → Ω be a measurable (i.e. T−1A ∈ F for
all A ∈ F) transformation which preserves P , i.e. such that

P (T−1A) = P (A) ∀A ∈ F .

Let Y : Ω → R be a random variable. For all n ∈ N, define Xn :=
Y ◦ T n, where T 0 is the identity, and T n := T ◦ T n−1. We verify that
(Xn)n≥0 is stationary:

P ((X1, . . . , X1+k) ∈ B) = P ((Y ◦ T, . . . , Y ◦ T 1+k) ∈ B)

= P (T−1(Y, . . . , Y ◦ T k) ∈ B)

= P ((Y, . . . , Y ◦ T k) ∈ B)

= P ((X0, . . . , Xk) ∈ B) ,

where we used invariance of P in the third equality.

This last example shows that stationary sequences can be constructed
from a measure preserving map T : Ω → Ω and from an arbitrary
random variable Y . We will now show that this example is actually the
only one, since any stationary sequence (Xn)n≥0 can be considered as
constructed on a probability space (Ω′,F′, P ′), such that Xn = Y ′ ◦T ′n,
where Y ′ is a random variable on Ω′ and T ′ : Ω′ → Ω′ is a map
preserving P ′. Namely, let Ω′ be the product Ω′ := RN, equipped with
the σ-algebra B(RN) (see Chapter 3). Consider for each n ≥ 1 the
measure µn on (Rn,B(Rn)) defined on rectanglesB1×· · ·×Bn ∈ B(Rn)
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by
µn(B1 × · · · ×Bn) := P (X1 ∈ B1, . . . , Xn ∈ Bn) .

By Kolmogorov’ s Extension Theorem 3.1.2, there exists a unique P ′

on (Ω′,F′) having µn as marginals. Define T ′ to be the shift

T (ω′
1, ω

′
2, ω

′
3, . . . ) := (ω′

2, ω
′
3, . . . ) .

By the stationarity of (Xn) under P , P ′ is invariant under T ′. Let
Y ′(ω′) := ω′

1, Xn := Y ′ ◦ T n. This proves the claim.

Using the above representation, the study of a stationary sequence

X1(ω
′), X2(ω

′), . . . (6.1.3)

can therefore always be reduced to the study of the values taken by a
fixed random variable Y along the trajectory of a point ω′ ∈ Ω′ under
iteration of the map T ′:

ω′, Tω′, T 2ω′, . . . (6.1.4)

This slightly changes the point of view of a random experiment: in
(6.1.3), the variablesXn are realized simultaneously as functions of the
random experiment ω, but in (6.1.4) ω′ is to be considered as a ran-
dom initial condition, and the sequence of observations is deterministic,
along the trajectory of ω′.

One of the objects of interest, in the statistical properties of the
sequence Xn, is the sequence of empirical means

X1 + · · · +Xn

n
,

which, when expressed in the above representation, take the form of a
Birkhoff Sum:

1

n

n−1∑

k=0

Y ◦ T k . (6.1.5)

It turns out that when Y is integrable and when T preserves P , this
last sum converges for P -almost all ω, as will be seen in the Ergodic
Theorem in the next section.

Since the underlying invariance structure of stationary sequences can
be nicely understood by considering them as trajectories of a discrete
dynamical system; we will now describe the general setting of measu-
rable dynamics.
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Let (Ω,F) be a measurable space. In this section, we denote a generic
probability measure on (Ω,F) by µ. Consider a map T : Ω → Ω, which
we assume to be measurable, i.e. such that T−1A ∈ F for all A ∈ F.

Definition 6.1.2. A measure µ on (Ω,F) is called invariant (under T )
if

µ(T−1A) = µ(A) , for all A ∈ F . (6.1.6)

Observe that if T is invertible, the previous definition is equivalent to

µ(TA) = µ(A) , for all A ∈ F . (6.1.7)

The purpose of Ergodic Theory is the study of the existence and pro-
perties of measures invariant under a given T . We obtain a discrete
time dynamical system by considering the iterations of T , i.e. by
constructing the orbit of a point ω ∈ Ω: ω, Tω, T 2ω, . . . Therefore, we
call the triple (Ω,F, T ) a measurable discrete dynamical system.

Example 6.1.4. Let Ω = [0, 1) with the Borel σ-algebra B([0, 1)) and
the Lebesgue measure, denoted λ. If we define the translation modulo
1, T : [0, 1) → [0, 1) by Tx := x + 1 mod 1, then λ is invariant.

Example 6.1.5. Let A be a finite set. Shift spaces with alphabet A are
obtained by considering either of the product spaces Ω = AN (the one-
sided shift) or Ω = AZ (the two-sided shift), which we write generically
as Ω = AT. The σ-algebras on these sets are defined in the usual way.
A (thin) cylinder is a subset of Ω of the form

CΛ(a1, . . . , a|Λ|) = {ω ∈ Ω : ωi = ai, ∀i ∈ Λ} , (6.1.8)

where Λ is a finite subset of T, and a1, . . . , a|Λ| ∈ A. Thin cylinders
generate an algebra C on Ω called the algebra of cylinders, and a σ-
algebra F = σ(C). The shift is the map T : Ω → Ω, where

(Tω)i := ωi+1 , ∀i ∈ T . (6.1.9)

Observe that when T = Z, the shift is invertible. The simplest example
of a measure µ on (Ω,F) which is invariant under the shift is that of a
product measure: µ = pT, where p is any probability distribution on
A. To verify that this measure is invariant under the shift, it suffices
to observe that

µ(T−1CΛ(a1, . . . , a|Λ|)) = µ(CΛ(a1, . . . , a|Λ|))

for all cylinder. This implies (see Exercise 6.3) that µ is invariant,
and the resulting dyanmical system is called a Bernoulli shift. Another
example of invariant measure is provided by a Markov shift, which we
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already enountered in the introduction. Let Q be a stochastic matrix
on A. Assume there exists an invariant distribution ν on A, such that
νQ = ν. For any thin cylinder C[1,n](a1, . . . , an), define

µ(C[1,n](a1, . . . , an)) := ν(a1)
n−1∏

i=1

Q(ai, ai+1) . (6.1.10)

Then again by Kolmogorov’s Extension Theorem, µ extends uniquely
to a measure on AT, which is invariant under the shift T .

Assume that we have a shift space with T = N, and a measure µ in-
variant under the shift. For each n ∈ N, consider the random variable
Xn(ω) := ωn. By defining the distribution

P (X1 = a1, . . . , Xn = an) := µ(C[1,n](a1, . . . , an))

we see, together with what was said in the previous section, that const-
ructing an invariant measure on a shift space is equivalent to the const-
ruction of a stationary stochastic process (when both have the same
finite alphabet).

Throughout the chapter, we denote the measurable space by (Ω,F),
and the dynamic T is considered as fixed. Therefore, invariant objects
will always be defined with respect to T . The random variables on
(Ω,F) will be denoted f or g rather than X or Y .

Lemma 6.1.1. Let µ be invariant under T . Then, for all f ∈ L1(µ),
we have the Change of Variable Formula:

∫
fdµ =

∫
f ◦ Tdµ . (6.1.11)

Proof. If f = 1A, the indicator of an event A ∈ F, we have
∫
fdµ = µ(A) = µ(T−1A) =

∫
f ◦ Tdµ .

For f ∈ L1(µ), use a standard approximation procedure. �

6.2. The Ergodic Theorem

A central question about the orbits of a dynamical system is the fol-
lowing: with what frequence (if any) does the orbit of a point ω ∈ Ω
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visit a given measurable set A ∈ F? That is, how does the ratio

1

n
♯{0 ≤ k ≤ n− 1 : T kω ∈ A} ≡ 1

n

n−1∑

k=0

1A(T kω)

behave for large n? This average is a particular case of (6.1.5) with
Y = 1A. Observe that in general the variables (1A ◦ T k)k≥1 have no
reason of being independent, and so the large-n behaviour of these ave-
rages cannot be studied using a simple Law of Large Numbers. But
as we will see, when an invariant measure µ exists, the Ergodic Theo-
rem of Birkhoff will imply that these frequencies exist when n → ∞,
for µ-almost-all initial condition ω. This theorem actually holds not
only for indicator functions but for any integrable function f . Before
stating the Ergodic Theorem, we take a look at uniformly distributed
sequences, which give an idea of the kind of results we are heading to.

6.2.1. A Parenthesis: Uniformly Distributed Sequences.
Uniformly distributed sequences are kind of ideal trajectories for the
evolution of a dynamical system, in the sense that they visit the whole
phase space in a very regular way. Later, systems whose trajectories
behave in this way will be called ergodic. We describe these sequences
following the first chapter of the books of Kuipers and Niederreiter
[KH74] and Rauzy [Rau76].

Consider a sequence x1, x2, . . . , with xn ∈ [0, 1]. For I ⊂ [0, 1], denote
by NI(n) the number of elements of the set {x1, . . . , xn} which are
contained in I.

Definition 6.2.1. A sequence xn ∈ [0, 1], is uniformly distributed if

lim
n→∞

N[a,b)(n)

n
= b− a , (6.2.1)

for all 0 ≤ a < b ≤ 1.

If one considers a sequence as the trajectory of a discrete dynamical
system, then uniform distribution means that the fraction of time the
trajectory spends in any interval is equal to the size of this interval.
Notice that (6.2.1) can be written as

1

n

n∑

k=1

1[a,b)(xk) →
∫

1[a,b)(x)dx . (6.2.2)
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(We always denote
∫ 1

0 by
∫

, and dx is Lebesgue measure.) This su-
ggests the following criterium.

Theorem 6.2.1. A sequence xn ∈ [0, 1], is uniformly distributed if and
only if for all continuous f : [0, 1] → R,

1

n

n∑

k=1

f(xk) →
∫ b

a

f(x)dx . (6.2.3)

The same holds if f : [0, 1) → C is continuous and f(x+ 1 mod 1) =
f(x).

Proof. Assume (xn) is uniformly distributed, take f continuous
on [0, 1]. Let ǫ > 0. Approximate f by two step functions g1 ≤ f ≤ g2

such that
∫

(g2 − g1)dx ≤ ǫ. Then
∫
f(x)dx− ǫ ≤

∫
g1(x)dx = lim

n→∞
1

n

n∑

k=1

g1(xk)

≤ lim inf
n→∞

1

n

n∑

k=1

f(xk)

≤ lim sup
n→∞

1

n

n∑

k=1

f(xk)

≤ lim sup
n→∞

1

n

n∑

k=1

g2(xk)

=

∫
g2(x)dx ≤

∫
f(x)dx+ ǫ .

Conversely, assume (6.2.3) holds for all continuous f . Consider some
interval [a, b). Fix ǫ > 0. Then the indicator of [a, b) can be approxi-
mated by two continuous functions f1 ≤ 1[a,b) ≤ f2 such that

∫
(f2 −

f1)dx ≤ ǫ, and we have

b− a− ǫ ≤
∫
f2dx− ǫ ≤

∫
f1dx = lim

n→∞
1

n

n∑

k=1

f1(xk)

≤ lim inf
n→∞

1

n

n∑

k=1

1[a,b)(xk) ≤ lim sup
n→∞

1

n

n∑

k=1

1[a,b)(xk)

≤ lim
n→∞

1

n

n∑

k=1

f2(xk) =

∫
f2dx ≤

∫
f1dx+ ǫ ≤ b− a+ ǫ .
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Since ǫ is arbitrary, this shows that (xn) is uniformly distributed. �

The previous theorem allows, in principle, to verify if a sequence is
uniformly distributed. Nevertheless, the fact that one must test (6.2.3)
for all continuous functions makes the criterium rather difficult to use
in the practice. The following result shows that it is actually sufficient
to verify convergence for functions of the form fk(x) = e2πikx. These
satisfy

∫
fkdx = 0 for all k 6= 0.

Theorem 6.2.2 (Weyl’s Criterium). A sequence x1, x2, . . . , where xn ∈
[0, 1], is uniformly distributed if and only if for all integer l 6= 0,

1

n

n∑

k=1

e2πilxk → 0 . (6.2.4)

Proof. If (xn) is uniformly distributed then (6.2.4) follows from
Theorem 6.2.1. So suppose (6.2.4) holds for all integer l 6= 0. Take
some continuous f : [0, 1) → C satisfying f(x+1 mod 1) = f(x). Fix
ǫ > 0. By Weierstrass’ Approximation Theorem, there exists a finite
linear combination of functions of the type e2πilx, denoted φ(x), such
that sup0≤x≤1 |f(x) − φ(x)| ≤ ǫ. Observe that

∫
φdx = 0.

∣∣∣
∫
f(x)dx− 1

n

n∑

k=1

f(xk)
∣∣∣ ≤

∣∣∣
∫
f(x)dx−

∫
φ(x)dx

∣∣∣

+
∣∣∣
∫
φ(x)dx− 1

n

n∑

k=1

φ(xk)
∣∣∣ +

∣∣∣1
n

n∑

k=1

φ(xk) −
1

n

n∑

k=1

f(xk)
∣∣∣ .

