
Elements of Statistical Mechanics and

Large Deviation Theory





Contents

Chapter 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1. Equilibrium Statistical Mechanics . . . . . . . . . . . . . . . . . . . 1
2. Large deviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3. Spin systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Chapter 2. The Maximum Entropy Principle . . . . . . . . . . . . . . . . 9
1. The Gibbs Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 13
2. Uniqueness of Entropy . . . . . . . . . . . . . . . . . . . . . . . . . 15

Chapter 3. Large Deviations for finite alphabets . . . . . . . . . . . . . . 19
1. The Theorem of Sanov . . . . . . . . . . . . . . . . . . . . . . . . . 19
2. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3. The Theorem of Sanov for Pairs . . . . . . . . . . . . . . . . . . . . 31

Chapter 4. The Ideal Gas . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1. The Microcanonical Distribution . . . . . . . . . . . . . . . . . . . . 36
2. The equilibrium value of the kinetic energy . . . . . . . . . . . . . . 38
3. The equilibrium value of other observables . . . . . . . . . . . . . . 40

Chapter 5. The Large Deviation Principle . . . . . . . . . . . . . . . . . 41
1. Definition of the LDP . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2. The Varadhan Lemma . . . . . . . . . . . . . . . . . . . . . . . . . 45
3. LDP for Tilted Measures . . . . . . . . . . . . . . . . . . . . . . . . 46
4. The Contraction Principle . . . . . . . . . . . . . . . . . . . . . . . 47

Chapter 6. The Curie-Weiss Model . . . . . . . . . . . . . . . . . . . . . 49
1. The LDP for the magnetization . . . . . . . . . . . . . . . . . . . . 50
2. The free energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Chapter 7. The Theorem of Cramér . . . . . . . . . . . . . . . . . . . . . 53
1. The logarithmic moment generating function . . . . . . . . . . . . . 53
2. Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3. The Theorem of Cramér in Rd . . . . . . . . . . . . . . . . . . . . . 58

Chapter 8. The Ising Model (COMPLETER) . . . . . . . . . . . . . . . 59
1. The FKG Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2. The thermodynamic limit . . . . . . . . . . . . . . . . . . . . . . . . 60
3. Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Chapter 9. The DLR Formalism . . . . . . . . . . . . . . . . . . . . . . . 65
1. Random Fields via Kolmogorov’s Extension Theorem . . . . . . . . 65

iii



iv CONTENTS

2. Random Fields via Specifications . . . . . . . . . . . . . . . . . . . . 66
3. The Ising model, again . . . . . . . . . . . . . . . . . . . . . . . . . 71
4. An Inhomogeneous Ising chain on N . . . . . . . . . . . . . . . . . . 71
5. Uniqueness; Dobrushin’s Condition of Weak Dependence . . . . . . 72

Chapter 10. The Variational Principle . . . . . . . . . . . . . . . . . . . . 81
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2. The Entropy of an Invariant Random Field . . . . . . . . . . . . . . 83
3. Gibbs measures as reference measures . . . . . . . . . . . . . . . . . 86

Chapter 11. Gibbs Measures and Large Deviations . . . . . . . . . . . . . 93
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
2. The Free Gibbs Measure . . . . . . . . . . . . . . . . . . . . . . . . 94
3. The LDP for Ln under the product measure . . . . . . . . . . . . . 95
4. The LDP for Ln under the Free Gibbs measure . . . . . . . . . . . . 105



CHAPTER 1

Introduction

These notes aim at presenting some aspects of two intimately related areas,
namely Equilibirum Statistical Mechanics (ESM) and Large Deviation Theory
(LDT). On one side, ESM defines and studies the probability measures associ-
ated to large systems of particles. On the other, LDT is a classical chapter of
probability theory which can be loosely described as a refinement of the Law
of Large Numbers. I will try to introduce concepts from both sides in the most
natural way, and show what are their common features. The text does not aim at
presenting the most general results, but rather at going deeper into the richness
of a few examples, such as random variables with values in a finite alphabets,
which, in the statistical mechanics language, amounts to restrict to lattice spin
systems.

The material presented in these notes is taken from a series of standard texts
on the subject. There are two references that cover both LDT and ESM: [?, ?].
For LDT, the main references are [?, ?, ?, ?, ?]. A non-technical reference,
which covers a few aspects of the material in the simplest way, is [?]. Concerning
ESM, some basic references are [?, ?, ?, ?, ?]. Finally, a series of papers on
equivalence of ensembles will be exposed: [?, ?]. [?, ?, ?] In this introduction I
briefly describe what will be the main lines followed in the notes.

1. Equilibrium Statistical Mechanics

Consider for example a gas 1, composed of a large number of identical particles,
say n = 1025. Statistical mechanics is concerned with giving a reasonable de-
scription of such a large system. By a reasonable description, we mean a theory
capable of making prediction about some properties of the system, like how the
gas will react to external forces or thermodynamic changes. Since the gas is made
of particles, knowing the state of each particle is equivalent to knowing the state
of the gas. Therefore, we can assume that a perfect knowledge of the system at
a given time t is a vector

x(t) = (q1(t), p1(t), . . . , qn(t), pn(t)) ∈ (R3 × R3)n ' R6n ,

giving the position qi(t) ∈ R3 and a momentum pi(t) ∈ R3 of each particle. If an
initial confition x0 ∈ R6n is fixed, i.e. x0 = x(t = 0), Classical Newtonian me-
chanics gives, in principle, a way of knowing x(t) for each t > 0. If the interaction

1We will give a detailed analysis of the model presented here in Chapter 4. The informal
discussion of this introduction also applies to other systems, such as ferromagnets, which will
also be considered later.

1



2 1. INTRODUCTION

potential among the particles is given (and not too singular), then x(t) is solution
of a system of R6n first order differential equations (Newton Equations). Unless
the potential is trivial, or if the initial condition has pathological features, solving
this differential system and obtaining explicit information on the time evolution
seems a rather tough analytic problem.

But before even opening a textbook on ordinary differential equations, the reader
must agree that solving exactly the above system is not what one wants to do,
for the following reasons.

First, the exact microscopic position of each atom in a gas is not a particularly
exciting piece of information, since our aim is to describe more relevant observ-
ables related to the global behaviour of the system (see Un hereafter). In order
to solve the above system of differential equations, one must also determine the
initial condition x0 which in itself should be considered as impossible, at least
experimentally.

Second, we can start by restricting our attention to particular conditions. A sim-
ple but interesting one is the one which consists in waiting for the gas to have
reached equilibrium. This amounts to study the limit t → ∞. From the analyt-
ical point of view mentionned before, this limit seems to be even more difficult
(existence of solutions to differential equations are typically guaranteed over fi-
nite time intervals), but the system seems nevertheless simpler to describe once
a certain equilibrium has been reached.

To illustrate these ideas, consider a typical thermodynamic quantity like the
average kinetic energy (we assume all particles have equal mass m = 1)

Un(t) =
n∑
i=1

pi(t)
2

2
.

When n is large, Un(t) must be of order n. Common sense leads us to think
that at equilibrium, Un(t)/n depends weakly on time. One sees here how the
information contained in x(t) is redundant: at a microscopic scale, the individual
pi(t)s certainly suffer dramatic changes over short intervals of times (Brownian
motion), although interesting macroscopic quantities like Un(t)/n remain essen-
tially constant. Common sense is thus lead to believe that there must exist some
method which allows to compute Un(t)/n at least up to a certain precision, with-
out necessarily knowing exactly x(t). Therefore, it is reasonnable to abandon the
search for the perfect knowledge of the state of the system, and to seek for an
alternate way of computing observables, at least within a certain precision.

Accepting that one does not have access to the perfect knowledge of the state of
the system is equivalent to describing the system using probability theory. Quoting
Jaynes [?],
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The purpose of probability theory is to help us forming plausible
conclusions in cases where there is not enough information to
lead to a certain information.

If one assumes that one does not have access to the exact microscopic state at
time t, one is lead to look for a probability distribution Pt on R6n. Assuming
the system is at equilibrium, one can assume that the distribution Pt does not
depend on time, and simply denote it by P . Then, a reasonable statement about
the average kinetic energy is that any measurement of Un/n will result, with
overwhelming P -probability, in a number lying close to some ideal value ū. More
precisely, there exists a small interval [ū− δ, ū+ δ] ⊂ R and an ε > 0 such that

P
(Un
n
∈ [ū− δ, ū+ δ]

)
≥ 1− ε . (1)

Clearly, δ and ε must be small enough in order to provide an interesting infor-
mation. We also expect that ε can be taken arbitrarily small when n is large,
i.e.

lim
n→∞

P
(Un
n
∈ [ū− δ, ū+ δ]

)
= 1 . (2)

(2) is nothing but a LLN-like statement and as will be seen, obtaining an optimal
relation between ε, δ and n will be the content of the Large Deviation Principle.
It happens that the precise relation between ε and n will involve the thermo-
dynamic potentials of the system under consideration (free energy, pressure). A
simplified model (the ideal gas) of the above situation will described in details,
using large deviations techniques, in Chapter 4.

Before going further, let us summarize the previous discussion into a few start-
ing principles regarding the statistical mechanical description of large systems
composed of simple elements.

(1) Randomness: If a system is composed of a large number of elements, it
is hopeless and useless to obtain a theory aimed at describing the exact
state of each individual elements. Adopting a probabilistic viewpoint, an
observation of the system is a random realization of a random experiment
(of which the probability space, in particular the probability measure P ,
must be specified). The global properties of the system can then be
studied using the tools and methods from probability theory.

(2) Micro and Macroscopic quantities: There are different types of
observables related to the different scales of the system. Some, like
the individual variables, or like local quantities which depend only on
a finite number of variables, are called microscopic. Others, like the
average total momentum or the average total magnetization, depend on
the whole system and are essentially insensitive to the change of a finite
number of variables 2, and are called macroscopic. These are relevant in
thermodynamics, for example, which is a theory giving detailed relations
among macroscopic variables.

2In probability theory, these observables are called tail measurable.
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(3) Equilibrium: To simplify, we aim at describing only systems which
have had the time to adapt (mechanically) to all exterior constraints,
and therefore to introduce a probability distribution independent of time.
Although the notion of equilibrium is rather subtle, it coincides with our
intuition that same measurments of macroscopic quantities made in the
same conditions lead to same results (within a certain range of preci-
sion). For example, the density of a gas remains constant regardless of
the microscopic changes, which occur constantly along the time evolu-
tion. Therefore, a characterisation of equilibrium is that although the
microscopic variables are random, the macroscopic ones are determinis-
tic, i.e. constant with probability one.

With these basic principles at hand, the aim of equilibrium statistical mechanics
(and, partially, of these notes) is then

(1) Decide which probability measures P are best suited for the description of
large systems. Part of this problem is to determine how certain parame-
ters (temperature 3, external magnetic field, etc.) enter in the definition
of P .

(2) Through the study of the chosen measure P , relate the microscopic de-
tails of the model to the large scale macroscopic behaviour. In this study,
a natural way of testing this correspondence is to consider the thermo-
dynamic limit, in which the size of the system goes to infinity. The
fluctuations of the macroscopic quantities must be studied in details,
related to the size of the system, and should be shown to become negli-
gible in the thermodynamic limit, leading to a deterministic macroscopic
description.

(3) If there are different possible choices for the measure P describing a sys-
tem, then these must be shown to lead to equivalent results in the ther-
modynamic limit. Namely, the various microscopic descriptions should
all lead to the same macroscopic behaviour.

These three long-term objectives of equilibrium statistical mechanics will be seen
to fit together naturally in the framework of Large deviation Theory (LDT).
Point (1) is a recurrent theme of these notes; we will first provide a simple and
natural way of defining equilibrium probability measures, using the Maximum
Entropy Principle in Chapter 2. This will require in particular the definition of
the fundamental quantity of information theory, the Shannon Entropy. Point (2)
will be studied from the point of view of LDT; we will use the concentration results
provided by Large Deviation Principles to simple models of statistical mechanics,
and establish the relations between the rate functions of these principles and
the thermodynamic functions of statistical mechanics. (3) is the subject of the
Equivalence of Ensembles, in which various tools from LDT will be used, following
a series of papers by Lewis, Pfister and Sullivan.

3Probability theory does not say how the notion of temperature must be introduced into
the definition of a probability measure. Rather, the temperature will be introduced by analogy,
by comparison with thermodynamics.
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Remark 1.1. Part of point (2) is to give a description of phase transitions.
Although this is a central problem in statistical mechanics, it will only be slightly
studied in these notes.

We move on to a short description of LDT.

2. Large deviations

Large Deviation Theory is a classical chapter of probability theory. It can be
resumed as a theory giving a deeper analysis of the concentration provided by
the Law of Large Numbers (LLN), in the sense that it studies exponential conver-
gence of sequences of certain random objects around their expected value. These
can be averages of collections of variables or their empirical measure, but also
more general objects like probability measures on metric spaces, in which case
the theory takes its more general form nowadays.

As an illustration, consider a sequence of i.i.d. random variables X1, X2, . . . with
common distribution µ. Let Sn = X1 + · · · + Xn. The Strong Law of Large
Numbers (SLLN) states that if m := E[X1] =

∫
xµ(dx) exists, then the empirical

mean Sn
n

converges to m in the limit n→∞:

Sn
n
→ m, a.s. (3)

As a consequence, the Weak Law of Large Numbers (WLLN) states that for all
ε > 0,

P
(∣∣∣Sn

n
−m

∣∣∣ ≥ ε
)
→ 0 . (4)

The event {Sn
n
−m| ≥ ε} is called a large deviation, in the sense that it describes

a deviation of order n of Sn far from its mean value mn. The LLN thus states
that large deviations of the mean have small probability. When looked at on a
finer scale around mn, standard deviations of order

√
n are probable and random.

Namely, if X1 has finite variance σ2 <∞, then the Central Limit Theorem (CLT)
states that

Sn −mn
σ
√
n
⇒ N(0, 1) . (5)

(5) clearly implies (4), but a natural question is to know if the convergence (4)
can be described in more details.

Large Deviation Theory tipically gives sharp bounds for the concentration of Sn
n

around m, in that it characterises the speed at which the convergence in (4) oc-
curs. Under fairly general hypothesis, this convergence happens to be exponential
in n:

e−c1n ≤ P
(∣∣∣Sn

n
−m

∣∣∣ ≥ εn
)
≤ e−c2n , (6)

where c1 > c2. The detailed study of the constants c1, c2 in (6) is the main
concern of LDT. In many cases, c1 and c2 can be shown to be equal in the limit
n → ∞. As a simple example where this can be done explicitely, consider an
i.i.d. sequence X1, X2, . . . of Bernoulli random variables: Xi takes values in the
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finite set A = {0, 1}. We also simplify by considering the symmetric case, where
P (Xi = 1) = P (Xi = 0) = 1

2
, so that m = 1

2
. We fix some x > m and study the

probability of having a large deviation {Sn
n
≥ x}. Since

P (Sn ≥ xn) =
∑

xn≤k≤n

P (Sn = k) = 2−n
∑

xn≤k≤n

(
n

k

)
, (7)

we have
Hn(x)2−n ≤ P (Sn ≥ xn) ≤ (n+ 1)Hn(x)2−n , (8)

where

Hn(x) := max
xn≤k≤n

(
n

k

)
.

Since k →
(
n
k

)
is increasing when k ≤ n

2
and decreasing when k ≥ n

2
, the maximum

inHn(x) is attained for k = dxne, and as can be easily computed using the Stirling
Formula,

lim
n→∞

1

n
logHn(x) = −x log x− (1− x) log(1− x) .