The first and last term are ≤ ǫ, and the second goes to zero because
of (6.2.4). �

We will use Weyl’s Criterium to study the following simple problem.
Let c ∈ S1 = {z ∈ C : |z| = 1}. Define zn := cn. Is z1, z2, . . . uniformly
distributed on S1? Observe that c = e2πiα, where α ∈ [0, 1]. One can
thus write zn = e2πinα = e2πixn, where xn = αn − ⌊αn⌋ ∈ [0, 1]. Now,
we show

Lemma 6.2.1. If α is irrational, then xn is uniformly distributed.

Proof. We use Weyl’s Criterium.
∣∣∣1
n

n∑

k=1

e2πil{αk}
∣∣∣ =

∣∣∣1
n

n∑

k=1

e2πilαk
∣∣∣ =

1

n

∣∣∣e
2πilα(n+1) − 1

e2πilα − 1

∣∣∣ ≤ 1

n

2

|e2πilα − 1| ,

(6.2.5)
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which tends to zero when n → ∞ for all integer l since e2πilα − 1 is
never zero, whatever the value of l, by the irrationality of α. �

The sequence zn above is obtained by considering the orbit of 1 under
multiplication by c = e2πiα, which is a rotation of angle α on the
unit circle. In general, many sequences of interest are obtained in
this way, i.e. by iterating a map: xn+1 = Txn, which is exactly the
situation we are interested in. The difference is that we consider orbits
on a general measurable space (Ω,F). The analog of uniformity will
be defined in terms of an invariant measure with respect to T (for
sequences in [0, 1], this is Lebesgue measure λ(a, b) = b − a), and the
Ergodic Theorem will be the ingredient giving conditions under which
uniformity is guaranteed.

6.2.2. The Ergodic Theorem of Birkhoff. We go back to the
study of the general study of measures invariant under a measurable
map T . Call a set A ∈ F strictly invariant if T−1A = A. The collection
of strictly invariant sets forms a σ-algebra which we denote by I. One
of the consequences of the following theorem is a construction of the
conditional expectation with respect to I.

Theorem 6.2.3 (Birkhoff’s Ergodic Theorem). Let µ be invariant un-
der T . For any f ∈ L1(µ), the limit

f̂(ω) := lim
n→∞

1

n

n−1∑

k=0

(f ◦ T k)(ω) (6.2.6)

exists for µ-almost all ω ∈ Ω and satisfies the following properties:

(1) f̂ ∈ L1(µ), and is µ-almost-invariant: f̂ ◦ T = f̂ µ-almost
surely.

(2) The convergence in (6.2.6) holds also in L1(µ).
(3) For each strictly invariant A ∈ F,

∫

A

f̂ dµ =

∫

A

f dµ . (6.2.7)

In particular, f̂ is a version of E[f |I], and
∫
f̂dµ =

∫
fdµ.

The proof relies on the following result, usually called Maximal Ergodic
Theorem:
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Proposition 6.2.1. Let µ be invariant under T . Let f ∈ L1(µ) and
define, for each λ ∈ R, the event

Nλ = Nλ(f) :=
{
ω ∈ Ω : sup

n≥1

1

n

n−1∑

k=0

(f ◦ T k)(ω) > λ
}
. (6.2.8)

Then the following holds:
∫

Nλ

f dµ ≥ λµ(Nλ) . (6.2.9)

Moreover, if A is such that T−1A = A, then
∫

A∩Nλ

f dµ ≥ λµ(A ∩Nλ) . (6.2.10)

The inequality (6.2.9) can be understood by assuming f ≥ 0; then,
(6.2.9) yields

µ(Nλ) ≤
1

λ
‖f‖1 , (6.2.11)

which is a useful concentration property: the set of initial conditions
ω for which the empirical averages 1

n

∑n−1
k=0(f ◦T k)(ω) take large values

(along the orbit of ω) has small probability.

Proof. To obtain (6.2.10), we use (6.2.9) with λ = 0 and f̃ :=

(f − η)1A. As can be seen verified easily, T−1A = A implies N0(f̃) =
Nη(f) ∩A, which gives

0 ≤
∫

N0(f̃)

f̃ dµ =

∫

Nη(f)∩A
f dµ− ηµ(Nη(f) ∩ A) .

This shows (6.2.10). To obtain (6.2.9), it suffices to show that
∫

E

f dµ ≥ 0 , (6.2.12)

where

E = E[f ] :=
{
ω ∈ Ω : sup

n≥1

n−1∑

k=0

(f ◦ T k)(ω) > 0
}
. (6.2.13)

Namely, by observing that E[f − λ] = Nλ(f), (6.2.9) follows imme-
diately by taking f − λ in place of f in (6.2.12). To show (6.2.12), we
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express E as a limit of increasing events En. Set S0f(ω) := 0 and, for
all k ≥ 1,

Skf(ω) :=
k−1∑

j=0

(f ◦ T j)(ω) .

Then, for all n ≥ 0, set

Mnf(ω) := max
0≤k≤n

Skf(ω) .

We clearly have Mn+1f ≥Mnf ≥ · · · ≥ 0 and so by defining

En :=
{
ω ∈ Ω : Mnf(ω) > 0

}
,

one has En ⊂ En+1. Moreover, En ⊂ E, which implies
⋃
nEn ⊂ E.

Inversely, if ω ∈ E then there exists some integer n such that Snf(ω) >
0, i.e. ω ∈ En. That is E ⊂ ⋃

nEn, i.e. En ր E. Therefore, if one
can show that ∫

En

f dµ ≥ 0 , (6.2.14)

then Dominated Convergence yields (6.2.12). Now, since Mnf ≥ Skf
for all 0 ≤ k ≤ n,

Mnf(Tω) ≥ Skf(Tω) = Sk+1f(ω) − f(ω) ∀0 ≤ k ≤ n .

This last inequality can be rewritten

f(ω) +Mnf(Tω) ≥ Skf(ω) ∀1 ≤ k ≤ n+ 1 .

In particular,

f(ω) +Mnf(Tω) ≥ max
1≤k≤n

Skf(ω) .

Let us integrate this last expression over En:
∫

En

f dµ+

∫

En

Mnf ◦ T dµ ≥
∫

En

max
1≤k≤n

Skf dµ =

∫

En

Mnf dµ ,

where in the last expression we used the fact that when ω ∈ En, then
Skf(ω) > 0 for some 0 ≤ k ≤ n, which in turn, since S0f(ω) = 0
by definition, implies that max1≤k≤n Skf(ω) = max0≤k≤n Skf(ω) =
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Mnf(ω). Therefore,
∫

En

f dµ ≥
∫

En

Mnf dµ−
∫

En

Mnf ◦ T dµ

=

∫
Mnf dµ−

∫

En

Mnf ◦ T dµ

≥
∫
Mnf dµ−

∫
Mnf ◦ T dµ = 0

In the first equality we used the fact that if ω ∈ Ec
n then Mnf(ω) = 0.

In the inequality we used the fact that Mnf ≥ 0. Finally, we used the
invariance of µ with respect to T and the Change of Variable Formula
of Lemma 6.1.1. This shows (6.2.14), and consequently, (6.2.9), which
finishes the proof of the proposition. �

Proof of the Ergodic Theorem: We study the set of points
ω ∈ Ω at which the limit (6.2.6) doesn’t exist, i.e. at which f∗(ω) <
f ∗(ω), where

f∗(ω) := lim inf
n

An(ω) , f ∗(ω) := lim sup
n

An(ω) ,

are the empirical averages (or Birkhoff sums)

Anf :=
1

n

n−1∑

k=0

f ◦ T k .

As can be seen easily, these functions are invariant: f∗ ◦ T = f∗,
f ∗ ◦ T = f ∗. For two rationals α < β, consider the invariant set

A(α, β) :=
{
ω ∈ Ω : f∗(ω) < α < β < f ∗(ω)

}
.

Consider the set Nβ(f), defined as in (6.2.8). Since A(α, β) ⊂ Nβ(f),
we have, by the Maximal Ergodic Theorem,

βµ(A(α, β)) = βµ(A(α, β) ∩Nβ(f))

≤
∫

Nβ(f)∩A(α,β)

f dµ =

∫

A(α,β)

f dµ (6.2.15)

Doing the same with the set N−α(−f) we get

−αµ(A(α, β)) = −αµ(A(α, β) ∩N−α(−f))

≤ −
∫

N−α(−f)∩A(α,β)

f dµ = −
∫

A(α,β)

f dµ (6.2.16)
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Therefore,

βµ(A(α, β)) ≤
∫

A(α,β)

f dµ ≤ αµ(A(α, β)) ,

which, since α < β, is possible only if µ(A(α, β)) = 0. Since this
holds for all rationals α < β, this shows the first part of the Ergodic
Theorem, namely the almost sure convergence of the means defining f̂

in (6.2.6). At points ω′ where the limit doesn’t exist, we set f̂(ω′) :=

f∗(ω′). To see that f̂ is integrable, we use Fatou’s Lemma and the
Change of Variable Formula:

∫
|f̂ | dµ ≤

∫
lim inf
n→∞

1

n

n−1∑

k=0

|f ◦ T k| dµ

≤ lim inf
n→∞

1

n

n−1∑

k=0

∫
|f ◦ T k| dµ =

∫
|f | dµ .

To see that f̂ is almost surely invariant, write

n+ 1

n
An+1f(ω) − Anf(Tω) =

f(ω)

n

Since f ∈ L1(µ), this tends to zero almost everywhere. Therefore,

f̂ ◦ T exists and equals f̂ almost everywhere. To verify that Anf → f̂
in L1, i.e. that ‖Anf − f̂‖1 → 0, we proceed as follows:

∫
|f̂ − Anf | dµ ≤

∫

M c
λ

|f̂ − Anf | dµ+

∫

Mλ

|f̂ | + |Anf | dµ ,

where Mλ = {ω : supn≥0 |Anf(ω)| > λ}, and λ > 0 is a parame-
ter which will be choosen large later on. Since |Anf | ≤ λ on M c

λ,
Dominated Convergence gives

lim
n→∞

∫

M c
λ

|f̂ − Anf | dµ = 0 .

Next, observe that Mλ ⊂ Nλ(|f |). And therefore, by the Maximal
Ergodic Theorem,

µ(Mλ) ≤ µ(Nλ(|f |)) ≤
1

λ

∫

Nλ(|f |)
|f | dµ ≤ 1

λ

∫
|f | dµ ,
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which converges to zero when λ → ∞. As a consequence,
∫
Mλ

|f̂ | dµ
converges to zero when λ→ ∞. For the last term,

∫

Mλ

|Anf | dµ ≤ 1

n

n−1∑

k=0

∫

Mλ

|f | ◦ T k dµ .

We decompose the integrals as follows:
∫

Mλ

|f | ◦ T k dµ ≤
∫

|f |◦T k>R

|f | ◦ T k dµ+

∫

Mλ∩{|f |◦T k≤R}
|f | ◦ T k dµ .

By the Change of Variable Formula (Exercise 6.1),
∫

|f |◦T k>R

|f | ◦ T k dµ =

∫

|f |>R
|f | dµ ,

which is small when R is large. On the other hand,
∫

Mλ∩{|f |◦T k≤R}
|f | ◦ T k dµ ≤ Rµ(Mλ) ,

which is small for large λ, as seen before. Combined with the previous

bounds, this shows that Anf → f̂ in L1. In particular, by the Change
of Variable Formula,

∫
f̂ dµ = lim

n→∞

∫
Anf dµ = lim

n→∞

∫
f dµ =

∫
f dµ . (6.2.17)

To show (6.2.7), we take a strictly invariant A ∈ F and apply the
first part of the theorem to the function f1A ∈ L1(µ). Since the strict

invariance of A gives f̂1A = f̂1A, we have
∫

A

f̂ dµ =

∫
f̂1A dµ

(6.2.17)
=

∫
f1A dµ =

∫

A

f dµ ,

which finishes the proof of the Ergodic Theorem. �

6.3. Ergodicity

By the Ergodic Theorem, the averages 1
n

∑n−1
k=0 f(T kω) in (6.2.6) con-

verge almost surely to a limit which is, in general random, i.e. which is
has a non-trivial dependence on the initial condition ω: ω 7→ E[f |I](ω)
is a random variable. One can wonder what kind of extra condition
can be imposed on µ in order to the averages converge to some deter-
ministic limit, i.e. to a constant (almost surely) independent of ω. The
simplest way in which a conditional expectation E[f |I] is guaranteed
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to be constant almost everywhere is when the measure satisfies a 0-1
Law on I.

Lemma 6.3.1. Assume µ is trivial on I, i.e. µ(A) ∈ {0, 1} for all A ∈ I.
Then, for all f ∈ L1(µ),

E[f |I] = E[f ] µ− a.s. (6.3.1)

Proof. Consider first an indicator f = 1B, B ∈ F. For any A ∈ I,∫

A

µ(B)dµ = µ(B)µ(A) = µ(B ∩A) =

∫

A

µ[B|I]dµ .

This implies that E[1B] is a version of E[1B|I], i.e. that they are
equal almost everywhere. Let f be positive, bounded, and let fn be a
sequence of simple functions converging pointwise to f . Then for all
A ∈ I,∫

A

E[f ]dµ = lim
n→∞

∫

A

E[fn]dµ = lim
n→∞

∫

A

E[fn|I]dµ =

∫

A

E[f |I]dµ .

The general case now follows easily. �

Definition 6.3.1. A T -invariant measure µ is called ergodic 1 if it is
trivial on I, i.e. if µ(A) = 0 or 1 for each A ∈ Iµ.

In the case where the invariant measure is ergodic, the Ergodic Theo-
rem thus says that temporal averages of observables are deterministic.
In mathematical terms:

Theorem 6.3.1. Let µ be invariant under T and ergodic. For any
f ∈ L1(µ),

1

n

n−1∑

k=0

f ◦ T k → E[f ] µ− a.s. (6.3.2)

As a concrete example, consider the indicator function f = 1A. If µ is
ergodic,

1

n

n−1∑

k=0

1A ◦ T k → µ(A) , µ− a.s. ,

which is a first precise information about the orbit of almost-all point
ω: it spends a fraction of time in a measurable set A exactly equal
to the probability of A, µ(A). It is important to notice that there

1Sometimes, an ergodic measure is also called undecomposable, since Ω cannot be decomposed into
Ω = A ∪Ac with 0 < µ(A) < 1, A ∈ I.
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can sometimes exist different ergodic measures for the same transfor-
mation T , and this previous description of trajectories is different in
each case. In particular, the “almost sureness” of convergence for the
averages depends on the measure under consideration.

We will explore later the deep consequences of the Ergodic Theorem,
but before this we give a few ways in which ergodicity can be tested.

6.3.1. Testing Ergodicity.

Theorem 6.3.2. Let µ be invariant under T . The following are equi-
valent:

(1) µ is ergodic.
(2) If A ∈ F is almost surely invariant, i.e. µ(A△T−1A) = 0, then

µ(A) ∈ {0, 1}.
(3) For all A,B ∈ F with µ(A) > 0, µ(B) > 0, there exists an

integer n ≥ 1 such that µ(A ∩ T nB) > 0.

Proof. (1) implies (2): Assume µ(A△T−1A) = 0. This clearly
implies that µ(A△T−1A△ . . .△T−kA) = 0 for all k ≥ 1. Define A∗ :=
lim supn T

−nA. ThenA∗ is strictly invariant, T−1A∗ = A∗, i.e. µ(A∗) ∈
{0, 1} since µ is ergodic. Then,

µ(A∗) = lim
n→∞

µ
( ⋂

m≥n
T−mA

)
= lim

n→∞
µ
(
T−n ⋂

m≥0

T−mA
)

= µ
( ⋂

m≥0

T−mA
)

= lim
k→∞

µ
( k⋂

m=0

T−mA
)

= µ(A) .

This implies that µ(A) ∈ {0, 1}.
(2) implies (3): assume (2) holds. Take A,B with µ(A) > 0, µ(B) > 0
and assume that (3) is false, i.e. that µ(A ∩ T−nB) = 0 for all n ≥ 1.
Then of course µ(A∩B′) = 0, where B′ :=

⋃
n≥1 T

−nB. Then T−1B′ ⊂
B′, which implies µ(B′△T−1B′) = µ(B′\T−1B′) = 0, and so µ(B′) ∈
{0, 1} by (2). But B′ ⊃ T−1B, and so µ(B′) ≥ µ(T−1B) = µ(B) > 0,
i.e. µ(B′) = 1. Since µ(A) > 0, this contradicts µ(A ∩ B′) = 0.
(3) implies (1): assume (3) holds, but that µ is not ergodic, that is that
there exists a strictly invariant B ∈ F such that 0 < µ(B) < 1. Then
T−nB ∩ Bc = ∅ and µ(T−n ∩ Bc) = 0 for all n ≥ 1, which contradicts
(3). �
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Theorem 6.3.3. Let µ be invariant under T . Then µ is ergodic if and
only if

1

n

n−1∑

k=0

µ(A ∩ T−kB) → µ(A)µ(B) , for all A,B ∈ F . (6.3.3)

Actually, µ is ergodic if and only if (6.3.3) holds for all A,B ∈ C,
where C is any algebra which generates F.

Proof. Assume µ is ergodic. Take any pair of events A,B ∈ F.
By the Ergodic Theorem,

lim
n→∞

1

n

n−1∑

k=0

1A · 1B ◦ T k = 1A · µ(B) µ− a.s.

Integrating on both sides with respect to µ and using Dominated Con-
vergence gives (6.3.3). Then, assume (6.3.3) holds for all A,B ∈ F. If
A is invariant, then

µ(A) = µ(A ∩A) =
1

n

n−1∑

k=0

µ(A ∩ T−kA) → µ(A)µ(A) ,

and therefore µ(A) ∈ {0, 1}: µ is ergodic. Now assume that (6.3.3)
holds for all A,B ∈ C, where C is an algebra generating F. Take
E, F ∈ F. Let ǫ > 0. By the Approximation Lemma 3.2.2, there exists
A ∈ C such that µ(E△A) ≤ ǫ, and B ∈ C such that µ(F△B) ≤ ǫ. A
direct calculation gives, for all n ≥ 1,

µ
(
(T−nE ∩ F )△(T−nA ∩B)

)
≤ µ(E△A) + µ(F△B) ≤ 2ǫ .

This implies |µ(T−nE ∩ F ) − µ(T−nA ∩B)| ≤ 2ǫ. So

∣∣∣1
n

n−1∑

k=0

µ(T−nE ∩ F ) − µ(E)µ(F )
∣∣∣ ≤

∣∣∣1
n

n−1∑

k=0

[µ(T−nE ∩ F ) − µ(T−nA ∩ B)]
∣∣∣

+
∣∣∣1
n

n−1∑

k=0

µ(T−nA ∩B) − µ(A)µ(B)
∣∣∣ + |µ(A)µ(B) − µ(E)µ(F )| .

Therefore,

∣∣∣1
n

n−1∑

k=0

µ(T−nE∩F )−µ(E)µ(F )
∣∣∣ ≤ 4ǫ+

∣∣∣1
n

n−1∑

k=0

µ(T−nA∩B)−µ(A)µ(B)
∣∣∣ ,

which tends to zero when n→ ∞. This shows the theorem. �
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The criterium for ergodicity given in (6.3.3) is sometimes called mixing.
We say that µ is strongly mixing if

µ(A ∩ T−nB) → µ(A)µ(B) (6.3.4)

when n → ∞ for all A,B ∈ F. By (6.3.3), strong mixing implies
ergodicity. This criterium will be used often in the practice.

6.4. Maps on the Interval; Borel’s Theorem on Normal
Numbers

6.5. Ergodic Sequences

As we saw at the beginning of the chapter, a stationary sequence
(Xn)n≥1 can always be considered as constructed on the product space
(RN,B(RN), µ) of sequences ω = (ω1, ω2, . . . ), by taking

Xk(ω) := Y (T kω) ,

where Y (ω) := ω1. Remember that B(RN) is generated by the algebra
of cylinders C, and that the measure µ is obtained by the marginals of
the sequence (Xn)n≥1 and Kolmogorov’s Extension Theorem. Then,
(Xn)n≥1 is stationary if and only if µ is invariant with respect to the
shift T : µ ◦ T−1 = µ.

We say that the sequence (Xn)n≥0 is ergodic (resp. strongly mixing)
if µ is ergodic (resp. strongly mixing) with respect to the shift T .
The same definition holds when the variables take values in a finite
or countable set S, like Markov chains. We discuss two important
examples of such sequences.

6.5.1. IID Sequences and the Strong Law of Large Num-
bers. Assume (Xn)n≥1 is i.i.d., integrable and with distribution ν.
This means that µ is the product measure νN. Set Y := X1. By the
Ergodic Theorem,

X1 + · · · +Xn

n
→ E[Y |I] µ-a.s. (6.5.1)

Let us show that µ is strongly mixing. Take two cylinders A,B ∈ C.
Then clearly, for large enough n, the cylinders A and T−nB have
disjoint bases, and therefore become independent: µ(A ∩ T−nB) =
µ(A)µ(B) for large enough n. By Theorem 6.3.3, this implies that µ
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is ergodic, and so (6.5.1) reads

X1 + · · · +Xn

n
→ E[X1] µ-a.s. , (6.5.2)

which is the Strong Law of Large Numbers.

6.5.2. Stationary Markov Chains. Let (Xn)n≥0 be a Markov
chain taking values in a countable set S, with transition matrix Q.
Let π be a distribution on S which is invariant with respect to Q, i.e.
πQ = π. If X0 has distribution π, then we saw in Example 6.1.2 that
the chain (Xn)n≥0 is stationary. What extra condition should it satisfy
in order to be ergodic? strongly mixing?

Consider the canonical construction of the chain on the product space
S{0,1,...}, with the σ-algebra generated by thin cylinders (see Section
4.1.1). Assume the initial distribution is π, and that the measure asso-
ciated to the chain is denoted µ. For notational convenience, we don’t
indicate the dependence of µ on π.

The study of ergodicity for Markov chain is greatly simplified by the
introduction of a matrix Π on S × S, whose properties are similar to
those of a transition matrix. Remember by Theorem 6.3.3 that the
chain is ergodic if and only if

1

n

n−1∑

k=0

µ(A ∩ T−kB) → µ(A)µ(B) (6.5.3)

for all cylinders A,B ∈ C. Since S is countable, we can even consider
the previous convergence only for thin cylinders. A particular case is
the one in which these thin cylinders are A = {ω : ω0 = x}, B = {ω :
ω0 = y}. Then

µ(A ∩ T−kB) = µ(Xk = y,X0 = x) = Q(k)(x, y)π(x) , (6.5.4)

and (6.5.3) becomes

π(x) lim
n→∞

1

n

n−1∑

k=0

Q(k)(x, y) = π(x)π(y) . (6.5.5)
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Therefore, if we assume that π(x) > 0 for all x ∈ S, the following
matrix appears naturally:

Π := lim
n→∞

1

n

n−1∑

k=0

Q(k) .

Observe that the existence of Π is guaranteed by the Ergodic Theo-
rem 2. A few properties of Π are given hereafter.

Lemma 6.5.1. Π is a transition matrix on S, and satisfies

QΠ = ΠQ = Q , Π(2) = Π .

Moreover, if π denotes an invariant distribution with respect to Q,
then π is also an invariant distribution with respect to Π: πΠ = π.

Proof. The proof is a straightforward repeated use of the Domi-
nated Convergence Theorem. Clearly, 0 ≤ Π(x, y) ≤ 1, and

∑

y∈S
Π(x, y) = lim

n→∞
1

n

n−1∑

k=0

∑

y∈S
Q(k)(x, y) = 1 ,

which shows that Π is a transition matrix.

QΠ(x, y) =
∑

z∈S
Q(x, z)Π(z, y) = lim

n→∞
1

n

n−1∑

k=0

∑

y∈S
Q(x, z)Q(k)(z, y)

= lim
n→∞

1

n

n−1∑

k=0

Q(k+1)(x, y) = Π(x, y) .

In the same way, ΠQ = Π, and

Π(2)(x, y) =
∑

z∈§
Π(x, z)Π(z, y) = lim

n→∞
1

n

n−1∑

k=0

∑

z∈S
Q(k)(x, z)Π(z, y)

= lim
n→∞

1

n

n−1∑

k=0

Q(k)Π(x, y)

= lim
n→∞

1

n

n−1∑

k=0

Π(x, y) = Π(x, y) .

2Namely, the Ergodic Theorem implies that 1
n

∑n−1
k=0 1A · 1B ◦ T k has a limit when n → ∞ exists

µ-almost surely and in L1(µ). By integrating with respect to µ and using (6.5.4), this expression
equals π(x)Π(x, y).
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If π is invariant with respect to Q, i.e. πQ = π, then πQ(k) = π for all
k ≥ 1, and by the same type of argument one gets πΠ = π. �

We have already proved part of

Lemma 6.5.2. Assume π is a invariant with respect to Q, and that
π(x) > 0 for all x ∈ S. Then

(1) µ is strongly mixing if and only if

Q(n)(x, y) → π(y) ∀x, y ∈ S .

(2) µ is ergodic if and only if Π(x, y) = π(y), i.e.

1

n

n−1∑

k=0

Q(n)(x, y) → π(y) ∀x, y ∈ S .

Proof. Consider two thin cylindersC = [x0, . . . , xp],D = [y0, . . . , yq].
Then for large k, µ(C ∩ T−kD) equals

π(x0)Q(x0, x1) · · ·Q(xp−1, xp)Q
(k−p+1)(xp, y0)Q(y0, y1) · · ·Q(yq−1, yp).

This proves (1). Averaging over k = 0, 1, . . . , n− 1 and since

1

n

n−1∑

k=0

Qk−p+1(xp, y0) → Π(xp, y0) = π(y0) ,

we have that 1
n

∑n−1
k=0 µ(C ∩ T−kD) converges to

π(x0)Q(x0, x1) · · ·Q(xp−1, xp)π(y0)Q(y0, y1) · · ·Q(yq−1, yp) ≡ µ(C)µ(D) ,

which shows that µ is ergodic. �

The following shows that the chain is ergodic if and only if its transition
matrix is irreducible.