Therefore,

lim
n→∞

1

n
logP (Sn ≥ an) = −I(x) , (9)

where

I(x) =

{
log 2− x log x− (1− x) log(1− x) if x ∈ [0, 1] ,

∞ if x 6∈ [0, 1] .

- a

6

I(a)

0 1
2

1
r

Figure 1. The rate function I(x) for Bernoulli variables.

Clearly, I ≥ 0, it is strictly convex, symmetric around the point a = 1
2
, at which

it has its unique minimum: I(1
2
) = 0. We have actually obtained

lim
n→∞

1

n
logP

(Sn
n
∈ [a,∞)

)
= − inf

x∈[a,∞)
I(x) (10)

By the symmetry of I, we can write

lim
n→∞

1

n
logP

(∣∣∣Sn
n
−m

∣∣∣ ≥ ε
)

= − inf
x:|x−m|≥ε

I(x) = −I(ε) < 0 . (11)

This is therefore a case where the two constants c1, c2 above can be computed
exactly, and shown to be equal. They are expressed in terms of a variational
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problem involving the rate function I.

This result will be generalized to any sequence of i.i.d. random variables in the
Theorem of Cramér. Nevertheless, it will not always be possible to obtain I in an
explicit form as above, neither will it be possible to obtain the exact limit (10).
The general setup will be the following.

Definition 1.1. A sequence of random variables Z1, Z2, . . . satisfies a Large De-
viation Principle (LDP) if there exists a lower semicontinuous function I : R →
[0,∞] with compact level sets such that

(1) for all closed set F ⊂ R,

lim sup
n→∞

1

n
logP

(
Zn ∈ F

)
≤ − inf

x∈F
I(x) (12)

(2) for all open set G ⊂ R,

lim inf
n→∞

1

n
logP

(
Zn ∈ G

)
≤ − inf

x∈G
I(x) (13)

It will be seen in the Theorem of Cramér (Section 7 below) that under a finiteness
condition on, Λ, the logarithmic moment generating function of X1, the sequence
Sn
n

satisfies a LDP with a rate function given by the Legendre transform of Λ.

A LDP also holds (the Theorem of Gärtner-Ellis) in the case where some depen-
dence is introduced among the variables Zk, which is a typical situation encoun-
tered in statistical mechanics. In that case, the rate function cannot be obtained
by the distribution of a single variable Xi, but through a limiting process equiv-
alent to the definition of the free energy/pressure in the thermodynamic limit.

The LDP isn’t restricted to sequences of R-valued random variables, as the se-
quence Sn

n
above, but can be defined for more general objects living on more

abstract metric spaces. These appear naturally, even in the study of real i.i.d.
sequences. For example, rather than using Sn

n
as a macroscopic observable, a finer

description of a large sample is obtained by considering the empirical measure
Ln ∈M1(R), defined by

Ln :=
1

n

n∑
j=1

δXj ,

where δXj is a Dirac mass at Xj. In these terms, the WLLN can be reformulated
by saying that Ln converges weakly to the distribution of X1, ν, in the sense
that

∫
f(x)Ln(dx) →

∫
f(x)ν(dx) for all bounded continuous function f : R →

R. One can then wonder if some concentration speed for Ln around ν can be
obtained. Namely, the Theorem of Sanov (see Section) says that Ln also satisfies
a large deviation principle: there exists a convex lower semicontinuous function
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I : M1(R)→ [0,+∞] such that for all E ⊂M1(R),

− inf
µ∈
◦
E

I(µ) ≤ lim inf
n→∞

1

n
logP

(
Ln ∈ E

)
≤ lim sup

n→∞

1

n
logP

(
Ln ∈ E

)
≤ − inf

µ∈E
I(µ) .

Here, the rate function is in fact given by I(µ) = D(µ|ν), the relative entropy
of µ with respect to ν. The above is called a LDP of Level 2. It involves the
convergence of measures on M1(R) and gives a more precise information than the
level 1. Somehow, the Level 1-LDP should follow from the Level 2-LDP. Namely,
since

Sn
n

=

∫
xLn(dx) ≡ Φ(Ln) ,

we expect that the concentration of Ln around µ should imply the concentration
of Sn

n
= Φ(Ln) around m = Φ(µ). This indeed holds, due to the continuity of the

map Φ : M1(R)→ R, as will be seen in the Contraction Principle.

A large part of these notes is to make a close link between the rate functions of
LDT with the thermodynamic potentials of ESM.

3. Spin systems



CHAPTER 2

The Maximum Entropy Principle

As we saw in the introduction, it is more natural to describe a large system of
particles at equilibrium using a probability distribution, rather than to seek for
the solution of a system of 1025 differential equations. In this section we present
a simple procedure which allows to select this probability measure, in the most
natural way. The method, called the Maximum Entropy Principle, will select
probability measures a priori, under certain constraints. Such constraints ap-
pear in statistical mechanics, where one studies, for example, systems of particles
whose total energy is fixed. This method is very clearly explained in the papers
of Jaynes, [?] and [?]. Later, we use it to introduce the Gibbs distribution, the
most widely used in equilibrium statistical mechanics.

The technique presented hereafter does not only apply to systems of particles and
has a wide range of applicability. Notice that although it should be considered
as fundamental, the Maximum Entropy Principle will find a justification in the
large deviation theorems of subsequent chapters.

We start with a simple example. Suppose we are given a dice with 6 faces: throw-
ing the dice results in a random number X ∈ {1, 2, . . . , 6}. We put ourselves in
the situation where the probabilities pi = P (X = i) are unknown, and our aim
is to associate to this dice a suitable probability distribution P = (p1, . . . , p6),
pi ≥ 0,

∑6
i=1 pi = 1. We are thus assuming that P exists, and our aim is to find it.

Of course, one way of doing, call it empirical, is to throw the dice a large number
n of times, X1, . . . , Xn, and to count the number of times each face appeared: for
each i ∈ {1, 2, . . . , 6},

p
(n)
i :=

]{1 ≤ k ≤ n : Xk = i}
n

.

Then the Law of Large Numbers guarantees that when n becomes large, the

empirical ratios p
(n)
i converge to the true values pi:

(p
(n)
1 , . . . , p

(n)
6 )→ (p1, . . . , p6) almost surely.

Unfortunately, we have no time to throw the dice an infinite number of times,
and our aim is to find a way of choosing a distribution P a priori to any empirical
manipulation: our choice must be made taking only into account the information
available at hand concerning the dice. It is also important that this association be
done by taking all available information into account. Assuming that our method
leads to a candidate distribution P , the LLN can then be used as a way of testing

9
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if our choice for P matches with the frequencies p
(n)
i observed experimentally.

In general, the problem of choosing a distribution a priori 1 is under determined:
the a priori available information usually doesn’t allow to determine P uniquely.
For example, since the dice has six faces and since the constraint

∑6
i=1 pi = 1

determines for example p6 in function of the other pis, one would need another
five conditions in order to determine P uniquely (if these conditions are not con-
tradictory). We are thus faced with the problem of making a choice between
many possibilities, and the point is to decide which choice is most natural.

The simplest situation is when no information is available. In this case, any
choice of 6-tuple (p1, . . . , p6) seems possible, as long as

∑6
i=1 pi = 1. For example,

p1 p2 p3 p4 p5 p6

0 0.1 0.4 0.1 0.1 0.3

Nevertheless, something seems to go wrong with this choice. Namely, the fact
that no information is available is in itself a piece information (!), in the sense
that it obliges us to treat all the possible outcomes in an equivalent way: if
nothing indicates a priori that the outcome X = 3 is more likely than X = 2,
then we have no reason to choose p3 > p2. Therefore, the most reasonable choice,
in absence of information, seems to be choosing all the pis equal. That is, to
consider the uniform distribution:

p1 p2 p3 p4 p5 p6

1/6 1/6 1/6 1/6 1/6 1/6

Of course, someone could argue “but what if the true distribution is actually
given by (0, 0.1, 0.4, 0.1, 0.1, 0.3)?” In this case our response is that if this is true,
then necessarily some important information is missing and we can therefore not
make any reasonable choice for the distribution.

This above reasoning leading us to choose the uniform distribution is called the
Principle of Indifference: when nothing is known, the choice must be made in
order that the probability be spread in the most uniform way among the outcomes.
As explained by Penrose [?]:

[...] the Principle of Indifference, according to which a person
who sees no essential difference between two possible alternatives
assigns them equal subjective probabilities.

Assume now that one additional piece of information is known. For example,

E[X] = 4 . (14)

(Observe that in the uniform case above, E[X] = 3.5.) Here, the presence of a
constraint necessarily induces an assymetry among the pis. Again, an allowed
choice satisfying the constraint would be

p1 p2 p3 p4 p5 p6

0 0 0 1 0 0

1Jaynes calls these prior probabilities, see [?].
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but again, this choice seems to favorize overwhelmingly the outcome X = 4.
Rather, one needs to apply something analogous to the Principle of Indifference
among the set of distributions that satisfy (14). Since the distribution we are
looking for is obviously non-uniform, it is not clear how exactly this principle
should be applied: the distribution we are looking for must satisfy (14) and be
at the same time “closest” to the uniform distribution. Ideally, one needs to seek
for a function quantifying the spread of a distribution, which should be maximal
when the distribution is uniform.

It might be surprising to learn that there is essentially a unique way of defin-
ing this function, introduced by Shannon in 1948. This function associates to
(p1, . . . , pk) a number H = H(p1, . . . , pk) called entropy. H has many interpreta-
tions, but its main feature is that it allows to measure, in some sense (which will
be made clearer when introducing relative entropy), the distance to the uniform
distribution. The spread of a distribution is larger when the distribution is close
to uniform. This can be expressed by saying that the spreading of the distribution
turns the outcome of a realization more uncertain. Entropy therefore provides
a way of measuring our uncertainty with respect to the outcome of a random
experiment. Citing again Jaynes [?],

Our problem is to find a probability assignment which avoids
bias, while agreeing with whatever information is given. [...]
The great advance provided by Information Theory lies in the
discovery that there is a unique, unambiguous criterion for the
amount of uncertainty represented by a discrete probability dis-
tribution, which agrees with our intuition that a broad distri-
bution represents more uncertainty than does a sharply peaked
one.

The following definition of entropy was given by C.E. Shannon in [?].

Definition 2.1. The entropy of a probability distribution (p1, . . . , pk) is defined
by

H(p1, p2, . . . , pk) := −
k∑
j=1

pj log pj , (15)

where it is assumed that the logarithm is with respect to the base e, and where we
make the convention that 0 log 0 := 0.

Let us verify that this definition suits our requirements for a function measuring
our ignorance with respect to the outcome of the random experiment. First, ob-
serve that H is a positive quantity which attains its minimal value H = 0 exactly
when all but one pis are zero, and the last one equals 1. In any of these cases,
the outcome of the experiment is certain, and so the uncertainty must be zero.

Then, we show that entropy is maximal for the uniform distribution:

H(p1, . . . , pk) ≤ H
(

1
k
, . . . , 1

k

)
= log k . (16)
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Namely, consider the strictly concave function ψ(x) := −x log x for x ∈ (0, 1],
ψ(0) := 0. We have

H(p1, . . . , pk) =
k∑
j=1

ψ(pj) = k

k∑
j=1

1
k
ψ(pj)

≤ kψ( 1
k
) = log k = H

(
1
k
, . . . , 1

k

)
.

Therefore, (16) fullfills our previous requirement: the uncertainty with respect
to the outcome of the experience is maximal when the distribution is uniform..
Moreover, in Shannon’s own words, any change towards equalization of the prob-
abilities (p1, . . . , pk) increases H(p1, . . . , pk). This can be seen by explicit calcu-
lation, by considering the variation of H when, say p1(s) = p0 + s, p2(s) = p0− s,
with s↘ 0, and where the other k − 2 variables are kept fixed:

d

ds
H =

d

ds

[
− (p0 + s) log(p0 + s)− (p0 − s) log(p0 − s)

]
= log

p0 − s
p0 + s

,

which is < 0 when s > 0. This means that if s decreases, i.e. when p1 and p2

tend to equalize, then the entropy increases.

A further property of H is that it is a concave function of p = (p1, . . . , pk).
To gain geometric intuition, we can identify the set of probability distributions
(p1, . . . , pk) with the simplex

M1 :=
{

p =
k∑
j=1

pjej : pj ≥ 0,
k∑
j=1

pj = 1
}
⊂ Rk .

Any p ∈ M1 can thus be considered as a convex combination of the extreme
elements of M1, which are the unit vectors of the canonical basis of Rk: e1, . . . , ek.
At each extreme element ej, H(ej) = 0. By the concavity of ψ, for any p1,p2 ∈
M1, 0 ≤ λ ≤ 1,

H(λp1 + (1− λ)p2) ≥ λH(p1) + (1− λ)H(p2) .

One thus has a picture of H as a concave function on M1 which attains its max-
imum (log k) at the barycenter of M1, namely ( 1

k
, . . . , 1

k
).

Going back to our problem of selecting a probability distribution under a con-
straint, (Jaynes [?])

In making inference on the basis of partial information we must
use that probability distribution which has the maximum entropy
subject to whatever is known. This is the only unbiased assign-
ment we can make; to use any other would amount to arbitrary
assumption of information, which by hypothesis we don’t have.

Consider the dice problem. Following Jaynes, the proper unbiased probability
distribution is the one that maximises H(p1, . . . , p6), with possible additional
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constraints. When no constraint is fixed (other than (p1, . . . , p6) being a proba-
bility), the problem then reduces to

Maximise H(p1, . . . , p6) over M1.

As we have seen, the unique solution to this problem is the uniform probability
(1

6
, . . . , 1

6
). Now if one imposes that E[X] = 4, then with M′1 := {(p1, . . . , p6) ∈

M1 :
∑6

j=1 jpj = 4}, the problems becomes:

Maximise H(p1, . . . , p6) over M′1.

This optimization problem can be solved using the method of Lagrange multipli-
ers. Since there are two constraints, we introduce two Lagrange multipliers λ, β,
and define

L(p1, . . . , p6) := H(p1, . . . , p6)− λ
6∑
i=1

pi − β
6∑
i=1

ipi .

The optimization problem then turns into the analytic resolution of the system
∇L = 0 ,∑6

i=1 pi = 1 ,∑6
i=1 ipi = 4 .

As can be easily verified using the Lagrange multipliers , the solution of this
problem is given by

pi =
e−β∗i

Z(β∗)
,

where

Z(β) =
6∑
i=1

e−βi ,

and where β∗ denotes the unique solution of

− d

dβ
logZ(β) = 4 .

The solution (p1, . . . , p6) is therefore the solution of the variational problem

sup{H(p) : p ∈M1, Ep[X] = 4} .
As can be verified numerically, the result is, within ±0.01,

p1 p2 p3 p4 p5 p6

' 0.10 ' 0.12 ' 0.15 ' 0.17 ' 0.21 ' 0.25

1. The Gibbs Distribution

We reformulate the above setting in a slightly different way, by applying the Max-
imum Entropy Principle to the study of a finite system encountered constantly
in statistical mechanics. Assume a physical system can be in a finite number of
states, denoted ω ∈ Ω, |Ω| < ∞. It is typical, depending on the situation under
consideration, to assume that some physical observables of the system have fixed
average values. For example, these mean values can be determined by some ex-
perimental restrictions. Assume therefore that a function (observable) U : Ω→ R
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is given. Although it is arbitrary, in most cases U(ω) represents the energy of
the microscopic state ω. If no other information is given , what is the most nat-
ural (or “least biased”) probability distribution µ = (µ(ω), ω ∈ Ω), satisfying the
constraint that Eµ[U ] = E0? (Here, E0 ∈ (minU,maxU).) As before, the Max-
imum Entropy Principle leads to the following optimisation problem: maximise
the Shannon Entropy

H(µ) = −
∑
ω∈Ω

µ(ω) log µ(ω) ,

under the constraints

µ(ω) ≥ 0,
∑
ω∈Ω

µ(ω) = 1 ,
∑
ω∈Ω

µ(ω)U(ω) = E0 .