Theorem 6.5.1. Consider the canonical representation of a stationary
Markov chain with transition matrix Q and invariant distribution π >
0. Consider the following statements.

(1) µ is ergodic with respect to the shift T .
(2) Π(x, y) does not depend on x.
(3) Q is irreducible
(4) Π(x, y) > 0 for all x, y ∈ S.

Then (1) ⇔ (2) ⇒ (3) ⇒ (4). If |S| <∞, then (4) ⇒ (2).
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Proof. (1)⇔(2): By Lemma 6.5.1,
∑

y π(y)Π(y, x) = π(x). The-
refore, Π(y, x) does not depend on y if and only if it equals π(x). By
the Lemma 6.5.2 this is equivalent to µ being ergodic.
(1)⇒(3): Assume that µ is ergodic but that Q is not irreducible.
Then there exists some nonempty proper subset S ′ ⊂ S such that
Q(x, y) = 0 for all x ∈ S ′, y ∈ S\S ′. Define A := {X0 ∈ S ′}. We
have µ(A) = π(S ′) ∈ (0, 1) (remember that π > 0). On the other side,
T−1A = {X1 ∈ S ′}, and so A△T−1A = {X0 ∈ S ′, X1 6∈ S ′} ∪ {X0 6∈
S ′, X1 ∈ S ′}, so clearly µ(A△T−1A) = 0. By Theorem 6.3.2, µ can
therefore not be ergodic.
(3)⇒(4): Fix some x ∈ S, and let Sx := {y : Π(x, y) > 0}. We claim
that Sx is closed. Namely, take y ∈ Sx, z ∈ S\Sx. Assume Q(y, z) > 0.
Then

Π(x, z) = ΠQ(x, y) =
∑

y′∈S
Π(x, y′)Q(y′, z) ≥ Π(x, y)Q(y, z) > 0 ,

i.e. z ∈ Sx, a contradiction. Since the chain is irreducible, this implies
Sx ≡ S, and shows that Π(x, y) > 0 for all y.
Finally, assume |S| <∞ and that (4) holds. Observe that since Π(2) =
Π, any column of Π is a solution of the linear system Πf = f . Namely,
by fixing y and defining f(x) := Π(x, y), we have

Πf(x) =
∑

z

Π(x, z)f(z) =
∑

z

Π(x, z)Π(z, y) = Π(x, y) = f(x) .

Let m := maxx∈S f(x). Assume there exists x∗ such that f(x∗) < m.
Then for all other x we would have f(x) = Πf(x) < m, which is
impossible since we are assuming that S is finite. Therefore, f(x) = m
for all x, which is equivalent to saying that Π(x, y) does not depend
on x, and therefore (4)⇒(2). �

Finally, let us see how the Ergodic Theorem for Markov chains can be
obtained as a corollary of the Ergodic Theorem of Birkhoff, at least in
the case where S is finite. Let f : S → R be integrable with respect to
the invariant distribution π:

∫
|f |dπ <∞. This implies that f̃ defined

on S{0,1,2,... } by f̃(ω) := f(ω0) is integrable with respect to µ. By the
Ergodic Theorem of Birkhoff,

1

n

n−1∑

k=0

f(Xk) ≡
1

n

n−1∑

k=0

f̃ ◦ T k → E[f̃ |I]
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µ-almost surely. In particular, if we assume that the chain is irredu-
cible, then by the previous theorem, µ is ergodic with respect to the

shift, and therefore E[f̃ |I] = E[f̃ ] =
∫
fdπ. This is Theorem 4.6.1 of

Section 4.6.

6.6. Convex Structure of Invariant Measures

In this section we relate ergodicity to a certain undecomposability
with respect to convex combination of probability measures. Consider
a measurable space (Ω,F). Denote the set of measures on (Ω,F) by
M+, and the set of probability measures by M+

1 ⊂ M+. M+
1 is a

convex subset of M+. Now if T : Ω → Ω is measurable, we denote by
M+

1,T ⊂ M+
1 the set of measures which are invariant under T . Again,

M+
1,T is convex, and we will see that its extreme elements are exactly

the invariant probability measures which are ergodic with respect to
T . Before that, let us show that distinct ergodic measures which
are invariant with respect to the same transformation have disjoint
supports.

Lemma 6.6.1. Let µ, ν ∈ M+
1,T be both ergodic. Then either they coin-

cide, or they are singular (in that there exists A ∈ F with µ(A) = 1,
ν(A) = 0).

Proof. For anyA ∈ F, consider the set Aµ ⊂ Ω on which 1
n

∑n−1
k=0 1A

converges µ-almost surely to µ(A). Since µ is ergodic, we have µ(Aµ) =
1. In the same way, we have the set Aν for which ν(Aν) = 1. Now if
µ and ν are distinct, there exists some A such that µ(A) 6= ν(A). But
then the sets Aµ and Aν are disjoint, which implies that µ and ν are
singular. �

Theorem 6.6.1. A probability measure µ ∈ M+
1,T is extremal if and

only if it is ergodic.

Proof. If µ is not ergodic, then there exists some invariant set A
such that 0 < µ(A) < 1. Consider the measures

ν1 := µ(·|A) , ν2 := µ(·|Ac) .

These measures are invariant. Namely, by the invariance of A and µ,

ν1(T
−1B) =

µ(T−1B ∩ A)

µ(A)
=
µ(T−1(B ∩ A))

µ(A)
=
µ(B ∩ A)

µ(A)
= ν1(B) .

Since µ = µ(· ∩ A) + µ(· ∩ Ac) = λν1 + (1 − λ)ν2 where λ := µ(A),
µ is not extreme. On the other hand, assume µ is ergodic and that
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there exist two invariant measures ν1, ν2 and some 0 < λ < 1 such that
µ = λν1 + (1 − λ)ν2. Then, ν1 is absolutely continuous with respect
to µ. In particular, ν1 is ergodic. By Lemma 6.6.1, µ and ν1 either
coincide, or are singuler. But they can’t be singular since there would
exist some event A such that µ(A) = 1, ν1(A) = 0, which is impossible
since

1 = µ(A) = λν1(A) + (1 − λ)ν2(A) = (1 − λ)ν2(A) ≤ 1 − λ < 1 .

Therefore µ = ν1. In the same way, µ = ν2. Therefore, µ is extremal.
�

Since extreme elements of M+
1,T , a natural question is to know if there

exists a way in which any invariant probability measure can be de-
composed into a convex combination of ergodic measures, and if this
decomposition is unique. It happens that such decompositions are
guaranteed when the measurable space (Ω,F) satisfies some counta-
bility assumptions. We refer to [Geo88], Section 7, where a general
statement can be found.

6.7. Exercises

VOIR DAJANI

Exercise 6.1. Prove the Change of Variable Formula: if µ is invariant
under T , then for all f ∈ L1(Ω,F, µ),

∫
f ◦ T dµ =

∫
f dµ . (6.7.1)

Exercise 6.2. Show that the set function µ defined by

µ(CΛ(a1, . . . , a|Λ|)) :=
∏

i∈Λ

p(ai) (6.7.2)

is σ-additive on the algebra of cylinders C.

Exercise 6.3. Let (Ω,F, µ) be a probability space, where F is ge-
nerated by an algebra C. If T−1A ∈ F and µ(T−1A) = µ(A) for all
A ∈ C, then µ is invariant under T . (Hint: use the Monotone Class
Theorem.)

Exercise 6.4. Define ergodicity for measures on Zd. Show that pro-
duct measures are ergodic.
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Exercise 6.5. Call µ weakly mixing if

1

n

n−1∑

k=0

|µ(A ∩ T−kB) − µ(A)µ(B)| → 0 , for all A,B ∈ F .

Show that µ is weakly mixing if and only if

1

n

n−1∑

k=0

(µ(A ∩ T−kB) − µ(A)µ(B))2 → 0 , for all A,B ∈ F .

Exercise 6.6. [KH74] Uniformly distributed sequences in [0, 1]

(1) show that any uniformly distributed sequence is dense
(2) show that if r is rational, then the sequence xn := (rn), n ≥

1 is not uniformly distributed. Is there a proper interval of
[0, 1] which is visited with the appropriated frequency by the
sequence?

(3) show that the sequence 0/2, 1/2, 2/2, 0/3, 1/3, 2/3, 3/3, etc. is
uniformly distributed.

Exercise 6.7. [Pet00] p. 33. Identify f̂ in the following cases.

(1) The two sided shift Ω = AZ with invariant measure µ = pZ,
and f(ω) = 1a0

(ω0) for some a0 ∈ A.
(2) Ω = [0, 1), Tω = ω + α mod 1, µ is the Lebesgue measure,

and f = 1I for some interval I ⊂ [0, 1).
(3) Ω = R, Tω = ω + 1, µ is the Lebesgue measure, and f ∈ L1.

Exercise 6.8. Show that if µ is trivial on Iµ, then for all f ∈ L1(µ),
Eµ(f |Iµ) = Eµ(f) µ-almost surely. Hint: start with simple functions.

Exercise 6.9. Grimmett p. 410, ex. 14. Consider ([0, 1),B([0, 1))λ).
Show that the shift T : [0, 1) → [0, 1) is measurable, preserves λ, and
ergodic. VOIR BILL. P. 11. VOIR LA REMARQUE 1.2.15 de Dajani.
VOIR AUSSI SON EXERCICE 1.2.22 SUR LA TRANSFORMATION
DU BOULANGER. Let X(ω) = ω. Show that the proportion of 1s in
in the expansion of X is in base to equals 1

2.

Exercise 6.10. dAJANI P. 29. Show that Gauss’ transformation
doesn’t preserve the lebesgue measure, but preserves

µ(A) :=
1

log 2

∫

A

1

1 + x
dx .

VOIR BILLINGSLEY p.43 ou RAUZY
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Exercise 6.11. Verify that Iµ is a σ-algebra. Show that g : Ω → R is
Iµ-measurable if and only if it is µ-almost invariant.

Exercise 6.12. Varadhan p. 184. Prove that any any almost inva-
riant set differs by a set of measure zero from an invariant set.

Exercise 6.13. Varadhan p. 184. Prove that any product measure is
ergodic for the shift

Exercise 6.14. Varadhan p. 187. Show that any two distinct ergodic
invariant measures are orthogonal on I.



CHAPTER 7

Brownian Motion

This chapter is devoted to the construction of the Brownian motion
and to the study of its basic properties. Most of this chapter, in
particular Section 7.2 on weak convergence, is taken from the book of
Billingsley [Bil68].

7.1. Introduction

Consider the simple symmetric random walk on Z starting at the ori-
gin, denoted (Sn)n≥0. We denote its increments by Yk, and the under-
lying probability space by (Ω,F, P ).

The properties of the position of the walk at time n are described by
the Law of Large Numbers (LLN) and by the Central Limit Theorem
(CLT). In the CLT for instance, the description of the distribution of
Sn√
n

satisfies

P
( Sn√

n
∈ A

)
→ 1√

2π

∫

A

e−
x2

2 dx (7.1.1)

for all Borel set A ∈ B(R). The CLT is a statement about the weak
convergence in distribution of Sn√

n
to the centered normal Gaussian. A

sequence of probability measures µn on the real line (R,B(R)) is said
to converge weakly to a probability measure µ if

µn(A) → µ(A) , for all A ∈ B(R) with µ(∂A) = 0 . (7.1.2)

In our case, the distribution of Sn√
n

is the probability measure on the

real line defined by µn(A) := P ( Sn√
n
∈ A) and µ is the centered nor-

mal Gaussian distribution µ(dx) = 1√
2π

exp(−x2

2 )dx. The fact that in

(7.1.1) the convergence holds for all Borel set A stems from the fact
that µ is absolutely continuous with respect to the Lebesgue measure,
which is non-atomic.

The CLT describes the behaviour of the position of the random walk
at time n. A natural question is to ask about the statistical properties

171
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of the trajectory as a whole, that is considering the values of Sk at all
times k ∈ [0, n], for large n. To keep track of the whole trajectory,
we consider a double rescaling, in space and time, and consider the
trajectory up to time n as a function of a real variable t on the interval
[0, 1]. The rescaling in time is thus a division by n:

{0, 1, . . . , , n− 1, n} →
{
0,

1

n
, . . . , . . . , 1 − 1

n
, 1

}
,

and since Sn has typical fluctuations of order
√
n by the CLT, a spatial

rescaling of order
√
n is necessary in order to obtain a limiting object

(if any) which is bounded. More precisely, for each time n we consider
the rescaled trajectory Xn : [0, 1] → R defined by interpolating, on

each time interval t ∈ [k−1
n
, k
n
], between the values of Sk−1√

n
and Sk√

n
(see

Figure 1):

Xn(t) :=
S⌊nt⌋√
n

+ (nt− ⌊nt⌋) 1√
n
Y⌊nt⌋+1 . (7.1.3)

Xn belongs to the set of continuous functions on [0, 1], denoted by C.

1 n

Sk

1

n

Xn(t)

1

Figure 1. The rescaling of the simple random walk.

Since each Xn is a random function, it has two inputs: the time va-
riable t ∈ [0, 1] and the random realization ω ∈ Ω. We will sometimes
write Xn : [0, 1]× Ω → R to indicate this double dependence.

To understand the statistical properties of the random functions Xn

when n becomes large we need to define their distribution, which requi-
res the definition of a σ-algebra on C. The natural distance on C is
the sup-norm: for x, y ∈ C,

ρ(x, y) := sup
t∈[0,1]

|x(t) − y(t)| .

We consider on C the Borel σ-algebra generated by the open sets
defined by ρ. The distribution of Xn is defined as follows: for any
Borel set B ⊂ C,

µn(B) := P (Xn ∈ B) . (7.1.4)
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We say that a sequence of probability measures µn converges weakly
to a probability measure µ if

µn(B) → µ(B) , for all Borel set B with µ(∂B) = 0 . (7.1.5)

The rest of the chapter is essentially devoted to show that the sequence
µn defined in (7.1.4) converges weakly to a measure W called Wiener
measure. W is a measure on the set of continuous functions over [0, 1].
Proving its existence will require a full exposition of weak convergence
of probability measures in metric spaces.

The rest of the chapter is organized as follows. In Section 7.2 we int-
roduce weak convergence for sequences of probability measures on a
general metric space (S, ρ). After describing some of its basic proper-
ties, we give a few criteria, among which the Portmanteau Theorem,
which allow to test weak convergence in concrete cases, for example
when S = Rd, RN, or C. We then prove the Theorem of Prohorov,
in Section 7.3, which gives a necessary and sufficient condition un-
der which a sequence µn is guaranteed to converge weakly to some
probability measure: tightness. These results are then used, together
with the Arzelà-Ascoli Theorem, to construct the Wiener measure in
Section 7.4. We prove Donsker’s Invariance Principle in Section 7.5.
Some properties of the Brownian motion, such as almost-everywhere
non-differentiability and the Law of the Iterated Logarithm, are then
described in Section 7.6.

The whole of Section 7.2 is taken from the book of Billingsley [Bil68].

7.2. Weak Convergence in Metric Spaces

Let (S, ρ) be a metric space. An open sphere of radius r > 0 centered
at x ∈ S is denoted Br(x) = {y ∈ S : ρ(y, x) < r}. The interior
of A ⊂ S is denoted intA, its closure by Ā. Let A ⊂ S, and define
ρ(x,A) := inf{ρ(x, y) : y ∈ A}. For ǫ > 0, denote the open ǫ-thickening
of A by [A]ǫ := {y : ρ(y, A) < ǫ}, and the closed ǫ-thickening of A, by
[A]ǫ := {y : ρ(y, A) ≤ ǫ}. Observe that if A is closed, then [A]ǫ ց A
when ǫ ց 0+. Let C(S) denote the family of continuous bounded
functions f : S → R.
LEMBRETE DE TOPOLOGIA?
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7.2.1. Borel Sets and Probability Measures on S. The open
sets of S generate the σ-algebra of Borel sets, which we denote by
S. Observe that S contains all open, closed and compact sets. S can
therefore be generated equivalently by either of these classes. If S, S ′

are two metric spaces and if f : S → S ′ is continuous, then it is also
measurable: f−1(B′) ∈ S for all B′ ∈ S′ 1. This holds in particular for
the continuous functions f : S → R, which we denote C(S). Usually,
we will denote the elements of S by A,B,C, . . . (unless otherwise spe-
cified, these letters will be used to denote Borel sets), and probability
measures on (S, S) will be denoted by µ or ν.

We first show how Borel sets can be approximated, in a measure-
theoretic sense, by closed or open sets. Call a probability measure µ
on (S, S) regular if, for all A and all ǫ > 0 there exists a closed set F
and an open set G such that F ⊂ A ⊂ G and µ(G\F ) ≤ ǫ.

Lemma 7.2.1. Any probability measure on (S, S) is regular.

Proof. Take some probability measure µ. Let D denote the class
of all sets A for which there exists, for all ǫ > 0, a closed set F and
an open set G such that F ⊂ A ⊂ G and µ(G\F ) ≤ ǫ. If A is closed,
take F := A, and Gδ := [A]δ. Gδ is open. Since A is closed, Gδ ց A
when δ → 0+, and so µ(Gδ) ց µ(A). Therefore, D contains all closed
sets. If we show that D is a σ-algebra, then we are done. Clearly, D

is stable under complementation, and contains ∅, S. Let then An ∈ D.
It suffices to show that A :=

⋃
nAn ∈ D. Let ǫ > 0. For each n, take

a closed set Fn and an open set Gn such that Fn ⊂ An ⊂ Gn, and such
that µ(Gn\Fn) ≤ ǫ2−(n+1). Set FN :=

⋃N
n=1 Fn, G :=

⋃
n≥1Gn. Take

N large enough so that µ(F∞\FN) ≤ ǫ
2 , and let F := FN . We have

µ(G\F ) ≤ µ(G\F∞) + µ(F∞\F ). But

µ(G\F∞) ≤
∑

n≥1

µ(Gn\F∞) ≤
∑

n≥1

µ(Gn\Fn) ≤
ǫ

2
,

and by definition µ(F∞\F ) ≤ ǫ
2. This shows that A ∈ D. �

1Let S, S′ be two metric spaces and denote their Borel σ-algebras by S, S′ respectively. Let
f : S → S′ be continuous. Take an open set A′ ⊂ S′. Since f−1(A′) is an open set of S, it belongs

to S. Denote by S̃ the set of subsets A ⊂ S′ for which f−1(A) ∈ S. It is easy to verify that S̃ is a
σ-algebra, and we have just seen that it contains all the open sets of S′. Since these generate S′,
S̃ contains S′. f is therefore measurable.



7.2. WEAK CONVERGENCE IN METRIC SPACES 175

Definition 7.2.1. A class of sets D ⊂ S is a determining class if any
two probability measures which coincide on D are equal. That is, if
µ(D) = ν(D) for all D ∈ D then µ = ν

Lemma 7.2.1 has an immediate corollary:

Corollary 7.2.1. The closed sets form a determining class.

Proof. Namely, assume µ, ν are such that µ(F ) = ν(F ) for all
closed F . Then by the previous lemma, for any A ∈ S, there exists
a sequence of closed sets Fn ⊂ A such that µ(A) = limn µ(Fn). But
limn µ(Fn) = limn ν(Fn) ≤ ν(A). In the same way, we show that
ν(A) ≤ µ(A). Therefore, µ = ν. �

The next result shows that indicators can be approximated by uni-
formly continuous functions. Then, as can be easily verified 2,

|ρ(x,A) − ρ(y, A)| ≤ ρ(x, y) , ∀x, y ∈ S , (7.2.1)

which implies that ρ(·, A) is uniformly continuous.

Theorem 7.2.1. Let A ∈ S, ǫ > 0. Then there exists f ∈ C(S),
uniformly continuous, such that 0 ≤ f ≤ 1, f(x) = 0 if ρ(x,A) ≥ ǫ,
and f(x) = 1 if x ∈ A.

Proof. Let φ(t) = 1 if t ≤ 0, φ(t) = 1 − t if t ∈ [0, 1], and
φ(t) = 0 if t ≥ 1. φ is uniformly continuous. For each ǫ > 0, define
f(x) := φ(ǫ−1ρ(x,A)). It is easy to verify that f satisfies the wanted
properties. �

Since indicators of measurable sets can be approximated by continuous
functions, we can now show that a measure is uniquely determined by
the way in which it integrates continuous functions.

Theorem 7.2.2. Two probability measures µ, ν on (S, S) are equal if
and only if ∫

fdµ =

∫
fdν , ∀f ∈ C(S) . (7.2.2)

Proof. Assuming (7.2.2) holds, take F ∈ S closed. Consider the
sequence

fn(x) := φ(nρ(x, F )) (7.2.3)

2Write, for all x0 ∈ F , ρ(x,A) ≤ ρ(x, x0) ≤ ρ(x, y) + ρ(y, x0). This implies ρ(x,A) ≤ ρ(x, y) +
ρ(y,A). Interchanging the roles of x and y proves (7.2.1).
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where φ is the function of Theorem 7.2.1. We have fn ≥ 1F and since F
is closed, fn converges pointwise to the indicator of F : fn(x) ց 1F (x).
By Dominated Convergence,

µ(F ) = lim
n→∞

∫
fn(x)dµ = lim

n→∞

∫
fn(x)dν =

∫
1Fdν = ν(F ) .

(7.2.4)
By Corollary 7.2.1, µ = ν. �

7.2.2. Weak Convergence: Definition and Testing Criteria.
The following is the classical definition of weak convergence. The
Portmanteau Theorem will show that it is actually equivalent to the
definition we gave in (7.1.5).

Definition 7.2.2. Let (µn)n≥1 and µ be probability measures on (S, S).
We say that µn converges weakly to µ if∫

fdµn →
∫
fdµ , ∀f ∈ C(S) . (7.2.5)

When (7.2.5) holds, we write µn
w⇒ µ.

The main result of this section is Theorem 7.2.1 and its two corollaries,
which say that weak convergence can be tested on classes of sets which
are strictly smaller than S. Such classes will be easy to handle in
concrete situations. Call a set A ∈ S µ-continuous if µ(∂A) = 0.
(Observe that ∂A = Ā\intA, so ∂A ∈ S.)

Theorem 7.2.3 (The Portmanteau Theorem). Let µn, µ be probability
measures on (S, S). The following conditions are equivalent.

(1) µn
w⇒ µ,

(2)
∫
fdµn →

∫
fdµ for all f ∈ C(S) uniformly continuous,

(3) lim supn→∞ µn(F ) ≤ µ(F ) for all closed F ,
(4) lim infn→∞ µn(G) ≥ µ(G) for all open G,
(5) limn→∞ µn(A) = µ(A) for all µ-continuous set A.

Proof. (1) implies (2): trivial.
(2) implies (3): Let F be closed. Consider the uniformly continuous
function fk defined in (7.2.3). For all k,

lim sup
n→∞

µn(F ) = lim sup
n→∞

∫
1Fdµn ≤ lim sup

n→∞

∫
fkdµn =

∫
fkdµ

As we saw in (7.2.4),
∫
fkdµ→ µ(F ) in the limit k → ∞. This yields

(3).
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(3) implies (1): Take f ∈ C(S). We will show that lim supn
∫
fdµn ≤∫

fdµ; the result then follows by doing the same with −f . Since f
is bounded, we can assume for example that f(x) ∈ [0, 1). For each
N ≥ 1, we divide the interval [0, 1) into N intervals of equal size and
consider the approximation of f by the functions

f−
N (x) :=

N∑

i=1

i− 1

N
1{x: i−1

N
≤f(x)< i

N
}(x) , f+

N (x) :=
N∑

i=1

i

N
1{x: i−1

N
≤f(x)< i

N
}(x) .

Clearly, f−
N ≤ f ≤ f+

N and so for any probability measure ν,
∫
f−
Ndν ≤

∫
fdν ≤

∫
f+
Ndν .

By noting that ν
(
{x : i−1

N
≤ f(x) < i

N
}
)

= ν(Fi−1) − ν(Fi), where
Fi are the closed sets Fi := {x : f(x) ≥ i/N}, F0 := S, FN := ∅, we
easily obtain

∫
f+
Ndν =

1

N
+

1

N

N∑

i=1

ν(Fi) ,

∫
f−
Ndν =

1

N

N∑

i=1

ν(Fi) .

Using these expressions for the measures µn, µ,

lim sup
n→∞

∫
fdµn ≤ lim sup

n→∞

{ 1

N
+

1

N

N∑

i=1

µn(Fi)
}

≤ 1

N
+

1

N

N∑

i=1

µ(Fi) =
1

N
+

∫
f−
Ndµ ≤ 1

N
+

∫
fdµ ,

and the needed inequality then follows by taking N → ∞.
(3) is equivalent to (4): Trivial since µ(F c) = 1 − µ(F ).
(3) and (4) imply (5): Let A ∈ S. Then, by (3) and (4),

µ(Ā) ≥ lim sup
n→∞

µn(Ā) ≥ lim sup
n→∞

µn(intA) ≥ lim inf
n→∞

µn(intA) ≥ µ(intA) .