As we saw, by a direct application of the method of the Lagrange multipliers, the
solution is obtained by first finding the Lagrange multiplier β∗ = β∗(E0), solution
of

− d

dβ
logZ(β) = E0 ,

where Z(β) is the partition function, defined by

Z(β) :=
∑
ω∈Ω

e−βU(ω) .

(As can be verified, β∗ exists as soon as E0 ∈ (minU,maxU).) Then, the max-
imiser µ∗ = (µ∗(ω), ω ∈ Ω) of the Shannon Entropy is given by

µ∗(ω) =
e−β∗U(ω)

Z(β∗)
,∀ω ∈ Ω . (17)

The measure µ∗ has thus been constructed so that Eµ∗ [U ] = E0, and its Shannon
Entropy is maximal among all measures µ satisfying this condition. By a direct
computation,

H(µ∗) = β∗Eµ∗ [U ] + logZ(β∗) = β∗E0 + logZ(β∗) .

Therefore,

∂H

∂E0

= E0
∂β∗
∂E0

+ β∗ +
∂

∂E0

logZ(β∗)

= E0
∂β∗
∂E0

+ β∗ +
∂

∂β
logZ(β)

∣∣∣
β=β∗︸ ︷︷ ︸

=−E0

∂β∗
∂E0

= β∗ . (18)

Assume for a while that U(ω) is the energy of the state ω. Then we can compare
this last display with the fundamental thermodynamic relation between entropy
S, internal energy E and temperature T :

∂S

∂E
=

1

T
.
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Comparing this with (18), and denoting the dependence of H(µ∗) on E0 by:
S(E0) = H(µ∗), we can therefore interpret the Lagrange multiplier β∗ as an
inverse temperature:

β∗ ≡
1

T
. (19)

We will not pursue this delicate comparison 2, but rather consider it natural,
from now on, to study probability distributions of the form (17), but where the
parameter β∗ is free, not necessarily associated to the solution of a entropy max-
imisation problem. For physical reasons, we will only consider this free parameter
as non-negative.

Definition 2.2. Let Ω be a finite set. If U : Ω → R and β > 0, then the Gibbs
distribution with potential U and inverse temperature β is the distribution µβ on Ω
defined by

µβ(ω) :=
e−βU(ω)

Z(β)
,∀ω ∈ Ω , (20)

where the normalizing factor Z(β) :=
∑

ω∈Ω e
−βU(ω) is called partition function.

Since we sometimes need to consider µβ as a real probability measure, i.e. an
element of M1(Ω), we will write it as

µβ =
∑
ω∈Ω

µβ(ω)δω . (21)

The Gibbs distribution is one of the main themes of these notes. We will see that
it also appears naturally as a limiting distribution for a sequence of conditionned
measures.

2. Uniqueness of Entropy

In this section, following Khinchin [?], we show that the entropy H defined in (15)
is the unique function satisfying a set of natural conditions that are suggested by
the intuitive notion of uncertainty about the outcome of a random experience, or
its unpredictability.

It is useful to formulate the problem in a slightly more general manner. Consider
a random experiment modelized by some probability space (Ω,F, P ). A finite
scheme is a partition A of Ω into a finite number of sets Ak ∈ F (called atoms)
together with their associated probabilities pk := P (Ak). Altough we will usu-
ally denote a scheme by A = (A1, . . . , An), it should always be remembered that
the probabilities (P (A1), . . . , P (An)) are part of the information contained in A.
A scheme can represent a simple experiment, like the throw of a dice (where
Ak = {the kth face shows up}), but it can also modelize the coarse-graining
of a more complicated experiment where instead of the true result of the ran-
dom experiment, i.e. ω, one is interested in the atom Ak of the partition A to
which ω belongs. The coarse-grained result of the experience is therefore an index
k = k(ω) ∈ {1, 2, . . . , n}, giving the unique atom Ak 3 ω, and can be considered

2See [?] where this identification is made in details.



16 2. THE MAXIMUM ENTROPY PRINCIPLE

as partial knowledge about the result of the experiment.

How can one define the unpredictability of a random experience modelized by a
finite scheme A = (A1, . . . , An)? The unpredictability of A can of course depend
only on the probabilities (P (A1), . . . , P (An)). That is, we are looking for a class
of functions

H(A) = H(P (A1), . . . , P (An)) .

We will define four conditions (see (I)-(IV) below) that H should satisfy, most of
which will be natural in terms of unpredictability 3, and then show that these lead
unambiguously to the only possibility H = HSh (up to a multiplicative constant),
where according to Definition 2.1, the Shannon Entropy HSh is defined by

HSh(A) = −
∑
A∈A

P (A) logP (A) . (22)

A first condition we should impose is that the unpredictability of a random ex-
perience be continuous in its arguments:

H is continuous. (I)

Next, as we have seen for HSh, we need that unpredictability be maximal when
the distribution is uniform. Let us call a scheme uniform when its atoms have
equal probabilities. The second requirement we impose on H is therefore that

H is maximal on uniform schemes. (II)

To state the third requirement, we introduce a few notations. Consider two
schemes, say A = (A1, . . . , Ak) and B = (B1, . . . , Bk), giving a coarse-grained
description of the same random experiment. Consider the composite scheme A∨B
defined by

A ∨B := {A ∩B : A ∈ A, B ∈ B} .
This scheme is a refinement of both A and B, since each of its atoms contains
a double information (ω ∈ A and ω ∈ B for some couple (A,B)). It is easy to
see that when A and B are independent, that is if P (A∩B) = P (A)P (B) for all
pair A ∈ A, B ∈ B, then

HSh(A ∨B) = HSh(A) +HSh(B) . (23)

This property is called extensivity. In the general case (i.e. without assuming
independence) we always have

HSh(A ∨B) ≥ −
∑

(A,B)

P (A ∩B) logP (A) = HSh(A) .

The exact excess in the previous inequality,

HSh(B|A) := HSh(A ∨B)−HSh(A) , (24)

3The only exception being maybe (IV), which has to do with extensivity; this condition
seems natural to me although I understand some might find it completely arbitrary.
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measures the average excess of information produced by the outcome of the ex-
periment A ∨ B over the information produced by the experiment A. For any
event A, P (A) > 0, define

HSh(B|A) := −
∑
B∈B

P (B|A) logP (B|A) .

As can be verified explicitely,

HSh(B|A) =
∑
A∈A

P (A)HSh(B|A) . (25)

The above quantities can be defined in general for finite schemes:

H(B|A) := H(P (B1|A), . . . , P (Bk|A)) ,

and
H(B|A) :=

∑
A∈A

P (A)H(B|A) .

A fundamental property that should be satisfied by entropy is therefore that

H(A ∨B) = H(A) +H(B|A) . (III)

The interpretation of this identity in terms of unpredictability is clear. The final
condition says that unpredictability is not affected by the presence of atoms whose
probability is zero:

If A = (A1, . . . , Ak) with P (Ak) = 0, and A′ = (A1, . . . , Ak−2, A
′
k−1),

where A′k−1 = Ak−1 ∪ Ak, then H(A) = H(A′). (IV)

Theorem 2.1. Let H be a function defined on probability distributions of finite
schemes, such that (I)-(IV) hold. Then H = HSh, up to a positive constant.

We first prove Theorem 2.1 for uniform schemes, which leads to (26), the Entropy
of Boltzmann in its simplest form. If U is a scheme, |U| denotes the number of
elements of its partition.

Lemma 2.1. Let H be a function defined on uniform finite schemes which is
monotone increasing in |U|, and which is extensive, in the sense that if U, U′ are
two independent uniform schemes, then

H(U ∨ U′) = H(U) +H(U′) .

Then there exists a constant λ > 0 such that for all uniform scheme U,

H(U) = λ log |U| . (26)

Proof. Let L(k) denote the value of H on schemes of size k. By the first
assumption, L(k) is non-decreasing. Let U1, . . . ,Um be independent, containing
each r elements. On one hand, by extensivity,

H(U1 ∨ · · · ∨ Um) =
m∑
j=1

H(Uj) = mL(r).

On the other hand, U1 ∨ · · · ∨ Um is also uniform and contains rm elements.
Therefore, H(U1∨· · ·∨Um) = L(rm). This shows that L(rm) = mL(r). We then
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check that the logarithm is the unique function satisfying this condition for all
m ≥ 1, r ≥ 1. Namely, fix any s ≥ 1, n ≥ 1 and find some m ≥ 1 such that
rm ≤ sn < rm+1. Therefore, m log r ≤ n log s < (m + 1) log r, and since L is
monotone and L(sn) = nL(s), we have

m

n
≤ L(s)

L(r)
≤ m+ 1

n
.

Altogether, these imply that ∣∣∣L(s)

L(r)
− log s

log r

∣∣∣ ≤ 1

n
.

Since n was arbitrary, this shows that there exists λ such that L(r) = λ log r. λ
must be positive in order for L to be monotone increasing. �

Proof of Theorem 2.1: Assume H satisfies (I)-(IV). For a while, let Hk

denote the function associated to schemes with k elements. Then clearly

Hk(
1
k
, . . . , 1

k
)

(IV)
= Hk+1( 1

k
, . . . , 1

k
, 0)

(II)

≤ Hk+1( 1
k+1

, . . . , 1
k+1

, 1
k+1

) ,

which implies that for uniform schemes, H is increasing of the number of elements.
By (III), H is of course extensive for independent partitions. H therefore satisfies
the conditions of the lemma, and so H(U) = λ log |U| for all uniform scheme.
Let then A = (A1, . . . , An) be a scheme with rational probabilities pk (the exten-
sion to arbitrary probabilities pk then follows by the continuity hypothesis (I)).
That is, pk = wk

W
, where wk ∈ N and W =

∑n
k=1wk. It is useful to reinterpret

the probabilities as follows. Consider a set of W balls numbered from 1 to W ,
w1 of which are painted with a color c1, w2 of which are painted with a color
c2, etc. (we assume all the colors are different). A ball is drawn at random,
uniformly. Then if we define A′j as the even “the ball drawn has color cj”, then

P (A′j) =
ωj
W
≡ P (Aj). Therefore, H(A) = H(A′), where A′ = (A′1, . . . , A

′
n). Let

B = (B1, . . . , BW ) be made of the smallest possible atoms of the experience: Bi

is the event “the ball i was drawn”. Then clearly,

P (Bi|A′j) =

{
1
wj

if i ∈ A′j
0 otherwise.

By the lemma, H(B|A′j) = λ logwj. Therefore,

H(B|A′) =
n∑
j=1

pjH(B|A′j) = λ

n∑
j=1

pj log pj + λ logW

But since A′∨B contains events of equal probabilities (W of which are non-zero),
we have again by (IV) and the lemma that H(A′ ∨B) = λ logW . Therefore, by
assumption (III),

H(A′) = H(A′ ∨B)−H(B|A′) = −λ
n∑
j=1

pj log pj .

Since H(A) = H(A′), this finishes the proof. �



CHAPTER 3

Large Deviations for finite alphabets

In this chapter, we expose large deviation result for i.i.d. sequences X1, X2, . . .
taking values in a finite set. The advantage of working with finite alphabets is
that it allows to rely on combinatorial rather than analytical methods, and al-
ready gives a framework in which many interesting statistical mechanical systems
can be studied, for example the ideal gas of the next section. On the other hand,
the results obtained are already far-reaching, and illustrate the main concepts
that will be encountered later in more general settings.

This chapter will contain two kinds of results: first, those describing the concen-
tration properties of the empirical mean Sn

n
, called Level-1 LDPs. Second, those

describing the concentration of the empirical measure Ln, called Level-2 LDPs.

1. The Theorem of Sanov

Note that in the case where the variables Xj are Bernoulli, i.e. taking values in
the alphabet A = {0, 1}, we have obtained in (10), Chapter 1, a precise asymp-
totic behaviour of the frequency of 1s, i.e. Sn

n
. Since the alphabet contains only

two letters, this of course automatically gives the frequency of 0s, equal to 1− Sn
n

.

The LLN thus implies that the empirical measure (Sn
n
, 1 − Sn

n
), which give the

frequency of each symbol in a sample of size n, converges to its theoretical value
(1

2
, 1

2
), exponentially fast with n. In the general case, where the alphabet can

contain more than two letters, the combinatorics is a little more complicated, but
a similar result holds, known as the Theorem of Sanov.

In this section, we study a more general situation, in which the random variables
Xj take values in a finite alphabet A. Let M1 = M1(A) denote the set of all
probabilty distributions on A, which we identify with the vectors µ = (µ(a), a ∈
A) with µ(a) ≥ 0,

∑
a∈A µ(a) = 1. We equip M1 with the L1-metric, (also called

total variation distance), defined by

‖µ− ν‖1 :=
∑
a∈A

|µ(a)− ν(a)| .

Teh interior of a set E ⊂ M1 is denoted intE, and its closure E. We will denote
the common distribution of the Xjs by ν: ν(a) := P (Xj = a). Without loss of
generality, we can assume that ν(a) > 0 for all a ∈ A. We also assume that the se-
quence X1, X2, . . . is constructed canonically on the sequence space AN, endowed
with the σ-algebra generated by cylinders, and denote the product measure on

19
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this space by Pν .

Rather than just Sn
n

, we study the frequency of appearance of each of the symbols
of the alphabet up to time n. Therefore, the empirical measure associated to a
finite sample X1, . . . , Xn, is the probability distribution Ln ∈M1 defined by

Ln :=
1

n

n∑
j=1

δXj .

Ln is also called the type of the sample X1, . . . , Xn. In terms of Ln, the Law
of Large Numbers takes the following form: if ν ∈ M1 denotes the common
distribution of the Xis, then

Ln ⇒ ν , Pν-almost surely (27)

where⇒ denotes weak convergence, which in the case of a finite alphabet reduces
to ‖Ln − ν‖1 → 0.

The Theorem of Sanov describes the exponential concentration of Ln in the
vincinity of ν. The cost of the empirical measure being far from ν will be mea-
sured with the following function.

Definition 3.1. Let µ and ν be two probability distributions on A. The relative
entropy of µ with respect to ν, is defined by

D(µ‖ν) :=
∑
a∈A

µ(a) log
µ(a)

ν(a)
.

Our convention is that 0 log 0 := 0, and 0 log 0 := 0
0
.

D is also called Kullback-Leibler distance, or information divergence between µ and
ν. Observe that if µ is not absolutely continuous with respect to ν (i.e. if there
exists a ∈ A such that µ(a) > 0, ν(a) = 0), then D(µ‖ν) = +∞. We list a few
properties of D(·‖·).
Proposition 3.1. Assume ν > 0. D satisfies the following properties:

(1) D(µ‖ν) ≥ 0, with equality if and only if µ = ν,
(2) µ 7→ D(µ‖ν) is strictly convex and continuous on M1,
(3) (µ, ν) 7→ D(µ‖ν) is convex.

Proof. Write, temporarily,

D(µ‖ν) =
∑
a∈A

ν(a)ψ
(µ(a)

ν(a)

)
,

where ψ is the strictly convex function ψ(x) = x log x. Jensen’s inequality gives
D(µ‖ν) ≥ ψ(1) = 0, with equality if and only if µ(a)/ν(a) = 1 for all a ∈ A, thus
proving (1). For (2), the strict convexity and continuity of D(·|ν) follow by that of
ψ. For (3), we use the following (called log-concave inequality): if a1, . . . , an ≥ 0,
b1, . . . , bn ≥ 0,

n∑
j=1

aj log
aj
bj
≥
( n∑
j=1

aj

)
log

∑n
j=1 aj∑n
j=1 bj

,
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with equality if and only if there exists a constant c such that aj = cbj for all j.
Therefore if (µ′, ν ′) =

∑n
i=1 λi(µi, νi) with

∑n
i=1 λi = 1, we have

D(µ′‖ν ′) =
∑
a∈A

( n∑
i=1

λiµi(a)
)

log

∑n
i=1 λiµi(a)∑n
i=1 λiνi(a)

≤
∑
a∈A

n∑
i=1

λiµi(a) log
λiµi(a)

λiνi(a)

=
n∑
i=1

λiD(µi‖νi) ,

with equality if and only if µi = νi for all i. �

Although these properties remind those of a distance, D is actually not a distance:
it is not symetric in general, as can be seen by constructing a simple example on
an alphabet with two letters. Nevertheless, we have a usefull comparison with
the total variation distance:

Proposition 3.2 (Pinsker’s Inequality). For all µ, ν ∈M1,

D(µ‖ν) ≥ 1

2
‖µ− ν‖2

1 (28)

Therefore, if µ and ν are close in the sense of D(·‖·), they are also close in the
sense of ‖ · ‖TV.

Observe that if ν is the uniform distribution, ν(a) = 1/|A|, then

D(µ‖ν) = log |A| −H(µ) . (29)

Then (2) implies that µ→ H(µ) is concave, as we already knew, but also that in
this case, D measures the same discrepancy as the Shannon Entropy does with
respect to the uniform distribution. Relative entropy can be thus be considered as
a generalization of the Shannon Entropy to the case where the reference measure
is ν rather than the uniform distribution.

We now state the theorem.

Theorem 3.1 (Theorem of Sanov). Let X1, X2, . . . be i.i.d. with common distri-
bution ν. For all E ⊂M1,

Pν(Ln ∈ E) ≤ (n+ 1)|A| exp
(
−n inf

µ∈E
D(µ‖ν)

)
. (30)

Moreover,

− inf
µ∈intE

D(µ‖ν) ≤ lim inf
n→∞

1

n
logPν(Ln ∈ E) (31)

≤ lim sup
n→∞

1

n
logPν(Ln ∈ E) ≤ − inf

µ∈E
D(µ‖ν) . (32)
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Remark 3.1. A particular feature of the upper bound (32) is that it does not
impose any restriction on the set E. Nevertheless, if E is open, or more generally,
if E ⊂ intE (this forbids E to have isolated points, in particular), then

inf
µ∈intE

D(µ‖ν) ≥ inf
µ∈E

D(µ‖ν) ≥ inf
µ∈intE

D(µ‖ν) = inf
µ∈intE

D(µ‖ν)

The last equality follows from the continuity of D(·‖ν). Therefore the two bounds
in the theorem coincide, and:

lim
n→∞

1

n
logPν(Ln ∈ E) = − inf

µ∈E
D(µ‖ν) .

For later reference, we say that the open sets have the D(·‖ν)-continuity property.

The proof of Theorem 3.5 relies on simple combinatorial arguments. Denote by
Ln the set of all possible types of sequences of size n. For example, if |A| = 2,
Ln = {(0, 1), ( 1

n
, n−1

n
), . . . , (n−1

n
, 1
n
), (1, 0)}.

Lemma 3.1. |Ln| ≤ (n+ 1)|A|.

Proof. Each L ∈ Ln can be identified with an n-tuple (l1, . . . , l|A|), with
lj ∈ {0, 1, 2, . . . , n},

∑
j lj = n. But without this last constraint, the number of

such n-tuples is exactly (n+ 1)|A|. �

If x = (x1, . . . , xn) ∈ An, we denote its type by Lx, and write Pν(x) := Pν(X1 =
x1, . . . , Xn = xn).

Lemma 3.2. For all x ∈ An, Pν(x) depends only on the type of x, and

Pν(x) = exp
[
−n(H(Lx) +D(Lx‖ν))

]
. (33)

(33) nicely expresses the fact that D(Lx‖ν) represents the cost of Lx being dif-
ferent from ν.

Proof. First, H(Lx) + D(Lx‖ν) = −
∑

a∈A Lx(a) log ν(a). Then, by inde-
pendence,

Pν(x) =
n∏
i=1

ν(xi) =
∏
a∈A

ν(a)|{i≤n:xi=a}|

=
∏
a∈A

ν(a)nLx(a) = en
∑
a∈A Lx(a) log ν(a) ,

which gives (33). �

If µ ∈ Ln, we denote the type class of µ as An(µ) := {x ∈ An : Lx = µ}. We have
|An| = |A|n = en log |A|, but

Lemma 3.3. For all type µ ∈ Ln,

(n+ 1)−|A|enH(µ) ≤ |An(µ)| ≤ enH(µ) . (34)

Since the Shannon Entropy is maximal for the uniform distribution, (34) says
that the uniform distribution also has the largest type class.
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Proof. For the upper bound, we use Lemma 3.2:

1 ≥ Pµ(An(µ)) =
∑

x∈An(µ)

e−nH(µ) = |An(µ)|e−nH(µ) .

For the lower bound, we use Lemma 3.1:

1 =
∑
µ′∈Ln

Pµ(An(µ′)) ≤ |Ln| max
µ′∈Ln

Pµ(An(µ′)) .

We claim that maxµ′∈Ln Pµ(An(µ′)) ≤ Pµ(An(µ)), which will give the lower bound
since Pµ(An(µ)) = |An(µ)|e−nH(µ), as already seen.

Pµ(An(µ))

Pµ(An(µ′))
=
|An(µ)|

∏
a∈A µ(a)N(a)

|An(µ′)|
∏

a∈A µ(a)N ′(a)
,

where N(a) = nµ(a), N ′(a) = nµ′(a). Since, by a simple combinatorial argument,

|An(µ)| = n!∏
a∈AN(a)!

,

we have
Pµ(An(µ))

Pµ(An(µ′))
=
∏
a∈A

{N ′(a)!

N(a)!
µ(a)N(a)−N ′(a)

}
Since m!

n!
≥ nm−n for all m,n, this product is bounded below by∏

a∈A

N(a)N
′(a)−N(a)µ(a)N(a)−N ′(a) =

∏
a∈A

nN
′(a)−N(a) = 1 ,

since
∑

a∈A
(
N ′(a)−N(a)

)
= n

∑
a∈A
(
µ′(a)− µ(a)

)
= n− n = 0. �

Proposition 3.3. Let ν ∈M1. For any µ ∈ Ln,

(n+ 1)−|A|e−nD(µ‖ν) ≤ Pν(An(µ)) ≤ e−nD(µ‖ν) . (35)

Proof. The proof follows by using Lemma 3.2,

Pν(An(µ)) =
∑

x∈An(µ)

Pν(x) = |An(µ)| exp
[
−n(H(µ) +D(µ‖ν))

]
,

and by using Lemma 3.3 to estimate |An(µ)|. �

Proof of Theorem 3.5: The upper bound (30) (from which (32) follows
immediately) is obtained as follows:

Pν(Ln ∈ E) =
∑

µ∈E∩Ln

Pν(An(µ)) (36)

by Proposition 3.3 ≤
∑

µ∈E∩Ln

e−nD(µ‖ν)

≤ |Ln|e−n infµ∈ED(µ‖ν) ,
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and |Ln| is estimated using Lemma 3.1. For the lower bound (31),

Pν(Ln ∈ E) =
∑

µ∈E∩Ln

Pν(An(µ))

≥ (n+ 1)−|A| sup
µ∈E∩Ln

e−nD(µ‖ν) ,

where we used Proposition 3.3. Therefore,

lim inf
n→∞

1

n
logPν(Ln ∈ E) ≥ − lim sup

n→∞
inf

µ∈E∩Ln
D(µ‖ν) .

Let µ0 ∈ intE. Then clearly, there exists a sequence µn ∈ E ∩ Ln such that
‖µn − µ0‖1 → 0. Therefore,

lim sup
n→∞

inf
µ∈E∩Ln

D(µ‖ν) ≤ lim sup
n→∞

D(µn‖ν) = D(µ0‖ν) ,

by the continuity of D (Proposition 3.1). This gives (31). �

As we have seen, when ν is the uniform distribution, D(µ‖ν) = log |A| −H(µ).
Therefore, if E ⊂M1, we have

inf
µ∈E

D(µ‖ν) = log |A| − sup
µ∈E

H(µ) .

The variational problem that appears in the Sanov estimates is thus related, in
this case, to a maximization of the Shannon Entropy. We will come back to this
later.

1.1. The Theorem of Sanov, General Case. The Theorem of Sanov
is general and holds when the random variables Xj take values in a complete
separable metric space S 1. Without proof, we will state this theorem in the
simple case where S = R. The first step towards this generalization is to redefine
the relative entropy.

Definition 3.2. Let µ, ν ∈M1(R) be two probability measures on R. The relative
entropy of µ with respect to ν is defined by

D(µ‖ν) :=

{∫
f log f dν if µ� ν, and f = dµ

dν
,

+∞ otherwise.
(37)

As before, it can be shown that µ → D(µ‖ν) is convex. We equip M1(R) with
the topology of weak convergence. That is, say that a sequence µn converges to
µ if ∫

f dµn →
∫
f dµ

for all continuous bounded function f : R→ R. It can be shown that with respect
to the weak topology, µ→ D(µ‖ν) is lower semicontinuous and has compact level
sets.

1This happens to be a corollary of an even more general result, the Theorem of Cramér in
infinite dimensional spaces. See [?].
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Theorem 3.2 (Theorem of Sanov). Let X1, X2, . . . be i.i.d. with common distri-
bution ν ∈M1(R).

(1) For all closed set C ⊂M1(R),

lim sup
n→∞

1

n
logPν(Ln ∈ C) ≤ − inf

µ∈C
D(µ‖ν) . (38)

(2) For all open set G ⊂M1(R),

lim inf
n→∞

1

n
logPν(Ln ∈ G) ≥ − inf

µ∈G
D(µ‖ν) (39)

Proof. See [?], p.58. �

2. Applications

We go back to the case of a finite alphabet. Since the Theorem of Sanov 3.5
gives precise information on the convergence of the empirical measure Ln, it
seems natural to ask whether it allows to derive similar informations about the
empirical mean Sn

n
. Let us be a little more general, and consider partial sums of

the form Sfn := f(X1) + · · · + f(Xn), where f : A→ R, and where as before the
Xis are i.i.d., A-valued with distribution ν. We introduce the notation

〈f, µ〉 :=

∫
A
f dµ =

∑
a∈A

µ(a)f(a) ,

with which Sfn
n

= 〈f, Ln〉. Therefore, for A ⊂ R

Sfn
n
∈ A⇔ Ln ∈ E

f
A (40)

where E
f
A := {µ ∈ M1 : 〈f, µ〉 ∈ A}. Using this observation, we give two

applications of the Theorem of Sanov.

2.1. The Law of Large Numbers. Here we assume that A ⊂ R. Let
m := E[X1] =

∑
a aν(a). Let ε > 0, and Eε := {µ : D(µ‖ν) ≥ 1

2
ε2}. By the

Pinsker Inequality (28) and the upper bound (30),

Pν(‖Ln − ν‖1 ≥ ε) ≤ Pν(Ln ∈ Eε) ≤ (n+ 1)|A|e−
1
2
ε2n . (41)

To study the empirical mean Sn
n

, we use (40) with f = id,

Pν

(∣∣∣Sn
n
−m

∣∣∣ ≥ δ
)

= Pν(|〈id, Ln〉 −m| ≥ δ)

= Pν

(∣∣∣∑
a∈A

a(Ln(a)− ν(a))
∣∣∣ ≥ δ

)
≤ Pν

(∑
a∈A

|Ln(a)− ν(a)| ≥ δ/amax

)
= Pν

(
‖Ln − ν‖1 ≥ δ/2amax

)
,
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where amax := maxa∈A |a|. Using (41), we conclude that there exists some con-
stant cδ > 0 such that for large enough n,

Pν

(∣∣∣Sn
n
−m

∣∣∣ ≥ δ
)
≤ e−cδn .

Since this holds for all δ > 0, the Borel-Cantelli Lemma implies that Sn
n
→ m

almost surely.

2.2. The Theorem of Cramér. In the previous section we derived a Strong

Law of Large Numbers for Sfn
n

from the Theorem of Sanov. We now show that a

Large Deviation Principle also holds for Sfn
n

, called the Theorem of Cramér. Later
(see Chapter 7) this theorem will be generalized to arbitrary real-valued random
variables.

Let X1, X2, . . . be i.i.d., A-valued, with X1 ∼ ν. Let Λ denote the logarithmic
moment generating function of X1, i.e. for all t ∈ R,

Λ(t) := log
∑
a∈A

ν(a)etf(a) . (42)

The rate function for the LDP of the sequence Sfn
n

will be given by the Legendre
transform of Λ, i.e.

Λ∗(x) := sup
t∈R
{tx− Λ(t)} . (43)

Theorem 3.3 (Theorem of Cramér for finite alphabets). Let X1, X2, . . . be an
i.i.d. sequence taking values in a finite alphabet A with common distribution ν.
Let f : A→ R, Sfn := f(X1) + · · ·+ f(Xn). Then for all A ⊂ R,

− inf
x∈
◦
A

Λ∗(x) ≤ lim inf
n→∞

1

n
logPν

(Sfn
n
∈ A

)
(44)

≤ lim sup
n→∞

1

n
logPν

(Sfn
n
∈ A

)
≤ − inf

x∈A
Λ∗(x) . (45)

Remark 3.2. Remark that when I is continuous and when A ⊂ intA, then the
upper and lower bounds coincide and we have

lim
n→∞

1

n
logPν

(Sfn
n
∈ A

)
= − inf

x∈A
I(x) .

Before proving the theorem, we show how the Legendre transform Λ∗ is related
to the relative entropy D. Let fmin := inf f , fmax := sup f , K := [fmin, fmax].