But if µ(∂A) = 0, then µ(Ā) = µ(intA).
(5) implies (3): Let F be closed. Assume for a while we can find, for
any small ǫ > 0, some closed set F ′ ⊃ F such that µ(∂F ′) = 0, and
P (F ′\F ) ≤ ǫ. Then clearly

lim sup
n→∞

µn(F ) ≤ lim sup
n→∞

µn(F
′) = µ(F ′) ≤ µ(F ) + ǫ ,

and the result follows by taking ǫ → 0. A natural candidate for F ′ is
the closed ǫ-thickening of F , [F ]ǫ, which is closed.
Claim: there exists a sequence ǫk ց 0 such that µ(∂[F ]ǫk) = 0 for all
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k. Namely, assume that µ(∂[F ]ǫ) > 0 for all ǫ ∈ (0, 1). Lemma 7.2.2
hereafter implies that there exists some sequence ǫ′j ∈ (0, 1) of distinct

values of ǫ such that
∑

j µ(∂[F ]ǫ
′
j) = +∞. Since the sets {∂[F ]ǫ}ǫ∈(0,1)

are disjoint, µ wouldn’t be a probability. Therefore, there exists at
least one ǫ1 ∈ (0, 1) such that µ(∂[F ]ǫ1) = 0. Then, we start again:
assume that µ(∂[F ]ǫ) > 0 for all ǫ ∈ (0, ǫ1). Lemma 7.2.2 hereafter
implies that there exists some sequence ǫ′j ∈ (0, ǫ1) of distinct values

of ǫ such that
∑

j µ(∂[F ]ǫ
′
j) = +∞. Since the sets {∂[F ]ǫ}ǫ∈(0,ǫ1) are

disjoint, µ wouldn’t be a probability. Therefore, there exists at least
one ǫ2 ∈ (0, ǫ1) such that µ(∂[F ]ǫ2) = 0, etc. This proves the claim.
Now, for all k,

lim sup
n→∞

µn(F ) ≤ lim sup
n→∞

µn([F ]ǫk) = µ([F ]ǫk) .

As we know, µ([F ]ǫk) ց µ(F ) since F is closed. This finishes the proof
of the Portmanteau Theorem �

Lemma 7.2.2. Let g : (0, a) → (0,+∞). Then there exists a sequence
tk ∈ (0, a), tk 6= tk′, such that

∑
k g(tk) = +∞.

Proof. Write (0,∞) =
⋃
j≥1Rj, where R1 := (1,∞), and Rj :=

(1
j
, 1
j−1

] for j ≥ 2. There exists at least one j0 ≥ 1 such that g−1(Rj0)

contains an uncountable number of points (otherwise, (0, a) would be
countable). Let {t1, t2, . . . } ⊂ g−1(Rj0) be distinct. Since g(tk) ≥ 1

j0
,

we have
∑

k g(tk) = +∞. �

Condition (5) of the Portmanteau Theorem implies that weak conver-
gence can be verified by testing if µn(A) → µ(A) for the µ-continuous
Borel sets A. In concrete situations, one will want to test this conver-
gence on classes of sets A whose structure is in general simpler than the
whole σ-algebra S. Later, we shall call these convergence-determining
classes.

Proposition 7.2.1. Let U ⊂ S be such that

(1) U is stable under finite intersections,
(2) each open set G ∈ S can be written as a finite or countable

union of elements of U.

If µn(A) → µ(A) for all A ∈ U, then µn
w⇒ µ.
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Proof. First observe that if A1, . . . , Am ∈ U,

µn(A1 ∪ · · · ∪Am) =

m∑

k=1

(−1)k+1
∑

I⊂{1,...,k}
µn

( ⋂

j∈I
Aj

)
.

Since
⋂
j∈I Aj ∈ U, this gives

lim
n→∞

µn(A1 ∪ · · · ∪ Am) = µ(A1 ∪ · · · ∪Am) .

Let G ∈ S be open, ǫ > 0. Since by assumption G can be written as a
finite or countable union G =

⋃
k≥1Ak, Ak ∈ U, there exists some m

such that

µ(G) − ǫ ≤ µ(A1 ∪ · · · ∪Am) = lim
n→∞

µn(A1 ∪ · · · ∪Am) ≤ lim inf
n→∞

µn(G) .

Since ǫ is arbitrary, the Portmanteau Theorem implies that µn
w⇒

µ. �

We then give a criterium for testing weak convergence which has the
advantage of involving a family U of sets which is close to being a base
for the metric topology. It holds under a separability assumption.

Theorem 7.2.4. Let U ⊂ S be such that

(1) U is stable under finite intersections,
(2) for all x ∈ S and all ǫ > 0, ∃A ∈ U such that x ∈ intA ⊂ A ⊂

Bǫ(x).

If S is separable and if µn(A) → µ(A) for all A ∈ U, then µn
w⇒ µ.

First, we prove a topological lemma.

Lemma 7.2.3. Let S be separable. Then there exists a countable family
B of open spheres such that any open set A can be expressed as a
countable union of elements of B (B is called a base).

Proof. Let T ⊂ S be dense and countable. Let B = {B1, B2, . . . }
denote the set of open spheres centered at points of T , with radii
r ∈ Q. Let A be open. Let A′ :=

⋃
k:Bk⊂ABk. Clearly, A′ ⊂ A. We

then show that A ⊂ A′. Take any x ∈ A. Since A is open, there exists
r > 0, such that Br(x) ⊂ A. Let t ∈ T ∩ B r

3
(x). Take any rational

r
3 < r∗ <

2r
3 . Then x ∈ Br∗(t) ⊂ Br(x) ⊂ A. Therefore A ⊂ A′. �

Proof of Theorem 7.2.4. Let G ⊂ S be open. The result will
follow by Proposition 7.2.1 if one can show that G can be written
as a countable union of elements of U. Since G is open, there exists
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for all x ∈ G some rx > 0 such that Brx(x) ⊂ G, and by (2) there
exists Ax ∈ U such that x ∈ intAx ⊂ Ax ⊂ Brx(x) ⊂ G. The-
refore, G =

⋃
x∈GAx. Consider the countable set of open spheres

B = {B1, B2, . . .} of Lemma 7.2.3. For each k ∈ {1, 2, . . .}, let A(k)
be any of the Axs which is such that intAx contains Bk (if any; other-
wise, set A(k) = ∅). Then clearly G =

⋃
k A(k). �

Definition 7.2.3. A family of sets U ⊂ S is a convergence-determining
class if µn(A) → µ(A) for all µ-continuity set A ∈ U implies µn

w⇒ µ.

As well known, the class U of semi-infinite intervals (−∞, x] forms
a convergence-determining class for weak convergence of probability
measures on the real line. See Section 7.2.3 hereafter.

Lemma 7.2.4. Any convergence-determining class is determining. (The
converse is false, see Section 7.2.5.)

Proof. Assume µ(A) = ν(A) for all A belonging to a convergence
determining class U. Define µn := µ. Since µn(A) → ν(A) for all

A ∈ U (in particular if A is µ-continuous), then µn
w⇒ ν. This means

that for all continuous f ,∫
fdµ =

∫
fdµn = lim

n→∞

∫
fdµn =

∫
fdν .

By Theorem 7.2.2, this implies that µ = ν. �

As a last criterium to test weak convergence, we have:

Theorem 7.2.5. µn
w⇒ µ if and only if each subsequence {µnk

} ⊂ {µn}
has a further subsequence {µn′

j
} ⊂ {µnk

} such that µn′
j

w⇒ µ.

Proof. The result follows by the equivalent property for sequences
of real numbers, which can be easily verified: a real sequence {xn}
converges to x if and only if any subsequence {xnk

} ⊂ {xn} has a
further subsequence {xn′

j
} ⊂ {xnk

} which converges to x. �

In the following three sections, we consider particular cases of metric
spaces which will be used later.

7.2.3. The metric space Rd. Consider S = Rd, whose elements
are d-tuples x = (x1, . . . , xd), xk ∈ R, with the Euclidian metric

ρ(x, y) :=
( d∑

k=1

|xk − yk|2
)1

2

.
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(Rd, ρ) is separable and complete. The Borel sets generated by the
open sets of the metric ρ are denoted B(Rd), and are the same as
those obtained by considering the product σ-algebra generated by rec-
tangles.

As well known when proving the Central Limit Theorem in d = 1, weak
convergence of probability measures is equivalent to weak convergence
of distribution functions. With d ≥ 2, the same holds, as we now
show. For x, y ∈ Rd, write x ≤ y if xk ≤ yk for all k = 1, . . . , d. An
interval is a set of the form (a, b] = {y : ak < yk ≤ bk, k = 1, . . . , d}.
For any µ, probability measure on (Rd,B(Rd)), define the distribution
function

F (x) := µ({y : y ≤ x}) .
By definition, F is non-decreasing in x, and it is easy to see that F is
continuous from above, i.e. for all ǫ > 0 there exists a δ > 0 such that
x ≤ y ≤ x + δe (e = (1, 1, . . . , 1)) implies F (x) ≤ F (y) ≤ F (x) + ǫ.
Therefore, F is continuous at x if and only if it is continuous from
below at x, that is if for all ǫ > 0 there exists a δ > 0 such that
x − δe ≤ y ≤ x implies F (x) − ǫ ≤ F (y) ≤ F (x) or, equivalently, if
F (x) = supδ>0 F (x− δe) = µ({y : y < x}). Therefore, F is continuous
at x if and only if µ(∂{y : y ≤ x}) = 0, i.e. if {y : y ≤ x} is a
continuity set of µ.

Let Fn denote the distribution function of µn.

Theorem 7.2.6. The class of sets of the form {y : y ≤ x}, x ∈
Rd, form a convergence-determining class for weak convergence in
(Rd,B(Rd)). In other words, µn

w⇒ µ if and only if Fn(x) → F (x)
at each continuity point of F .

Proof. If µn
w⇒ µ then by (5) of the Portmanteau Theorem and by

what we just said, Fn(x) → F (x) at each x where µ(∂{y : y ≤ x}) = 0,
i.e. where F is continuous.
On the other hand, let U denote the set of bounded intervals (a, b].
Then U satisfies (1) and (2) of Theorem 7.2.4, and so U is a conver-
gence determining class: if µn((a, b]) → µ((a, b]) for all (a, b] ∈ U with

µ(∂(a, b]) = 0, then µn
w⇒ µ. To transform this into a condition on

the sets {y : y ≤ x}, first observe that for any r = 1, . . . , d, there can
exist at most countably many hyperplanes Ht := {y : yr = t} with
µ(Ht) > 0 (repeat an argument similar to the one of Lemma 7.2.2).
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Now since each µn((a, b]) can be expressed as a sum
∑2d

k=1 ±Fn(xk),
where the xks are the 2d corners of (a, b], and since when (a, b] ∈ U, F is
continuous at each of these points, we have that µn((a, b]) → µ((a, b])
for all (a, b] ∈ U if and only if Fn(xk) → F (x) for each k. �

7.2.4. The metric space RN. Consider S = RN, the set of real
sequences x = (x(1), x(2), . . .) where x(k) ∈ R. We first introduce a
metric on R equivalent to the Euclidian metric | · |: for all α, β ∈ R,

ρ0(α, β) :=
|α− β|

1 + |α− β| .

The advantage is that 0 ≤ ρ0 < 1. Then define, for x, y ∈ RN,

ρ(x, y) :=
∑

k≥1

1

2k
ρ0(x(k), y(k)) . (7.2.6)

Lemma 7.2.5. (RN, ρ) is complete, separable.

Proof. Let (xn)n≥1 be a Cauchy sequence, i.e. ρ(xn, xm) → 0
when n,m → ∞. Then for each component k, ρ0(xn(k), xm(k)) ≤
2kρ(xn, xm), and therefore x(k) := limn→∞ xn(k) exists. Let x :=
(x(1), x(2), . . .). We have, by the Lemma of Fatou,

ρ(x, xn) ≤ lim inf
m→∞

∑

k≥1

1

2k
ρ0(xm(k), xn(k)) = lim inf

m→∞
ρ(xm, xn) ,

which is arbitrarily small when n is large. Therefore, xn → x, which
shows that (RN, ρ) is complete. To see that it is separable, consider the
set T :=

⋃
n≥1 Tn, where Tn is the set of elements x = (x(1), x(2), . . . )

whose first n coordinates are rational, and x(k) = 0 for all k > n.
Clearly, T is dense in RN. �

Remember from Chapter 3 that cylinders C ⊂ RN are sets of the form
π−1
n (B), for some Borel set B ∈ B(RN), where πn : RN → Rn is the

canonical projection (3.1.2).

Lemma 7.2.6. C is a convergence-determining, hence determining.

Proof. Clearly, the projections πn : RN → Rn are continuous
(when RN and Rm are equipped with their respective metrics), hence
measurable. Therefore, C ⊂ B(RN). Consider an open sphere Bǫ(x).
Let K be large enough so that

∑
k>K 2−k < ǫ

2 . Consider the cylinder
C = {y : |y(k) − x(k)| < ǫ

4 , k = 1, . . . , K}. Clearly x ∈ C ≡ intC ⊂
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C̄ ⊂ Bǫ(x). Since RN, Theorem 7.2.4 implies that C is a convergence-
determining class. �

7.2.5. The metric space C. Consider C (a short notation for
C[0, 1]), the set of continuous (hence bounded) functions x : [0, 1] →
R. Consider the metric

ρ(x, y) := sup{|x(t) − y(t)| : 0 ≤ t ≤ 1} . (7.2.7)

Lemma 7.2.7. (C, ρ) is complete, separable.