Lemma 3.4. Let ν ∈M1, f : A→ R, and for all x ∈ R, define

I(x) := inf
µ:〈f,µ〉=x

D(µ‖ν) . (46)

Then I = +∞ outside K, and for all x ∈ K, I(x) = Λ∗(x). In particular, I is
continuous on intK. Moreover, I is strictly convex, and I(x) ≥ 0 with equality if
and only if x = 〈f, ν〉 = Eν [f(X1)].
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Proof. If x 6∈ K, then there are no µ such that 〈f, µ〉 = x, and so I(x) =
+∞. For all µ ∈M1 (with µ(a) > 0 for all a ∈ A), Jensen Inequality gives

Λ(t) = log
∑
a∈A

µ(a)
(
etf(a) ν(a)

µ(a)

)
≥ t〈f, µ〉 −D(µ‖ν) , (47)

with equality if and only if µ = µt, where µt is the Gibbs distribution

µt(a) =
etf(a)

Z(t)
ν(a) ∀a ∈ A , (48)

with Z(t) = eΛ(t). Therefore, D(µ‖ν) ≥ t〈f, µ〉 − Λ(t), and by infimizing this
lower bound over those µ for which 〈f, µ〉 = x, this shows that

I(x) ≥ Λ∗(x) , (49)

We then shown that equality holds when x ∈ intK. Clearly, Λ is C∞ on R.
Moreover, a simple calculation shows that

Λ′′(t) = Varµt [f ] > 0 ,

so that Λ is strictly convex, and t 7→ tx − Λ(t) is strictly concave. We can thus
try to compute the supremum in Λ∗ by simple derivation:

Λ∗(x) = t∗x− Λ(t∗) ,

where t∗ = t∗(x) is the solution of Λ′(t) = x. The existence of t∗ is guaranteed
when fmin < x < fmax (i.e. x ∈ intK), since

lim
t→−∞

Λ′(t) = fmin lim
t→+∞

Λ′(t) = fmax .

By the Implicit Function Theorem, x 7→ t∗(x) is C∞. Now observe that 〈f, µt∗〉 =
Λ′(t∗) = x, and so

I(x) ≤ D(µt∗‖ν) =
∑
a∈A

µt∗(a) log
et∗f(a)

Z(t∗)

= t∗〈f, µt∗〉 − logZ(t∗)

= t∗x− Λ(t∗)

= Λ∗(x) .

We show that I(x) ≤ Λ∗(x) also on the boundary of K. Let for instance x = fmax.
Let a be the point of A at which f takes the value fmax. We can assume that
this point is unique (the general case follows by continuity). Let µmax := δa. Of
course, 〈f, µmax〉 = x. It easy to verify that

Λ∗(x) ≥ lim sup
t→∞

{tx− Λ(t)} ≥ − log ν(a) ≡ D(µmax‖ν) ≥ I(x) .

The continuity of I on intK follows from the fact that there I(x) = Λ∗(x) =
t∗(x)x−Λ(t∗(x)), which is made of continuous functions. The strict convexity of
I follows from the fact that on intK, I ′′(x) = 1/Varµt∗(x) [f ] > 0. Observe that by
Jensen, Λ(t) ≥ 〈f, ν〉, and so I(〈t, ν〉) ≤ 0. The last claim follows from the fact
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that I(x) ≥ 0 · x− Λ(0) = 0, which implies that I(〈f, ν〉) = 0, and from the fact
that I is strictly convex. �

More properties of I(x) = supt{tx− Λ(t)} will be described in Chapter 7.

The proof above shows that for reasonable values of the parameter x,

inf
µ:〈f,µ〉=x

D(µ‖ν) = D(µt∗‖ν) , (50)

where µt∗ is the Gibbs distribution (48), with t∗ chosen such that 〈f, µt∗〉 = x. In
the following section, we will study more general variational problems related to
the microcanonical distribution.

Proof of Theorem 3.3: The bounds (44)-(45) follow essentially from the
correspondence (40) and the Theorem of Sanov. By Lemma 3.4,

inf
µ∈EfA

D(µ‖ν) = inf
x∈A

inf
µ:〈f,µ〉=x

D(µ‖ν) ≡ inf
x∈A

Λ∗(x) ,

from which the upper bound follows immediately. For the lower bound, observe
that

lim inf
n→∞

1

n
logPν

(Sfn
n
∈ A

)
≥ lim inf

n→∞

1

n
logPν

(Sfn
n
∈ intA

)
= lim inf

n→∞

1

n
logPν

(
Ln ∈ E

f
intA

)
.

Since µ→ Φ(µ) := 〈f, µ〉 is continuous, EfintA = Φ−1(intA) is open. Therefore, by
the lower bound in the Theorem of Sanov and again Lemma 3.4,

lim inf
n→∞

1

n
logPν

(
Ln ∈ E

f
intA

)
≥ − inf

µ∈EfintA

D(µ‖ν) = − inf
x∈intA

Λ∗(x) .

This proves the theorem. �

Remark 3.3. What was done here is called a contraction: a large deviation
result for Ln was used to derive a large deviation result for the empirical mean
Sn
n

= Φ(Ln), where Φ(·) = 〈id, ·〉 is a continuous mapping from M1 to the real
line. The new rate function I is obtained from the old D by the formula (46).
This principle will be used at many places in these notes. It will be presented in
its most general form in Chapter 5.

2.3. The Gibbs Conditioning Principle. Let Xi be i.i.d. with common
distribution ν, and α > Eν [X1]. What is the distribution of X1, conditionned
on the event that 1

n

∑n
i=1 Xi ≥ α? This type of problem is typical in statistical

mechanics in the study of the microcanonical ensemble (see next chapter on the
ideal gas), and can be solved using the Theorem of Sanov. We will see below
that the limiting distribution of X1 is a Gibbs distribution µβ with a well cho-
sen inverse temperature β = β(α). This is a weak form of the Equivalence of
Ensembles for independent variables 2. Moreover, if ν is uniform, µβ also has
the property of having maximal Shannon entropy among those distributions µ

2The general problem of the equivalence of ensembles will be treated in Chapter ??.
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that satisfy the constraint 〈id, µ〉 ≥ α. This is essentially the Maximal Entropy
Principle exposed in Chapter 2.

We thus consider an i.i.d. sequence X1, . . . , Xn with common distribution ν, and
study the distribution of X1, conditioned on an event of the form {Ln ∈ E}:

µE
n(a) := Pν(X1 = a|Ln ∈ E) . (51)

Figure 1. The conditionning Ln ∈ E, with two minimizers of D(·‖ν).

Here, we assume that E ⊂M1 (non-empty) is atypical, in the sense that Pν(Ln ∈
E) → 0. For this we can for example assume that the closure of E does not
contain ν. Namely, since D is continuous,

inf
µ∈E

D(µ‖ν) = inf
µ∈E

D(µ‖ν) ≡ DE > 0 ,

and therefore by Sanov, Pν(Ln ∈ E) → 0 exponentially fast in n, with an expo-
nent DE > 0.

The event Ln ∈ E is thus very rare, and the following question is: when a rare
event happens, how does it happen? More generally, what can one say on the
distribution of the variables X1, . . . , Xn when conditioned on a rare event to
occur? In our framework, we will see that under a conditionning of the form
Ln ∈ E, the most likely empirical distribution is the one that infimizes the relative
entropy over E. Let therefore

N :=
{
µ∗ ∈ E : D(µ∗‖ν) = inf

µ∈E
D(µ‖ν) = DE

}
.

It is then natural to ask if the probability distributions in N are candidates for
being limit points of the sequence µE

n. We will show below that indeed the accu-
mulation points of µE

n are given by the closure of the convex hull of N. In this
sense, the probability distributions of coN are candidates to describe the “most
probable among the worst of all scenarios”.

Throughout, we will assume that E has a dense relative interior, i.e. E ⊂ intE,
so that the bounds in the Theorem of Sanov coincide (see Remark 3.1):

inf
µ∈intE

D(µ‖ν) = inf
µ∈E

D(µ‖ν) = DE . (52)

Theorem 3.4. Assume E ⊂ intE. Then in the limit n→∞, the sequence (µE
n)n≥1

concentrates on the closure of the convex hull of N, denoted coN.

Proof. We first note that µE
n can be written entirely in terms of Ln. Namely,

let f : A→ R. Since the variables Xk are identically distributed,

E[f(X1)|Ln ∈ E] = E[f(X2)|Ln ∈ E] = · · · = E[f(Xn)|Ln ∈ E] .
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Therefore

〈f, µE
n〉 = E[f(X1)|Ln ∈ E]

= E
[f(X1) + · · ·+ f(Xn)

n

∣∣∣Ln ∈ E
]

= E[〈f, Ln〉|Ln ∈ E]

= 〈f, E[Ln|Ln ∈ E]〉 ,

which gives µE
n = E[Ln|Ln ∈ E]. Using this representation, we will show that for

all δ > 0,
d1(µE

n, (coN)δ)→ 0 (53)

exponentially fast when n→∞, where we used the notation Uδ := {µ : d1(µ,U) <
δ} for the open δ-thickening of the set U, and d1(µ,U) := infη∈U ‖µ− η‖1. As can
be seen, for any set U ⊂ M1 and any a ∈ A, the difference µE

n(a) − µE∩U
n (a) can

be expressed as

P (Ln ∈ Uc|Ln ∈ E)
{
E[Ln(a)|Ln ∈ E ∩ Uc]− E[Ln(a)|Ln ∈ E ∩ U]

}
Taking absolute values, summing over a ∈ A, and using ‖ · ‖1 ≤ 2,

‖µE
n − µE∩U

n ‖1 ≤ 2P (Ln ∈ Uc|Ln ∈ E) .

Since µE∩U
n ∈ coU 3,

this gives
d1(µE

n, coU) ≤ 2P (Ln ∈ Uc|Ln ∈ E) .

With U = Nδ,
d1(µE

n, co(Nδ)) ≤ 2P (Ln ∈ (Nδ)
c|Ln ∈ E) .

By the Theorem of Sanov and (52),

lim sup
n→∞

1

n
log d1(µE

n, co(Nδ)) ≤ −
{

inf
µ∈(Nδ)c∩E

D(µ‖ν)− inf
µ∈E

D(µ‖ν)
}

≤ −
{

inf
µ∈(Nδ)c∩E

D(µ‖ν)−DE

}
< 0 .

Namely, assume infµ∈(Nδ)c∩ED(µ‖ν) = DE. Since (Nδ)
c ∩ E is closed, it must

contain some µ0 for which D(µ0‖ν) = DE. But this would mean µ0 ∈ N, a
contradiction. We have thus shown that d1(µE

n, co(Nδ))→ 0 exponentially fast in
n. To obtain (53), it suffices to observe that (coN)δ is convex and that it contains
Nδ, so that (coN)δ ⊃ co(Nδ). Therefore, d1(µE

n, (coN)δ) ≤ d1(µE
n, co(Nδ)). This

finishes the proof. �

In most interesting situations, E will be convex. In this case, the strict convexity
of the relative entropy implies that N is a singleton: N = {µ∗}. µ∗ is then called
the I-projection of ν on E (see Figure 2).

3Namely, µE∩U
n is a convex combination of elements of E ∩ U ⊂ U:

µE∩U
n = E[Ln|Ln ∈ E ∩ U] =

∫
Ln∈E∩U

LndP
E∩U
n ,

where PE∩U
n (·) = P (·|Ln ∈ E ∩ U).
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Figure 2. The I-projection of ν on a convex set E.

Corollary 3.1. Assume that E ⊂ intE and that E is convex. Then N = {µ∗},
and ‖µE

n − µ∗‖1 → 0.

Let us then answer the question asked at the beginning of the section. Let Xi

be i.i.d. with Xi ∼ ν. We consider the distribution of X1 when conditioned on
(X1 + · · · + Xn)/n ≥ α. In terms of the empirical measure, this represents the
event E = {µ : 〈id, µ〉 ≥ α}. Assume that 〈id, ν〉 < α, so that E does not contain
ν. Clearly, E is convex, and E = intE. By Corollary 3.1

Pν

(
X1 = a

∣∣∣X1 + · · ·+Xn

n
≥ α

)
→ µ∗(a) ,

where µ∗ is the I-projection of ν on E, i.e. the unique measure µ∗ which satisfies

D(µ∗‖ν) = inf
µ∈E

D(µ‖ν) . (54)

As we have already seen, µ∗ can be found by writing

inf
µ∈E

D(µ‖ν) = inf
x≥α

inf
µ:〈id,µ〉=x

D(µ‖ν) ≡ inf
x≥α

Λ∗(x) ,

where Λ∗ is the Legendre transform of Λ(t) = log
∑

a e
taν(a). Since Λ∗ is strictly

convex and has a unique minimum at m = Eν [X1], and since we are assuming
α > m, we have

inf
x≥α

Λ∗(x) = Λ∗(α) = inf
µ:〈id,µ〉=α

D(µ‖ν) = D(µt∗‖ν) ,

where t∗ = t∗(α) is the unique value of t for which Λ′(t) = α.

Remark 3.4. Assume for a while that ν is the uniform measure. Then D(·‖ν) =
log |A| −H(·), and therefore µ∗ satisfies

H(µ∗) = sup
µ∈E

H(µ) . (55)

In other words, µ∗ is a measure with maximal entropy, under the constraint
µ ∈ E. We thus see that the limiting distribution of an independent sequence
under conditionning is of maximal entropy, in the sense of Chapter 2. Typically,
if E is a convex set of the form {µ ∈ M1 : Eµ[f ] ∈ [a, b]}, then the method of
Lagrange multipliers applies, and µ∗ can be shown to be a Gibbs distribution
with potential f and a well defined inverse temperature β (depending on [a, b]).
We will come back to this application in Chapter 4.

3. The Theorem of Sanov for Pairs

The empirical measure Ln studies the frequency with which the individual letters
appear in a sample of size n. More detailed information can be extracted from
the sample by studying the occurence of words. The case of words of size two
already contains the main difficulty, and we shall stick to this case.
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The empirical pair measure is the probability distribution on words of size two,
defined by

L2
n :=

1

n

n∑
j=1

δ(Xj ,Xj+1) . (56)

As will be seen, it is convenient to define L2
n by identifying thatXn+1 ≡ X1 (which,

when n is large, has no influence on the statistics of pairs). L2
n ∈ M1(A2), the

set of probability distributions on pairs (a, b) ∈ A2. A generic element of M1(A2)
will usually be denoted by π. The topology on M1(A2) is that of the L1-norm,
defined as before:

‖π − π′‖1 :=
∑
a,b

|π(a, b)− π′(a, b)| .

The marginal of the first (resp. second) coordinate of π, denoted π ∈ M1(A)
(resp. π ∈M1(A)), is given by π(a) :=

∑
b π(a, b) (resp. π(b) :=

∑
a π(a, b)). By

the cyclicity condition Xn+1 ≡ X1, we actually have L2
n ∈M

cycl
1 (A2), where

M
cycl
1 (A2) := {π ∈M1(A2) : π = π} .

We of course expect L2
n to be close to ν ⊗ ν when n is large. Actually, as can

be shown using the Ergodic Theorem of Birkhoff (or simply the Strong Law of
Large Numbers, if suitably applied), when n→∞,

L2
n ⇒ ν ⊗ ν Pν − a.s. (57)

We will describe the concentration of L2
n in the vincinity of ν ⊗ ν in terms of the

following rate function: if π ∈M
cycl
1 (A2),

I2
ν (π) :=

∑
a,b

π(a, b) log
π(a, b)

π(a)ν(b)
. (58)

Observe that if D denotes the relative entropy between distributions on M1(A2)
(see Definition 3.1), then

I2
ν (π) = D(π‖π ⊗ ν) , (59)

and not D(π‖ν ⊗ ν) as one could have naively expected. The presence of π ⊗ ν
comes from the fact that unlike single letters, words can overlap. Nevertheless,
I2
ν has the expected properties (compare with Proposition 3.1):

Proposition 3.4. I2
ν : Mcycl

1 (A2)→ R has the following properties:
(1) I2

ν (π) ≥ 0, with equality if and only if π = ν ⊗ ν.
(2) π → I2

ν (π) is strictly convex, except on segments [π, π′] which satisfy
π(a, b)/π(a) = π′(a, b)/π′(a), on which it is affine.

Proof. (Similar to proof of Proposition 3.1.) Write

I2
ν (π) =

∑
a,b

π(a)ν(b)ψ(Xa,b) ,

where ψ(x) := x log x and Xa,b := π(a,b)
π(a)ν(b)

. By Jensen’s Inequality, I2
ν (π) ≥ ψ(1) =

0, with equality if and only if π(a, b) = π(a)ν(b). But since π ∈ M
cycl
1 (A2), this

implies π = π = ν, and so π = ν ⊗ ν. Convexity follows from the representation
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(59) and from (3) in Proposition 3.1, which implies that π 7→ D(π‖π ⊗ ν) is
convex. �

Theorem 3.5 (Theorem of Sanov for pairs). Let X1, X2, . . . be i.i.d. with com-
mon distribution ν. For all E ⊂M1(A2),

− inf
π∈intE

I2
ν (π) ≤ lim inf

n→∞

1

n
logPν(L

2
n ∈ E) (60)

≤ lim sup
n→∞

1

n
logPν(L

2
n ∈ E) ≤ − inf

π∈E
I2
ν (π) , (61)

Proof. Let as before L2
n ⊂ M

cycl
1 (A2) denote the set of (cyclic) types of

size n, i.e. the set of all empirical measures L2
n associated to the sequences

(X1, . . . , Xn) ∈ An. We start as in the proof of Theorem 3.5, and decompose as
we did in (36):

Pν(L
2
n ∈ E) =

∑
π∈E∩L2

n

Pν(L
2
n = π) . (62)

The key of the proof is to observe that a sequence X = (X1, . . . , Xn) can be
encoded into a path in a graph with vertices A, and that L2

n can be read off the
path by counting the number of times each edge is visited.

A multigraph (with vertex set A), G = (A, E), is specified by a multiset E of
oriented edges, that is, a set of pairs (a, b) with a, b ∈ A, in which the same pair
can appear more than once. The multiset E is therefore completely characterized
by a family of numbers kG(a, b) ∈ {0, 1, . . . , n}, where kG(a, b) gives the number
of times the edge (a, b) appears in E.

We associate to each sample X = (X1, . . . , Xn) a multigraph G(X) = (A, E(X))
by walking along the vertices A and adding a new edge (a, b) to the edge-set each
time it is traversed. In the end, the edge (a, b) appears the same number of times
in E(X) as the number of is for which (Xi, Xi+1) = (a, b). By the identification
Xn+1 ≡ X1, the path is back at its starting point X1 at time n+1. The multigraph
G(X) contains all the information about L2

n: for all pair (a, b),

L2
n(a, b) =

kG(X)(a, b)

n
.

For a given π ∈ L2
n, of the form π = k

n
, let Gπ denote the multigraph associated

to π, in which the edge (a, b) appears exactly k(a, b) ≡ nπ(a, b) times. Then

Pν(L
2
n = π) =

∑
X:G(X)=Gπ

Pν(X) .

Clearly, all the sequences X appearing in the sum have same probability. Namely,
in each of them, the symbol a ∈ A appears exactly

∑
b kG(X)(a, b) =

∑
b k(a, b) ≡

k(a) times, and so

Pν(L
2
n = π) =

(∏
a

ν(a)k(a)
)
]{X : G(X) = Gπ} . (63)
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Let G′π denote the graph with vertex set A such that each pair of points (a, b)
is joined by exactly k(a, b) distinct oriented edges. Now, the number of elements
in {X : G(X) = Gπ} can be obtained by first counting the number of distinct
Eulerian paths on G′π (that is paths that visit each edge of G′π exactly once), and
then take care of the number of overcountings that have been made. Since exactly∏

a,b k(a, b)! distinct Eulerian paths yield the same sequence X we get

]{X : G(X) = Gπ} = cycl(π) · ]{Eulerian paths on G′π}∏
a,b k(a, b)!

,

where 1 ≤ cycl(π) ≤ n is a number that accounts for the fact that each Eulerian
path can yields to at most n distinct sequences X, obtained by cyclic permutation.

Lemma 3.5. For all π = k
n
∈ L2

n,∏
a

(k(a)− 1)! ≤ ]{Eulerian paths on G′π} ≤ |A|
∏
a

k(a)! . (64)

Since 1 ≤
∏

a k(a) ≤ n|A|, we can thus write (63) as:

Pν(L
2
n = π) =

(∏
a

ν(a)k(a)
)
eO(logn)

∏
a k(a)!∏

a,b k(a, b)!
, (65)

uniformly in π ∈ L2
n. Using the Stirling formula for each of the factorials k(a, b)!,

k(a)!, gathering carefully the terms and remembering (58),

Pν(L
2
n = π) = e−nI

2
ν (π)+O(logn) . (66)

The rest of the proof proceeds as in Theorem 3.5. For example, for the upper
bound,

Pν(L
2
n ∈ E) ≤ |E ∩ L2

n| sup
π∈E∩L2

n

Pν(L
2
n = π)

≤ |E ∩ L2
n|eO(logn) exp

(
− n inf

π∈E∩L2
n

I2
ν (π)

)
≤ |E ∩ L2

n|eO(logn) exp
(
− n inf

π∈E
I2
ν (π)

)
,

from which (61) follows, since |E ∩ L2
n| ≤ |L2

n| ≤ (n+ 1)|A
2|. �

The Theorem of Sanov for pairs will be used later when studying large deviations
for Markov chains. COMPLETER



CHAPTER 4

The Ideal Gas

A system is called ideal when it is made of particles that do not interact. Math-
ematically, their study is greatly simplified by the fact that they can be reduced
to sequences of independent random variables. In the case of the ideal gas, this
will allow us to apply the large deviations results of the previous chapter. Al-
though the model presented hereafter is oversimplified, the results obtained are
far-reaching, and provide a rigorous answer to some of the questions raised in the
Introduction about large systems of particles. We follow the treatment of Ellis in
[?].

Consider a system of numbered n particles in a box, all with equal mass m ≡
1. For simplicity, let this box be a one-dimensional bounded interval ∆ ⊂ R.
The state of each particle is specified by a pair (qj, pj), where qi ∈ ∆ is the
position, and pj ∈ R is the momentum. To simplify, we discretize the problem
and assume that the momenta take on only a finite number of possible values,
say in a symmetric set Γ := {vi, i = −r,−r + 1, . . . , r − 1, r}, where v−i = −vi,
and where we assume that v−r < v−r+1 < · · · < v−1 < v1 < · · · < vr−1 < vr. The
microscopic states of the system are therefore the elements ω ∈ Ωn, where

Ωn :=
{
ω = (q1, p1, . . . , qn, pn) : qj ∈ ∆, pj ∈ Γ

}
≡ (∆× Γ)n .

Since we are assuming that the gas is ideal, i.e. that the particles don’t interact,
neither on short or long range. The dynamics of this model is thus quite simple:
since it doesn’t feel the others, the particle j with momentum pj ∈ Γ travels at
constant speed until it hits the boundary of ∆. It then reverses its momentum,
pj → −pj and continues at constant speed until hitting again the boundary of ∆.

Although it is possible to write down the detailed trajectory of each particle, the
complete evolution of the system is complicated to described. Rather, as we said
in the introduction, we are more interested in finding a probability measure on
Ωn, describing the equilibrium properties of the system. The main measure will
be the microcanonical measure, which is simply obtained by assuming that the
total energy of the system if fixed. We know from thermodynamics that this is
essentially equivalent to fixing the temperature of the system (although this will
be proved in the present section). The main result (Theorems 4.1 and 4.3) will be
that under the microcanonical measure, i.e. when the total energy of the system is
fixed in a small interval C, then all other macroscopic observables are essentially
deterministic, in the sense that they have exponentially small fluctuations around
their mean value. We will also see that these mean values can be computed using

35
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a Gibbs distribution whose inverse temperature is chosen as a function of the
interval C. This should be considered as a satisfactory description of equilibrium.

1. The Microcanonical Distribution

Let B(∆) denote the Borel σ-field on ∆, and B(Γ) the discrete σ-field on Γ. We
will consider Ωn endowed with the product σ-field Fn := (B(∆) ⊗ B(Γ))⊗n. If
no particular information is provided about the state of the gas, the Maximum
Entropy Principle leads us to choose an a priori probability measure which does
not favor any special microscopic state ω: the uniform measure on (Ωn,Fn),
which will be denoted νn. Let λ denote the normalized 1 Lebesgue measure on
(∆,B(∆)), i.e. such that λ(∆) = 1, and ρ the uniform measure on (Γ,B(Γ)), i.e.

ρ :=
1

|Γ|

r∑
i=−r

δvi .

Our reference measure on (Ωn,Fn) is thus the product measure

νn := (λ⊗ ρ)⊗n .

Expectation under νn is denoted En. The probability space (Ωn,Fn, νn) modelizes
a system of particles with no interactions.

We shall be interested in the behaviour of certain observables associated to this
system, namely random variables F : Ωn → R (or R2). The observables we will
be interested in will typically be macroscopic, i.e. involving all the particles of
the system. These are usually of the form

F (ω) =
n∑
j=1

f(qj, pj) .

For example, with f(q, p) = 1A(q), the observable

IA(ω) :=
n∑
j=1

1A(qj)

counts the number of particles contained in the Borel set A ⊂ ∆. Our main
example will be that of the total kinetic energy,

Un(ω) :=
n∑
j=1

p2
j

2
.

which corresponds to the choice f(q, p) = 1
2
p2 ≡ g(p). By introducing Yj(ω) := pj,

j = 1, . . . , n, Un writes

Un =
n∑
j=1

g(Yj) .

1This normalization condition on λ is not necessary.
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Since 1
2
v2

1 ≤ g(p) ≤ 1
2
v2
r , Un takes values in [1

2
nv2

1,
1
2
nv2

r ] = n[g(v1), g(vr)]. Under
the reference measure νn, the variables Yj are i.i.d. This implies that

En

[Un
n

]
= En[g(Y1)] =

∫
Γ

g(p)ρ(dp) =
1

2r

r∑
i=1

v2
i ≡ α . (67)

In the second equality, we have integrated out all variables pj, j = 1, . . . , n, and
all the qj, j = 2, . . . , n. Under νn, the total kinetic energy satisfies a LLN: when
n→∞,

νn

(∣∣∣Un
n
− α

∣∣∣ ≥ ε
)
→ 0 . (68)

1.1. The microcanonical mesure. In general, physical systems are not
described by product measures, since some external influence usually fixes the
value of certain observables of the system. A typical situation is where the system
is in contact with a heat reservoir that keeps it at constant temperature. It is well
known from thermodynamics that the temperature is proportional to the average
kinetic energy per particle: 〈

1
2
mv2

〉
= 3

2
kT , (69)

where k is the Boltzmann constant. We thus see that imposing a restriction on
the temperature is equivalent to imposing a restriction on the kinetic energy.
Although it will be one of our tasks in this chapter to settle this equivalence
on rigorous bases, we will take as a starting point a pointwise restriction on
the kinetic energy, by assuming that Un is constrained to take values in a small
interval. This leads to a first interesting probability measure (considered often as
the starting point of statistical mechanics):

Definition 4.1. Let C ⊂ [g(v1), g(vr)] be a closed interval. The microcanonical
distribution is the probability measure νCn on (Ωn,Fn) defined by

νCn (·) := νn

(
·
∣∣∣Un
n
∈ C

)
. (70)

(We are assuming that n is large enough, so that {Un
n
∈ C} 6= ∅.) Expectation

under νCn is denoted EC
n .

The microcanonical distribution is thus the uniform measure over the energy shell
{ω ∈ Ωn : Un(ω)/n ∈ C} 2. Our aim is thus to study the properties of the system
under distribution νCn , for fixed C and large n. As we will see, all observables
are exponentially concentrated around a deterministic mean value, which can
be computed in function of C. This concentration will become sharper when n
gets larger, and it will thus be natural to consider the limit in which the num-
ber of particles goes to infinity. The limit n → ∞ is called the thermodynamic

2In Statistical Mechanics textbooks, the microcanonical measure is introduced by invoking
the ergodic hypothesis: “over long periods of time, the time spent by a particle in some region
of the phase space of microstates with the same energy is proportional to the volume of this
region, i.e., that all accessible microstates are equally probable over a long period of time.”
(Wikipedia)



38 4. THE IDEAL GAS

limit 3, in the sense that for large n the properties of the system become close to
those of a large system (of thermodynamic size, i.e. for which typically n ' 1025).

2. The equilibrium value of the kinetic energy

We saw in (68) that under νn, Un/n → α. We will now see that under νCn ,
Un/n → u∗, where u∗ is the unique minimizer of Λ∗1 over C, where Λ∗1 is the
Legendre Transform of the logarithmic moment generating function of the kinetic
energy of the first particle:

inf
x∈C

Λ∗1(x) = Λ∗1(u∗) . (71)

In other words, u∗ equals to α if α ∈ C, and to the point of C closest to C if
α 6∈ C.

Theorem 4.1. For all ε > 0, there exists γε = γε(C) > 0 such that when n→∞,

νCn

(∣∣∣Un
n
− u∗

∣∣∣ ≥ ε
)
≤ e−γn . (72)

As (72) shows, Un/n has a deterministic limit under the microcanonical measure:
we call u∗ the macroscopic equilibrium kinetic energy (per particle). If one inter-
prets −Λ∗1 as the entropy of the system, which is concave, then (71) says that the
equilibrium value observed by the system is the one that maximizes the entropy
under the constraint C.

We will denote by Kj := 1
2
Y 2
j = g(Yj) the kinetic energy of the particle j. Kj

takes values in the finite set K := {k1, . . . , kr}, where kj = g(vj).

Proof of Theorem 4.1: Let A := {z : |z − u∗| ≥ ε}, assuming that ε is
small. By integrating out the variables qj,

νCn

(Un
n
∈ A

)
=
νn
(
Un
n
∈ A ∩ C

)
νn
(
Un
n
∈ C

) =
ρ⊗n
(
Un
n
∈ A ∩ C

)
ρ⊗n
(
Un
n
∈ C

) ≡
Pρ
(
Un
n
∈ A ∩ C

)
Pρ
(
Un
n
∈ C

) ,

where Pρ = ρ⊗∞. Since the variables Kj are independent and take values in a
finite alphabet, the Theorem of Cramér 3.3 applies: if Λ1 denotes the logarithmic
moment generating function of K1,

Λ1(t) = logEρ[e
tK1 ] = log

∫
Γ

etg(y)ρ(dy) ,

and Λ∗1 denotes its Legendre Transform, then Un
n

= 1
n

∑n
j=1 Kj satisfies a Large

Deviation principle with rate function Λ∗1. In particular (see Lemma 3.4), Λ∗1 is
strictly convex and continuous on [k1, kr], with a unique minimum at Eρ[K1] = α.

3Actually, the true thermodynamic limit should involve also a limit in which the size of the
system ∆ goes to infinity with n:∆n ↗ ∞. Since we are here studying a system of particles
that don’t interact, this will not be necessary.
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Therefore, by the Theorem of Sanov and since both A ∩ C and C have dense
relative interiors (see Remark 3.2),

− lim
n→∞

1

n
log νCn

(Un
n
∈ A

)
= inf

x∈A∩C
Λ∗1(x)− inf

x∈C
Λ∗1(x) ≡ 2γε .