Proof. Let (xn)n≥1 be a Cauchy sequence in C. Then for all t ∈
[0, 1], |xn(t) − xm(t)| ≤ ρ(xn, xm). Therefore, x(t) := limn→∞ xn(t)
exists. We show that x ∈ C. Take ǫ > 0. Let then m,n be such that
ρ(xm, xn) ≤ ǫ. For all t ∈ [0, 1], |x(t)−xn(t)| = limm |xm(t)−xn(t)| ≤ ǫ.
Therefore, ρ(x, xn) ≤ ǫ. This shows that the convergence xn → x is
uniform. Since each xn is continuous, x also is. So C is complete.
Then, let Dn be the set of functions which take rational values at the
points {0, 1

n
, 2
n
, . . . , n−1

n
, 1}, and which is linear on each of the intervals

[k−1
n
, k
n
]. Let D :=

⋃
n≥1 Dn. Since the elements of C are uniformly

continuous, it is easy to see that D is dense in C: C is separable. �

Let B(C) denote the Borel σ-algebra generated by ρ. For each ordered
set N = (t1, t2, . . . , tn), 0 ≤ t1 < · · · < tn ≤ 1, consider the projection
πN : C → Rn defined by

πN(x) := (x(t1), . . . , x(tn)) .

As in the previous example, we consider the family C of cylinders, that
is sets of the form π−1

N (B), with B ∈ B(Rn). It is clear that C is
an algebra. Let us see that they also generate the Borel σ-algebra
generated by ρ.

Lemma 7.2.8. σ(C) = B(C).

Proof. Since C is separable, each open set can be written as a
countable set of open spheres Bǫ(x) (Lemma 7.2.3). But each such
sphere can be written as

Bǫ(x) =
⋃

n≥1

{
y ∈ C : ρ(y, x) ≤ ǫ− 1/n

}
.

But, since each x ∈ C is also uniformly continuous, for all δ > 0,
{
y ∈ C : ρ(y, x) ≤ δ

}
=

⋃

m≥1

{
y ∈ C : |y(i/m) − x(i/m)| ≤ δ

}
,
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which is an intersection of cylinders. That is, each open set belongs
to σ(C), and therefore B(C) ⊂ σ(C). Then, since the projections πN
are obviously continuous, C ⊂ B(C), and so σ(C) ⊂ B(C). �

Lemma 7.2.9. Cylinders are determining, but not convergence-determining.

Proof. As we just saw, C generates B(C). Since it is an algebra,
it forms a determining class (Carathéodory’s Theorem). To see that C

is not convergence-determining, consider the sequence µn on (C,B(C))
defined as follows: µn is the Dirac mass at xn, which is defined by

xn(t) :=





nt if 0 ≤ t ≤ n−1 ,

2 − nt if n−1 ≤ t ≤ 2n−1 ,

0 if 2n−1 ≤ t ≤ 1 .

Let µ be the Dirac mass at x ≡ 0. Then clearly, µn(C) → µ(C)
for any cylinder C. Nevertheless, let A := B 1

2
(0), where 0 denotes

the function x ≡ 0. Then µn(A) = 0 for all n, and µ(A) = 1. But
∂A = {y ∈ C : supt∈[0,1] |y(t)| = 1

2}, and so µ(A) = 0. Therefore, µn
does not converge weakly to µ. �

7.3. Prohorov’s Theorem (EMPTY)

Theorem 7.3.1. Let (µn)n≥1 be a sequence of probability measures on
a separable metric space S. If (µn)n≥1 is tight, then it is relatively
compact.

7.4. The Wiener Measure (EMPTY)

We described the basic metric properties of C in Section 7.2.5.

7.5. The Invariance Principle (EMPTY)

7.6. Sample Path Properties (EMPTY)

7.7. Exercises

Exercise 7.1. Billingsley ex. 6 p. 11. Show that S contains all
compact sets. Show that S is generated by either of the following
classes: open sets, closed sets, compact sets.

Exercise 7.2. Find a counter-example where the indicator of an open
set cannot be appxoximated by a uniformly continuous functions.
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Exercise 7.3. Find an example of a sequence xn in RN such that
x(k) := limn xn(k) exists for all k, but

Exercise 7.4. Is C(R) separable?

Exercise 7.5. Show that P is tight if and only if it has σ-compact
support.

Exercise 7.6. Shiryayev p. 318. Let (µα)α∈I be a family of Gaussian
measures on the line with parameters mα and σ2

α. Show that (µα)α∈I
is tight if and only if |mα| ≤ m and σ2

α ≤ σ for all α ∈ I.

Exercise 7.7. Shiryayev p. 318. Construct examples of tight and
non-tight families on (RN,B(RN)).





APPENDIX A

Entropy

In this section we introduce the notion of entropy associated to a ran-
dom experiment. Our aim is to be as broad as possible since later
the concept of entropy will be used in various different situations, for
example in the case where the random experiment is the joint realiza-
tion of n random variables with stationary distribution.

Entropy is a number which gives a convenient quantization of the
predictability or unpredictability of a given random experiment. Equi-
valently, entropy is a measure of randomness : the more random, the
less predictable.

Consider a random experiment modelized by some probability space
(Ω,F, P ). Suppose our aim is to make a reasonable prediction about
the outcome of the experiment. We will do so assuming we know the
probability P ; there is no inference here. Clearly, a reasonable a priori
prediction about the outcome ω ∈ Ω is possible when the measure P
concentrates inhomogeneously on certain subsets of Ω. The extreme
case is when P is a Dirac mass at some ω0 ∈ Ω; the absence of random-
ness allows to make an essentially perfect prediction about the result:
“the outcome will be ω0”. Since the outcome is almost surely equal
to the a priori prediction, nothing interesting is learnt from the result.
At the other extreme, the most unpredictable experience is when the
measure P is uniform over Ω. In this case, the outcome of the experi-
ment will be most probably very different from any a priori prediction;
one says that the outcome of the experiment produces information.

Entropy allows to quantify precisely this information production, but
is defined naturally for experiments with a finite number of possible
outcomes. Therefore, some approximation procedure is necessary in
the case where Ω has an infinite number of outcomes 1. A natural way

1This will be the case in particular when Ω has a continuous structure, for example when Ω = [0, 1],
in which case each outcome usually has zero probability.
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to do this approximation is to introduce a coarsening of the possible re-
sults of the experiment. This is done by introducing what is commonly
called a finite scheme [Khi57]. A finite scheme is nothing but a par-
tition A of Ω into a finite number of sets Ak ∈ F: A = {A1, . . . , An},
with

⋃n
k=1Ak = Ω, Ak ∩ Ak′ = ∅ if k 6= k′. Rather than the result of

the random experiment itself, i.e. ω, one is interested in the atom Ak

of the partition A to which ω belongs. The coarse-grained result of the
experience is therefore an index k = k(ω) ∈ {1, 2, . . . , n}, giving the
unique atomAk ∋ ω, and can be considered as partial knowledge about
the result of the experiment. To the finite scheme A = {A1, . . . , An}
corresponds a set of probabilities p1 := P (A1), . . . , pn := P (An), satis-
fying

∑n
k=1 pk = 1 (remember we are assuming that P is known).

With this coarse-grained description in mind, we can move on to the
definition of entropy associated to a finite scheme. The following defi-
nition was proposed by C.E. Shannon in [Sha48] as a measure of the
average information produced by one realization of a random experi-
ment with outcomes of respective probabilities p1, . . . , pn:

Definition A.0.1. The entropy of a probability distribution (p1, . . . , pn)
associated to a finite scheme is defined by

H(p1, p2, . . . , pn) := −
n∑

k=1

pk log pk , (A.0.1)

where it is assumed that the logarithm is with respect to the base 2,
and where we make the convention that 0 log 0 := 0.

When we wish to express explicitely that the entropy is associated to
the scheme A, each atom Ak of which has probability pk = P (Ak), we
will write

HP (A) := H(P (A1), . . . , P (An)) = −
∑

A∈A

P (A) logP (A) . (A.0.2)

Let us verify that this definition suits our requirements for produc-
tion of information, as discussed above. First, observe that H is a
positive quantity which attains its minimal value H = 0 exactly when
all pis are zero except one (when the measure is concentrated on a
single event, the outcome doesn’t produce any information). Then, as
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expected, we show that entropy is maximal for the uniform distribu-
tion (p1, . . . , pn) = ( 1

n
, . . . , 1

n
):

H(p1, . . . , pn) ≤ H
(1

n
, . . . ,

1

n

)
= logn . (A.0.3)

Namely, by introducing the concave function ψ(x) := −x log x for
x ∈ (0, 1), ψ(0) = ψ(1) := 0, one can write

H(p1, . . . , pn) =

n∑

k=1

ψ(pk) = n

n∑

k=1

1

n
ψ(pk)

≤ nψ(
1

n
) = H

(1

n
, . . . ,

1

n

)
.

Therefore, (A.0.3) fullfills our previous requirement: unpredictability
is largest for equiprobable events. Moreover, in Shannon’s own words,
any change towards equalization of the probabilities (p1, . . . , pn) incre-
ases H(p1, . . . , pn). This can be seen by explicit calculation, by con-
sidering the variation of H when, say p1(s) = p0 + s, p2(s) = p0 − s,
and where all the other n− 2 variables are kept fixed:

d

ds
H =

d

ds

[
− (p0 + s) log(p0 + s) − (p0 − s) log(p0 − s)

]

= log
p0 − s

p0 + s
,

which is < 0 when s > 0. This means that if s decreases, i.e. when p1

and p2 tend to equalize, then the entropy increases.

A further property of H is that it is a concave function of (p1, . . . , pn).
To gain geometric intuition, observe that we are only interested in the
restriction of H to the simplex

P =
{
p = (p1, . . . , pn) : pk ≥ 0,

n∑

k=1

pk = 1
}
⊂ Rn .

Any p ∈ P can thus be considered as a convex combination of the
extreme elements of P, which are the unit vectors of the canonical basis
of Rn: e1, . . . , en. At each extreme element ei, H(ei) = 0. Moreover,
for any p1,p2 ∈ P, 0 ≤ λ ≤ 1,

H(λp1 + (1 − λ)p2) ≥ λH(p1) + (1 − λ)H(p2) .

This follows from the concavity of the function ψ(x) introduced be-
fore. One thus has a picture of H as a concave function on P which
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attains its maximum (logn) at the barycenter of P, namely ( 1
n
, . . . , 1

n
).

Further properties of H are most naturally formulated in terms of
schemes. Consider two schemes, say A and B, giving a coarse-grained
description of the same random experiment. Consider the scheme
A ∨ B defined by

A ∨ B := {A ∩ B : A ∈ A, B ∈ B} .
This scheme is a refinement of both A and B, since each of its atoms
contains a double information (ω ∈ A and ω ∈ B for some couple
(A,B)); its entropy equals, by definition,

HP (A ∨ B) = −
∑

(A,B)

P (A ∩B) logP (A ∩ B) . (A.0.4)

When A and B are independent, that is if P (A∩B) = P (A)P (B) for
all pair A ∈ A, B ∈ B, a simple computation yields

HP (A ∨ B) = HP (A) +HP (B) . (A.0.5)

This property is called extensivity. In the general case (i.e. without
assuming independence) we always have

HP (A ∨ B) ≥ −
∑

(A,B)

P (A ∩B) logP (A) = HP (A) .

The exact excess in the previous inequality is measured by the relative
entropy of B with respect to A:

HP (B|A) := HP (A ∨ B) −HP (A) , (A.0.6)

which measures the average excess of information produced by the
outcome of the experiment A ∨ B over the information produced by
the experiment A. As can be verified explicitely,

HP (B|A) = −
∑

(A,B)

P (A ∩B) logP (B|A) ≡
∑

A

P (A)HPA
(B) ,

(A.0.7)
where PA(·) is the conditional probability P (·|A). When written as:

HP (A ∨ B) = HP (A) +HP (B|A) , (A.0.8)

(A.0.6) is seen to be (up to a logarithm) the information-theoretic
equivalent of the well known probabilistic expression

P (A ∩B) = P (A)P (B|A) .

We will define more notions related to entropy in subsequent sections.
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A.1. Entropy as Average of Pointwise Information

Until now we introduced entropy as an average quantity which quan-
tifies the unpredictability of a coarse-grained random experiment. Let
us see here how Definition (A.0.1) arises naturally from a basic set
of conditions a measure of information should satisfy. To start with,
assume a partial information about the outcome of the experiment
ω ∈ Ω is that ω belongs to some measurable set A ∈ A, where A is
a finite scheme. We want to define a number IA which quantifies the
partial information “ω ∈ A”. Once this will be done, we will define a
random variable giving the information produced by the outcome of
ω

IA(ω) :=
∑

A∈A

IA1A(ω) .

How should IA be defined? We shall naturally ask for IA to be positive,
and at our coarse-grained level of description, we have no reason to
make IA depend on other characteristics of A other than its probability
P (A) (remember that this number will be the same for any other
outcome ω′ ∈ A). Therefore we must have

IA = ϕ(P (A)) ,

for some real non-negative function ϕ = ϕ(x). To find a proper func-
tion ϕ, we turn to the essential property that IA should satisfy in
order to properly represent information, namely extensivity. Assume
we have a double information of the form “ω ∈ A and ω ∈ B”. In the
case where A and B are independent, it seems reasonable to impose
that 2

IA∩B = IA + IB .