We consider separately the cases C 3 α and C 63 α. If C 3 α, then u∗ = α,
and so infx∈C Λ∗1(x) = 0. Moreover, since A is closed and does not contain α, we
have infx∈A∩C Λ∗1(x) > 0. Therefore, γε > 0. On the other hand, if C 63 α, the
convexity of Λ∗1 gives infx∈C Λ∗1(x) = Λ∗1(u∗), and again since A is closed and does
not contain u∗, we get infx∈A∩C Λ∗1(x) > Λ∗1(u∗). This shows that γε > 0. �

We then study the distribution of the kinetic energy of particle 1 under νCn .

Theorem 4.2. Let νCn ◦ K−1
1 ∈ M1(K) denote the distribution of K1. Let β∗

denote the unique value of β for which Λ′1(−β) = u∗. Then νCn ◦ K−1
1 → µβ∗,

where µβ∗(k) = e−β∗k/Z(β∗) is the Gibbs distribution on K. More precisely,

d1

(
νCn ◦K−1

1 , µβ∗
)
→ 0 , (73)

exponentially fast when n→∞.

Proof. Again, since the microcanonical constraint {Un/n ∈ C} concerns
only the variables Kj and since we are studying K1, it is natural to formulate
everything in terms of the Kjs. Let ρ̂ ∈ M1(K), ρ̂(k) := Pρ(Kj = k), denote the
distribution of Kj under Pρ, and Pρ̂ := ρ̂⊗∞. Then

νCn
(
K1 = k

)
= Pρ̂

(
K1 = k

∣∣Ln ∈ E
)
,

where Ln is the empirical measure associated to the sequence Kj, and E = {µ ∈
M1(K) : 〈id, µ〉 ∈ C}. Then

inf
µ∈E

D(µ‖ρ̂) = inf
x∈C

Λ∗1(x) = Λ∗1(u∗) = D(µβ∗‖ρ̂) .

Clearly, E is convex and therefore µβ∗ is the unique infimizer of D(·‖ρ̂) over E,
and (73) is a consequence of Corollary 3.1. �

It can be shown (c.f. [?]) that in the limit n → ∞, the variables Yj become
independent, with distribution µβ∗ ◦ g−1.

The convergence νCn (K1 = k)→ µβ∗(k) of the previous theorem can be formulated
in When expressed in terms of the moments, the convergence of Theorem 4.2 takes
the form:

νCn (Y1 = v)→ e−
1
2
β∗v2

Z(β∗)
,

which is known as the Maxwell-Boltzmann distribution of velocities in a gas. In the
continuous setting, it takes the form( m

2πkT

)3
2
e−

1
2
m
kT
~v2

We have therefore started with identically, uniformly distributed velocities, and
seen that under a global constraint on the kinetic energy, the distribution becomes
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Gibbsian for a given temperature. This equivalence, which holds only after the
thermodynamic limit, is a simplified form of the Equivalence of Ensembles.

3. The equilibrium value of other observables

Having showed that when the system is conditionned on {Un
n
∈ C}, the average

kinetic energy Un
n

converges to u∗, we go on and study the behaviour of other
observables, always of the form Fn :=

∑n
j=1 f(qj, pj).

Theorem 4.3. Let f : ∆ × Γ → R be bounded and continuous and let Fn be
defined as above. Then for all ε > 0 there exists γε = γε(f, C) > 0 such that when
n→∞,

νCn

(∣∣∣Fn
n
− 〈f〉∗

∣∣∣ ≥ ε
)
≤ e−γεn , (74)

where

〈f〉∗ :=

∫
∆×Γ

f(q, p)(λ⊗ µβ∗)(dq, dp) . (75)

Proof. We will give a proof in the case where f depends on p only: f(q, p) =
f(p). Since f(p) may not be necessarily related to the kinetic energy, we work on
Γ (rather than on K). Let B = {u : |u− 〈f〉∗| ≥ ε}. We use the correspondence
(40) to write the probability in terms of the empirical measure Ln = 1

n

∑n
j=1 δYj ,

νCn

(∣∣∣Fn
n
− 〈f〉∗

∣∣∣ ≥ ε
)

= νCn

( 1

n

n∑
j=1

g(Yj) ∈ B
)

(76)

=
νn
(
〈f, Ln〉 ∈ B, 〈g, Ln〉 ∈ C

)
νn(〈g, Ln〉 ∈ C)

(77)

=
Pρ(Ln ∈ E

f
B ∩ E

g
C)

Pρ(Ln ∈ E
g
C)

. (78)

where E
f
B = {µ ∈ M1(Γ) : 〈f, µ〉 ∈ B}, EgC = {µ ∈ M1(Γ) : 〈g, µ〉 ∈ C}. These

two sets have obviously dense relative interiors. We can thus apply the Theorem
of Sanov on Γ:

− lim
n→∞

1

n
log νCn

(∣∣∣Fn
n
− 〈f〉∗

∣∣∣ ≥ ε
)

= inf
µ∈EfB∩E

g
C

D(µ‖ρ)− inf
µ∈EgC

D(µ‖ρ) ≡ 2γε .

For the same reasons as before, γε > 0.
In the general case, when f = f(q, p), the Theorem of Sanov must be applied to
the empirical measure L′n = 1

n

∑n
j=1 δ∆ ⊗ δYj . �

DISCUTER LE PROBLEME C ↘ {c} apres la limite thermodynamique.



CHAPTER 5

The Large Deviation Principle

The previous chapters have studied various theorems in which a random object,
taking values in a given set, concentrates around its mean value. It is now time
to take a step back and look for the common features of these theorems, and to
gather them into a single general theory. We will then state general results that
will shed some light on what has been seen until now.

This chapter follows the concise presentation of den Hollander [?].

1. Definition of the LDP

We have studied the empirical mean Sn/n taking values in R in the Theorem
of Cramér, and the empirical measure Ln taking values in M1(R) in the Theo-
rem of Sanov. What happened to play an important was not the random ob-
ject itself but its distribution: µn(·) = P (Sn/n ∈ ·) ∈ M1(R) in the first case,
µn(·) = P (Ln ∈ ·) ∈M1(A) in the second.

It thus seems natural to forget about the underlying random variables and to
consider only a sequence of probability measures µn. To be sufficiently general,
we assume that these measures live on a metric space X (with metric d), whose
Borel σ-algebra we denote by B(X) The basic definition of the abstract theory
will thus be that of the Large Deviation Principle for a sequence of probability
measures (µn) on the metric space X. This level of abstraction has apparently
been settled by Varadhan [?].

We first state a few generalities about rate functions. We denote the open ball
of radius r > 0 centered at x by Br(x) := {y : d(y, x) < r}.

Definition 5.1. A function f : X → [−∞,∞] is called lower semicontinuous if
whenever xn, x ∈ X are such that xn → x, then

lim inf
n→∞

f(xn) ≥ f(x) . (79)

A level set of f is a set of the form {x : f(x) ≤ c}, for some c ∈ R.

Lemma 5.1. The following are equivalent.

(1) f is lower semicontinuous.
(2) for all x ∈ X, limr↘0 infy∈Br(x) f(y) = f(x).
(3) f has closed level sets.
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Proof. (1) implies (2): infy∈Bε(x) ≤ f(x) is trivial. Let δ > 0. There exists
yε ∈ Bε(x) such that infy∈Bε(x) ≥ f(yε) − ε. Since yε → x when ε ↘ 0, lower
semitontinuity gives

lim
ε↘0

inf
y∈Bε(x)

f(y) ≥ lim inf
ε↘0

f(yε)− δ ≥ f(x)− δ .

(2) implies (3): let xn ∈ {f ≤ c}, xn → x. Let εn := 2d(xn, x). Then xn ∈ Bεn(x),
and

f(x) = lim
n→∞

inf
y∈Bεn (x)

f(y) = lim inf
n→∞

inf
y∈Bεn (x)

f(y) ≤ lim inf
n→∞

f(xn) ≤ c ,

and so x ∈ {f ≤ c}.
(3) implies (1): assume the implication is wrong, i.e. there exists x, a sequence
xn → x, and ε > 0 such that lim infn f(xn) ≤ f(x) − ε < f(x). Consider the
level set L := {y : f(y) ≤ f(x) − ε}. Then there exists a subsequence xnk such
that yk := xnk ∈ L for large enough k. But yk → x, and x 6∈ L, and so L is not
closed. �

Lemma 5.2. A lower semicontinuous function attains its infimum on any non-
empty compact set K ⊂ X.

Proof. Let K be non-empty, compact, and set λ := infx∈K f(x) (possibly
= −∞). There exists a sequence xn ∈ K such that f(xn) ↘ λ. By compacity,
there exists a subsequence nk and x∗ ∈ K such that xnk → x∗ when k →∞. We
have f(x∗) ≥ λ. But, by lower semicontinuity of f , f(x∗) ≤ lim infk f(xnk) = λ.
Therefore, f(x∗) = λ. �

Definition 5.2. f : X→ [0,∞] is called a good rate function if

(1) f 6≡ ∞,
(2) f is lower semicontinuous,
(3) f has compact level sets.

The qualifyer good is associated to condition (3). Since in metric spaces, all com-
pacts are closed, and by the equivalence of Lemma 5.1, (3) implies (2). One could
therefore skip the requirement (2) in the above definition. Nevertheless, we leave
it as it since a weaker form of rate function will be introduced below, droping (3).

We define a set-function on the subsets A ⊂ X by,

f(A) := inf
x∈A

f(x) .

Definition 5.3. Let (µn) be a sequence of probability measures on (X,B(X)),
and I : X → [0,∞] be a rate function. (µn) satisfies a large deviation principle
(LDP) with rate function I if

(1) for all closed set F ⊂ X,

lim sup
n→∞

1

n
log µn(F ) ≤ −I(F ) . (80)
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(2) for all open set G ⊂ X,

lim inf
n→∞

1

n
log µn(G) ≥ −I(G) . (81)

Remark 5.1. The above defines a LDP with speed n. Nevertheless, everything
that will be said in what follows holds for an arbitrary speed an, which is any
sequence an > 0, an ↗ ∞. This will be necessary for example in Chapter
11 when studying large deviations for the empirical measure of lattice systems.
There, an = |Λn|, where Λn is a sequence of growing boxes.

Remark 5.2. We have already seen cases, like the Theorem of Sanov on finite
alphabets, where no restriction was imposed on the sets of the upper bound.

Remark 5.3. One can wonder why the LDP is not defined by requiring that

lim
n→∞

1

n
log µn(B) = −I(B) (82)

holds for all measurable set B ⊂ X. Unfortunetaly, this is too restrictive. For in-
stance, if each µn is non-atomic, i.e. µn({x}) = 0 for all x ∈ X, then I =∞ every-
where, and therefore (82) doesn’t provide interesting information. Nevertheless,
it makes sense to ask whether there exist measurable sets B for which (82) holds.
It does clearly hold for the I-continuous, i.e. those that satisfy I(intB) = I(B).
As can be easily shown, if B is I-continuous, then (82) holds. Observe also that
if I is continuous, then all sets that satisfy B ⊂ intB are I-continuous.

The following definition is natural:

Definition 5.4. A sequence of Rd-valued random variables (Zn)n≥1 (possibly
defined on different probability spaces) large deviation principle (LDP) with rate
function I : Rd → [0,∞] if the sequence of their distributions µn := µZn satisfies
a LDP with rate function I (in the sense of Definition 5.3, with X = Rd, and d
the Euclidian metric).

We then list some consequences of the LDP.

Lemma 5.3. The rate function of a LDP is unique.

Proof. Let I, J be two rate functions for the sequence (µn). Fix x ∈ X.
Then for all ε > 0,

−I(x) ≤ −I(Bε(x)) ≤ lim inf
n→∞

1

n
log µn(Bε(x))

≤ lim sup
n→∞

1

n
log µn(Bε(x))

≤ lim sup
n→∞

1

n
log µn(Bε(x)) ≤ −J(Bε(x)) ≤ −J(B2ε(x)) ,

since Bε(x) ⊂ B2ε(x). By the lower semicontinuity of J , limε↘0 J(B2ε(x)) = J(x),
which shows that I(x) ≥ J(x). Similarly, J(x) ≥ I(x). �

Lemma 5.4. There exists x∗ ∈ X such that I(x∗) = 0.
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Observe that in the Theorem of Cramér, the infimum of the rate function was
always attained at the unique pointm = E[X1], giving the Law of Large Numbers.
In general, however, x∗ need not be unique. See for example the rate function of
the two-dimensional Ising model in Chapter 10.

Proof of Lemma 5.4: Using the large deviation bounds for the set X, we
get I(X) = 0, which is clearly I-continuous. Therefore, there exists a sequence xn
such that I(xn)→ 0. In particular, xn ∈ F := {I ≤ 1} for large enough n. Since
F is compact, there exists a subsequence Xnk and x∗ ∈ F such that xnk → x∗.
By lower semicontinuity 0 ≤ I(x∗) ≤ lim infk f(xnk) = 0. �

The following result will be used repeatedly in the sequel, in the particular in the
study of upper bounds:

Lemma 5.5. Let (a
(i)
n )n≥1, i = 1, . . . , k be sequences of non-negative numbers.

Then

lim sup
n→∞

1

n
log

k∑
i=1

a(i)
n = max

i=1,...,k
lim sup
n→∞

1

n
log a(i)

n . (83)

Proof. For simplicity, we prove the lemma considering the case k = 2. Let
therefore an, bn ≥ 0 be two sequences. We have

1

n
log(an ∨ bn) ≤ 1

n
log(an + bn) ≤ 1

n
log(an ∨ bn) +

log 2

n
,

which implies

lim sup
n→∞

1

n
log(an + bn) = lim sup

n→∞

1

n
log(an ∨ bn)

But since log is increasing,

lim sup
n→∞

1

n
log(an ∨ bn) = lim sup

n→∞

( 1

n
log an ∨

1

n
log bn

)
=
(

lim sup
n→∞

1

n
log an

)
∨
(

lim sup
n→∞

1

n
log bn

)
�

1.1. The weak LDP.

Definition 5.5. f : X→ [0,∞] is called a weak rate function if

(1) f 6≡ ∞,
(2) f is lower semicontinuous.

Definition 5.6. Let (µn) be a sequence of probability measures on (X,B(X)),
and I : X → [0,∞] be a weak rate function. (µn) satisfies a weak large deviation
principle (WLDP) with speed n and rate function I if

(1) for all compact set K ⊂ X,

lim sup
n→∞

1

n
log µn(K) ≤ −I(K) . (84)
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(2) for all open set G ⊂ X,

lim inf
n→∞

1

n
log µn(G) ≥ −I(G) . (85)

A LDP can be recuperated from a WLDP under a concentration condition of
(µn) on compact sets.

Definition 5.7. A sequence (µn) is exponentially tight if for all M > 0 there
exists a compact set K ⊂ X such that

lim sup
n→∞

1

n
log µn(Kc) < −M . (86)

Lemma 5.6. If (µn) satisfies a WLDP with weak rate function I, and if (µn) is
exponentially tight, then I is a rate function, and (µn) satisfies a LDP with rate
function I.

Proof. We first show the validity of the upper bound for closed sets F . Since
the bound is trivial when I(F ) = 0, we assume that I(F ) > 0. Let 0 < b < I(F )
(observe that I(F ) might be infinite). Let Kb be the compact set associated to
b, for which (86) holds:

lim sup
n→∞

1

n
log µn(Kc

b ) < −b . (87)

Then µn(F ) ≤ µn(F ∩Kb)+µn(Kc
b ). Now F ∩Kb is compact, and by the WLDP,

lim sup
n→∞

1

n
log µn(F ∩Kb) ≤ −I(F ∩Kb) ≤ −I(F ) < −b . (88)

Therefore, by Lemma 5.5,

lim sup
n→∞

1

n
log µn(F ) ≤ −b .