In terms of ϕ, this means ϕ(P (A)P (B)) = ϕ(P (A)) + ϕ(P (B)). A
convenient choice for the function ϕ is thus ϕ(x) := − log x, which
yields

IA(ω) =
∑

A∈A

(
− logP (A)

)
1A(ω) .

Finally, we can define entropy as the expected information produced by
a realization of the coarse-grained experiment, namely the expectation

2This extensivity condition is made clear by considering a simple example. Suppose we are drawing
a Brasilian ω at random. Two possible partial informations for this experience are for example
A = {ω is Carioca} and B = {ω is Atleticano}. Then assuming these two events are independent,
the double information IA∩B should thus be additive and equal the sum of IA with IB.
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of IA, which is

HP (A) := EP (IA) ≡ −
∑

A∈A

P (A) logP (A) .

We thus recover (A.0.1).

A.2. Entropy of Discrete Random Variables

Consider a discrete random variable X : Ω → R taking values in a
finite alphabet A = {x1, . . . , xn}. The entropy of X, denoted H(X), is
just the entropy of the scheme AX = {A1, . . . , An} whose atoms are
Ak := {ω : X(ω) = xk}, with probability pk = P (Ak) = P (X = xk).
For example, in the case where X takes two values, say 0 and 1, with
probabilities P (X = 1) = p, P (X = 0) = 1 − p, then

H(X) = −p log p− (1 − p) log(1 − p) ,

which is concave in p, and attains its maximum at p = 1
2.

The joint entropy of a couple of two discrete random variables (X, Y )
is naturally defined by the entropy of the scheme AX ∨ AY , and is
given explicitely by

H(X, Y ) = −
∑

k,l

P (X = xk, Y = yl) logP (X = xk, Y = yl) .

When X and Y are independent,

H(X, Y ) = H(X) +H(Y ) .

In general, the relative entropy of X with respect to Y is defined by

H(X|Y ) := H(X, Y ) −H(Y ) . (A.2.1)

We now turn to the simplest use of entropy in the study of stochastic
processes. Namely, let X1, X2, . . . be a sequence of i.i.d. random
variables taking values in a finite alphabet A. The Strong Law of
Large Numbers (SLLN) reads

X1 + · · · +Xn

n
→ E[X1] a.s. ,

and the Weak Law of Large Numbers (WLLN) states that for large
n, most of the outcomes of the random variables X1, . . . , Xn have an
empirical mean which is close to E[X1]: for all ǫ > 0,

P
(∣∣∣X1 + · · · +Xn

n
−E[X1]

∣∣∣ ≥ ǫ
)
→ 0 .
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The WLLN gives a concentration property concerning the typical ou-
tcomes of a random realization of a sequence (X1, . . . , Xn): with high
probability, the empirical average X1+···+Xn

n
is close to its theoretical

meanE[X1]. More precisely one has, for any ǫ > 0, any δ > 0 and large
enough n, a set of mean-typical sequences of size n denoted An(ǫ, δ),
with the following properties:

(1) P (An(ǫ, δ)) ≥ 1 − δ,
(2) Each (X1, . . . , Xn) ∈ An(ǫ, δ) satisfies

∣∣∣X1 + . . .Xn

n
−E[X1]

∣∣∣ < ǫ .

The Asymptotic Equipartition Property (AEP) which we present he-
reafter gives another look at this concentration phenomenon, but from
the point of view of the typical probability of the sequence X1, . . . , Xn.
Define the joint distribution p(x1, . . . , xn) := P (X1 = x1, . . . , Xn =
xn), and following random variable

p(X1, . . . , Xn)(ω) := p(X1(ω), . . . , Xn(ω)) ,

called the empirical joint distribution of the outcome X1, . . . , Xn.

Theorem A.2.1 (Asymptotic Equipartition Property for i.i.d. ran-
dom variables). Assume the sequence X1, X2, . . . is i.i.d. Then

−1

n
log p(X1, . . . , Xn) → H(X1) , a.e.

Proof. Since the variablesXk are independent, we have p(x1, . . . , xn) =
P (X1 = x1) · · ·P (Xn = xn). By applying the SLLN to the sequence
Yk(ω) := − logP (Xk = Xk(ω)),

−1

n
log p(X1, . . . , Xn) =

1

n

n∑

k=1

Yk → E[Y1] , a.e.

But E[Y1] ≡ H(X1). �

Since almost everywhere convergence implies convergence in probabi-
lity, a weaker form of the AEP is that for all ǫ > 0 and all δ > 0,

P
(∣∣ − 1

n
log p(X1, . . . , Xn) −H(X1)

∣∣ ≥ ǫ
)
≤ δ

for large enough n. This basically means that most of the sequences
X1, . . . , Xn have equal probability, roughly equal to 2−H(X1)n. More
precisely one has, for any ǫ > 0, any δ > 0 and large enough n, a
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set of probability-typical sequences of size n denoted Bn(ǫ, δ), with the
following properties:

(1) P (Bn(ǫ, δ)) ≥ 1 − δ,
(2) Each (X1, . . . , Xn) ∈ Bn(ǫ, δ) satisfies

2(−H(X1)−ǫ)n ≤ p(X1, . . . , Xn) ≤ 2(−H(X1)+ǫ)n .

(3) Bn(ǫ, δ) contains at most 2(H(X1)+ǫ)n sequences.

This last property of Bn(ǫ, δ) has fundamental consequences in infor-
mation theory (see [CT06]).



APPENDIX B

Dynkin Systems

Let Ω be any non-empty set. We denote by 2Ω the family of all subsets
of Ω, including the emptyset.

Definition B.0.1. A collection D ⊂ 2Ω is called a Dynkin System (or
simply D-system) if the following conditions hold:

(1) Ω ∈ D.
(2) If A,B ∈ D, A ⊂ B, then B\A ∈ D.
(3) If An ∈ D for all n ≥ 1, An ր A, then A ∈ D

Observe that D-systems are stable by complementation since A ∈ D

implies Ac = Ω\A ∈ D. Since B\A = B ∩ Ac, σ-algebras are D-
systems, but since D-systems are not necessarily stable under inter-
sections.

Lemma B.0.1. A collection F ⊂ 2Ω is a σ-algebra if and only if it is a
D-system stable under intersection.

Proof. The “only if” part is trivial. Then, assume F is a D-system
stable under intersection. Let A,B ∈ F. We have A∪B = (Ac∩Bc)c =
Ω\(Ac ∩ Bc) ∈ F. Let An ∈ F, Bn :=

⋃n
k=1Ak. Since Bn ∈ F and

Bn ր ⋃
n≥1Bn, we have that

⋃
n≥1Bn ∈ F. This shows that F is a

σ-algebra. �

As can be easily verified, the intersection of an arbitrary family of
D-systems is a D-system. Therefore, given any collection C ⊂ 2Ω, one
can define the smallest D-system containing C, called the D-system
generated by C, denoted D(C). In practice, it is interesting to compare
the D-system D(C) with the σ-algebra σ(C). One clearly has D(C) ⊂
σ(C).

Theorem B.0.1. If C ⊂ 2Ω is stable under intersection, then D(C) =
σ(C).

Proof. To simplify the notations, denote D(C) by D and σ(C) by
F. We already saw that D ⊂ F. To show that D ⊃ F, it suffices to
verify that D is a σ-algebra. By Lemma B.0.1, it suffices to verify that

195
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D is stable under intersection.
Define D1 := {B ∈ D : B ∩ C ∈ D∀C ∈ C}. We verify that D1 = D.
By definition, D1 ⊂ D. To verify that D1 ⊃ D, it suffices to see that
D1 is a D-system containing C. Now D1 ⊃ C follows from the fact
that C is closed under intersection. This also implies that Ω ∈ D1.
Let B1, B2 ∈ D1, B1 ⊂ B2, C ∈ C. Then

(B2\B1) ∩ C = B2 ∩ C ∩ (Bc
1 ∪ Cc) = (B2 ∩ C)\(B1 ∩ C) ∈ D

Then, if Bn ∈ D1, Bn ր B, then B ∩ C =
⋃
n(Bn ∩ C) ∈ D, logo

B ∈ D1. This proves that D is a D-system.
Define D2 := {A ∈ D : A ∩ B ∈ D∀B ∈ D}. We verify that D2 =
D, which will show that D is stable under intersection. By the first
step, D2 contains C. As before, one can show that D2 = D. This
shows that D is stable under intersection, and finishes the proof of the
theorem. �

The previous result is usually used in the following form:

Corollary B.0.1. Let C ⊂ 2Ω be stable under intersection. If D is a
D-system containing C, then D ⊃ σ(C).

The last result is useful to show that the measurable sets of some σ-
algebra F satisfy particular property. An example of application is
given in the following proposition and its corollary.

Proposition B.0.1. Let (Ω,F, P ) be a probability space, and let A1, . . . ,An

(Ak ⊂ F) be independent collections 1, each of which is stable under
intersection. Then the σ-algebras σ(A1), . . . , σ(An) are independent.

Proof. Without loss of generality, we can suppose that each Ak

contains Ω. We will show that if A1,A2, . . . ,An are independent and
stable under intersection, then σ(A1),A2, . . . ,An are independent (and
stable under intersection). The proof then follows by induction. Fix
A2 ∈ A2, . . . , An ∈ An, set F := A2 ∩ · · · ∩ An and let DF := {A ∈
A1 : P (A∩F ) = P (A)P (F )}. We have DF ∋ Ω. Then, let A,B ∈ DF

with A ⊂ B: P ((B\A) ∩ F ) = P (B\A)P (F ), and so B\A ∈ DF .
Finally, if An ∈ DF , An ր A, then P (A ∩ F ) = limn P (An ∩ F ) =
limn P (An)P (F ) = P (A)P (F ), and so A ∈ DF . This shows that DF is
a D-system. Since DF ⊃ A1, Corollary B.0.1 gives DF ⊃ σ(A1). Since
this holds for all choice of F , we have shown that σ(A1),A2, . . . ,An

are independent. �

1Remember that A1, . . . ,An are independent if for all I ⊂ {1, 2, . . . , n}, any family Ai, i ∈ I is
independent: P (

⋂
i∈I Ai) =

∏
i∈I P (Ai).
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Corollary B.0.2. Let F1, . . . ,Fn be independent sub-σ-algebras (Fk ⊂
F for all k). Then, for any 1 ≤ k ≤ n, σ(F1, . . . ,Fk) and σ(Fk+1, . . . ,Fn)
are independent.

Proof. Let A be the collection of all intersections
⋂k
j=1Aj with

Aj ∈ Fj, and B be the collection of all intersections
⋂n
j=k+1Bj with

Bj ∈ Fj. Clearly, A and B are stable under intersection. By Proposi-
tion B.0.1, σ(A) and σ(B) are independent. But σ(A) = σ(F1, . . . ,Fk)
and σ(B) = σ(Fk+1, . . . ,Fn). �

Corollary B.0.3. Assume the variables (Xn)n≥1 are independent.
Then for all k ≥ 1, σ(X1, . . . , Xk) and σ(Xk+1, . . . ) are independent.

Proof. Let A := σ(X1, . . . , Xk), B :=
⋃
j≥1 σ(Xk+1, . . . , Xk+j).

Clearly, both A and B are stable under intersection. Now by Corollary
B.0.2, σ(X1, . . . , Xk) and σ(Xk+1, . . . , Xk+j) are independent for all
j ≥ 1. Therefore, A and B are independent. By Proposition B.0.1,
σ(A)(≡ A) and σ(B) are independent. But σ(B) = σ(Xk+1, . . . ),
which proves the lemma. �
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strong, 59

Martingale, 96
L1-bounded, 117
L2-bounded, 113
backward, 127
Closed, 97
property, 96
transform, 98

Measure
regular, 174

mixing, 162

Period, 80
Permutation, 42
Portmanteau Theorem, 176
Predictable sequence, 99
product σ-algebra, 35
projection

canonical, 35

Queue, 32

Radon-Nikodým Theorem, 124
Random series, 41, 114
Random walk

on Zd, 48
on a graph, 91
on a tree, 90
one dimensional, 17

rectangle, 35
Recurrence

for d-dimensional random walk, 66, 88
for birth and death chains, 133
for Markov chains, 60
of one dimensional random walk, 18

Recurrent point, 61
Null-, 75
Positive-, 75

Relative Entropy, 190
Renewal Chains, 49

Scheme, 188
Second heart’s problem, 104

Secretary problem, 108
Shift, 56

Markov, 149
space, 148

Stationary
Markov chain, 163
Process, 145

Stopped σ-field, 100, 137
Stopping Theorem, 102

for L-martingales, 109
general, 110

Stopping time, 77
for Markov chains, 59
for martingales, 100

strictly invariant event, 153
Submartingale, 96
Supermartingale, 96

Tail
σ-field, 39
event, 39

Total Variation Norm, 76
Transient point, 61
Transition matrix, 47
triviality, 159
Typical sequence, 193

Uniformly distributed sequence, 150
Upcrossing inequality, 115

Wald’s identity, 101
Weak convergence, 176
Weyl’s Criterium, 152
Wiener

measure, 184