We can then take the limit b ↗ I(F ). To show that the level sets of I are
compact. it suffices to show that {I ≤ b} ⊂ Kb for all b ≥ 0 (since a closed subset
of a compact is also compact). Fix b ≥ 0. Applying the lower large deviation
bound to the open set Kc

b , we get I(Kc
b ) > b, which implies Kc

b ⊂ {I > b}. �

Lemma 5.7. If (X, d) is complete and separable, and if (µn) satisfies a LDP, then
(µn) is exponentially tight.

Proof. See [?]. �

2. The Varadhan Lemma

We now state and prove one of the main result of the chapter, which will allow
to compute various objects when considering the thermodynamic limit, like the
pressure.

Theorem 5.1 (Varadhan Lemma). Let (µn) satisfy a LDP with rate function I.
Let f : X→ R be continuous and bounded from above. Then

lim
n→∞

1

n
log

∫
enf(x)µn(dx) = sup

x∈X

{
f(x)− I(x)

}
. (89)
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It will be useful to define the following sequence of finite measures on X:

Jn(B) :=

∫
B

enf(x)µn(dx) .

Proof. Upper bound: Consider the interval [a, b], where

a := sup
x∈X
{f(x)− I(x)} , b := sup

x∈X
f(x) .

Clearly, −∞ ≤ a ≤ b < ∞. Consider the closed set F := f−1([a, b]). Fix some
integer N ≥ 1 and divide [a, b] into N intervals of the form

∆
(N)
k :=

[
a+

b− a
N

k, a+
b− a
N

(k + 1)
]
, k = 0, . . . , N − 1 ,

to which correspond the closed sets F
(N)
k := f−1(∆

(N)
k ). We have, for all k,

lim sup
n→∞

1

n
log Jn(F

(N)
k ) ≤ sup

x∈F (N)
k

f(x)− I(F
(N)
k ) .

By Lemma 5.5,

lim sup
n→∞

1

n
log Jn(F ) ≤ max

k=1,...,N

{
sup

x∈F (N)
k

f(x)− I(F
(N)
k )

}
≤ max

k=1,...,N

{
inf

x∈F (N)
k

f(x)− I(F
(N)
k )

}
+
b− a
N

≤ max
k=1,...,N

sup
x∈F (N)

k

{
f(x)− I(x)

}
+
b− a
N

= sup
x∈F

{
f(x)− I(x)

}
+
b− a
N

.

Take N →∞. Write then Jn(X) = Jn(F ) + Jn(X\F ). Of course Jn(X\F ) ≤ ean,
and so using again Lemma 5.5,

lim sup
n→∞

1

n
log Jn(X) ≤ sup

x∈F

{
f(x)− I(x)

}
.

Lower bound: Fix x ∈ X. For all ε > 0, consider the open set A := {y : f(y) >
f(x)− ε}. We have

lim inf
n→∞

1

n
log Jn(X) ≥ lim inf

n→∞

1

n
log Jn(A) ≥ f(x)− ε− I(A) ≥ f(x)− ε− I(x) ,

which gives the lower bound after taking ε→ 0 and supremizing over x. �

3. LDP for Tilted Measures

In this section and in the following, we “obtain new LDPs from old ones”.

Theorem 5.2 (LDP for Tilted measures). Let (µn) be a sequence of probability
measures on X. Let f : X→ R be continuous and bounded from above, and define
the sequence (νn) by

νn(dx) :=
enf(x)

Zn
µn(dx) , (90)
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where Zn :=
∫
enf(x)µn(dx). If (µn) satisfies a LDP with rate function I, then

(νn) satisfies a LDP with rate function J , where

J(x) = sup
y∈X

{
f(y)− I(y)

}
−
{
f(x)− I(x)

}
(91)

= I(x)− f(x)− inf
y∈X
{I(x)− f(x)} . (92)

Proof. Using the definition of Jn above, for all measurable set B,

νn(B) =
Jn(B)

Jn(X)
.

The asymptotic behaviour of Jn(X) was computed in the Lemma of Varadhan.
For Jn(·), a similar analysis shows that

lim sup
n→∞

1

n
log Jn(F ) ≤ sup

x∈F

{
f(x)− I(x)

}
for all closed set F , whereas

lim inf
n→∞

1

n
log Jn(G) ≤ sup

x∈G

{
f(x)− I(x)

}
.

We verify that J is a good rate function: clearly J ≥ 0, and 6≡ ∞ since a :=
sup{f − I} ≤ sup f < ∞, and since I 6≡ ∞. J is lower semicontinuous since I
also is, and since f is continuous. Finally J has compact level sets because the
closed set {J ≤ c} ⊂ {I−f ≤ c−a} ⊂ {I ≤ c−a+sup f}, which is compact. �

4. The Contraction Principle

The Contraction Principle has been applied various times, for example when
deriving the Cramér Theorem from the Theorem of Sanov for finite alphabets.

Theorem 5.3 (Contraction Principle). Let (µn) be a sequence of probability mea-
sures on X. Let Y be another metric space and T : X→ Y be continuous. Consider
the image measures νn := µn ◦ T−1. If (µn) satisfies a LDP on X with function I,
then (νn) satisfies a LDP on Y with rate function J , where

J(y) = inf
x:Tx=y

I(x) . (93)

Proof. Let F ′ ⊂ Y be closed. Then T−1F ′ ⊂ X is closed, and so

lim sup
n→∞

1

n
log νn(F ′) = lim sup

n→∞

1

n
log µn(T−1F ′) ≤ −I(T−1F ′)

= − inf
y∈F ′

inf
x∈T−1{y}

I(x)

≡ −J(F ′) .

The same can be done for an open set G′ ⊂ Y. To show that J has compact level
sets, it suffices to observe that

{J ≤ c} = T ({I ≤ c}) . (94)

Namely, since {I ≤ c} is compact and since the image of a compact by a con-
tinuous mapping is compact, we are done. To show (94), observe first that
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{J ≤ c} ⊃ T ({I ≤ c}) is trivial. For the reverse inclusion, let y ∈ {J ≤ c}, i.e.
λ := infx∈T−1{y} I(x) ≤ c. Let xn ∈ T−1{y} be such that I(xn)↘ λ. Then clearly
xn ∈ {I ≤ 2λ} for large n and since this set is compact, one can extract some
subsequence xnk and some x∗ such that xnk → x∗. Since Tx∗ = limk Txnk = y,
and since I(x∗) ≤ lim infk I(xnk) ≤ c, we have that y ∈ T{I ≤ c}. �



CHAPTER 6

The Curie-Weiss Model

In this chapter, we consider the first statistical mechanical model with interac-
tions, the Curie-Weiss model, which is the simplest that can be described an-
alytically, and whose large deviation properties fit nicely in the framework of
the abstract results of Chapter 5. Although it is an oversimplified model of a
ferromagnet (see the more realistic Ising model in further chapters), it gives a
clear description of an important mechanism in the theory of phase transition,
the energy-entropy argument.

Consider a system of n spins ±1, whose set of configurations is

Ωn := {±1}n ≡ {σ· : {1, 2, . . . , n} → {±1}} .

Let Fn denote the discrete σ-algebra on Ωn. As we know, if there are no interac-
tions between the spins then the distribution describing them should be uniform.
Let therefore ρ = 1

2
δ+1 + 1

2
δ−1 denote the uniform measure on {±1}, and let

ρn := ρ⊗n be the product measure on (Ωn,Fn).

The interaction between the spins is a function Hn : Ωn → R, called hamiltonian,
defined by

Hh
n(σ) := − 1

2n

n∑
i=1

n∑
j=1

σiσj − h
n∑
i=1

σi σ ∈ Ωn . (95)

This interaction is called ferromagnetic since the function (σi, σj)→ −σiσj is low-
est when the two spins are equal (aligned). The hamiltonian thus has two ground
states, which are the minimizing configurations σ+ (all the spins σ+

i = +1) and
σ− (all the spins σ+

i = −1).

We will consider the Gibbs distribution with inverse temperature β > 0, given by

µβ,hn (dσ) :=
1

Zβ,h
n

e−βH
β,h
n (σ)ρn(dσ) , σ ∈ Ωn , (96)

where the partition function is given by

Zβ,h
n =

∫
Ωn

e−βH
β,h
n (σ)ρn(dσ) ≡ 2−n

∑
σ∈Ωn

e−βH
β,h
n (σ) .

We denote expectation with respect to µβ,hn by Eβ,h
n . Observe that by symmetry,

Eβ,h
n [σj] = Eβ,h

n [σ1] for all 1 ≤ j ≤ n. Moreover, Eβ,0
n [σ1] = 0.

49
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The main interest of the model lies in the fact that it exhibits a phase transition
when h = 0, which from a probabilistic point of view is related to a breakdown
of the Law of Large Numers. Let

mn(σ) :=
1

n

n∑
j=1

σj

denote the empirical magnetization. Let βc := 1 denote the critical inverse temper-
ature of the model. We will show that

(1) if β ≤ βc, then the Law of Large Numbers holds: for all ε > 0,

µβ,0n

{∣∣∣ 1
n

n∑
j=1

σj − Eβ,0
n [σ1]

∣∣∣ ≥ ε
}
→ 0 ,

exponentially in n.
(2) if β > βc, then the Law of Large Numbers is violated: for all small

enough ε > 0 (depending on β),

µβ,0n

{∣∣∣ 1
n

n∑
j=1

σj − Eβ,0
n [σ1]

∣∣∣ ≥ ε
}
→ 1 ,

These two very different behaviours will be obtained by a large deviation analysis
of the magnetization.

1. The LDP for the magnetization

The main simplyfing feature of the Curie-Weiss model is that the Hamiltonian
can be written as a function of the magnetization:

Hh
n(σ) = −1

2
nmn(σ)2 − hnmn(σ) ≡ −nf(mn(σ)) , (97)

where f(z) := z2

2
+ hz. This has the advantage that the large deviation prop-

erties of the distribution of mn can be studied without going through the (more
cumbersome) large deviation properties of the Gibbs distribution. Namely, let
Qβ,h
n (·) := µβ,hn (mn ∈ ·) be the distribution of mn on [−1, 1]. Then for all Borel

set B ⊂ [−1, 1], a simple change of variable formula gives

Qβ,h
n (B) =

∫
m−1
n (B)

µβ,hn (dσ) =

∫
m−1
n (B)

e−βH
β,h
n (σ)

Zβ,h
n

ρn(dσ)

=

∫
m−1
n (B)

enβf(mn(σ))

Zβ,h
n

ρn(dσ)

=

∫
B

enβf(z)

Zβ,h
n

Q0
n(dz) ,

where Q0
n is the distribution of mn under ρn, and

Zβ,h
n =

∫
enβf(z)Q0

n(dz) .
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The distribution Qβ,h
n is therefore a tilted measure of the form (90) in Theorem

5.2. Observe that the original sequence Q0
n satisfies a LDP by the Theorem of

Cramér 3.3, with rate function

I(x) = sup
t∈R
{tx− Λ(t)} ,

where Λ is the logarithmic moment generating function of ρ, Λ(t) = log(1
2
(et +

e−t)). As seen in an exercise,

I(x) = log 2 +
1− x

2
log

1− x
2

+
1 + x

2
log

1 + x

2
,

which is clearly a good rate function, strictly convex, with a unique minimum at
1
2
. By Theorem 5.2, Qβ,h

n satisfies a LDP with rate function

J(z) = sup
x∈[−1,1]

{βf(x)− I(x)} − {βf(z)− I(z)}

= {I(z)− βf(z)} − inf
x∈[−1,1]

{I(x)− βf(x)}

The asymptotic values of the magnetization are thus studied by the analysis of
the function z 7→ χ(z) := I(z)− βf(z). First,

χ′(z) =
1

2
log

1 + z

1− z
− β(z + h) = arctanh(z)− β(z + h) .

The derivative of χ thus vanishes at the points z solution of the mean field equation

tanh(β(z + h)) = z . (98)

This equation can be solved qualitatively (the case h = 0 is solved on Figure 1).

Figure 1. The solutions of the mean field equation (98) in the
absence of magnetic field. a) When β ≤ 1, the straight line inter-
sects the curve tanh(βz) at the only point z = 0, which is also the
unique minimum of χ. b) When β > 1, the straight line intersects
the curve tanh(βz) at the three point z = ±z(β, h), 0, of which only
±z(β, 0) are global minima of χ.

As can be seen geometrically, the particular value β = βc := 1 of the inverse
temperature plays an important role in the structure of the global minima of
χ. This leads to the following information about the points where J attains its
minima, i.e. where it equals zero.

• If h 6= 0, then J has a unique global minimum z(β, h) for all β > 0,
whose sign is the same as that of h.
• If h = 0 and β ≤ βc, then z = 0 is the unique global minimum of J ,

whereas when h = 0 and β > βc, then there exists two distinct global
minima, −z(β, 0) < 0 < z(β, 0).
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We can thus answer the problem of the concentration of the magnetization and
its dependence on (β, h). When h 6= 0, or when h = 0 and β ≤ βc, mn satisfies a
Law of Large Numbers, and converges to 0 exponentially rapidly: for all ε > 0

lim
n→∞

1

n
logQβ,h

n (−ε, ε)c = − inf
z∈(−ε,ε)c

J(z) < 0 .

On the other hand, if h = 0 and β > βc, then

lim
n→∞

1

n
logQβ,h

n (Kc
β,h) = − inf

z∈Kc
β,h

J(z) < 0 ,

where Kβ,h is the set of points in [−1, 1] that are at distance less than ε from
either of the points ±z(β, h).

Stated in other words, we have the following complete description of the weak
limit of Qβ,h

n when n → ∞. Let ⇒ denote weak convergence on the set of
probability distributions on [−1, 1], and δx the Dirac mass at x.

Theorem 6.1.

Qβ,h
n ⇒

{
δ0 if h 6= 0 or h = 0 and β ≤ βc ,
1
2
δ−z(β,h) + 1

2
δ+z(β,h) if h = 0 and β > βc .

(99)

Remark 6.1. It is interesting to notice that unlike all the other rate functions
encountered up to now, J is not convex when β is large. Namely,

χ′′(z) =
1

1− z2
− β .

Therefore, when β ≤ 1, χ is strictly convex, but when β > 1, it is non-convex on
the interval −

√
1− 1/β ≤ z ≤

√
1− 1/β.

2. The free energy

FAIRE, en utilisant le Lemme de Varadhan.



CHAPTER 7

The Theorem of Cramér

As a consequence of the Theorem of Sanov, we have obtained a Large Deviation
Principle for sequences of independent variables taking values in a finite alphabet.
In this chapter (based on [?]) we show a more general result, for R-valued random
variables.

1. The logarithmic moment generating function

Remember that if X is any real valued random variable, its logarithmic moment
generating function is defined by Λ(t) := logE[etX ]. Observe that Λ(0) = 0 and
that Λ : R→ (−∞,∞]. The Legendre Transform of Λ is defined by

Λ∗(x) := sup
t∈R
{tx− Λ(t)} . (100)

We have Λ∗(x) ≥ 0 · x− Λ(0) = 0 for all x.

Lemma 7.1. Λ and Λ∗ are convex and lower semicontinuous.

Proof. The convexity of Λ follows from the Hölder inequality:

E
[
e(λt1+(1−λ)t2)X

]
= E

[
(et1X)λ(et2X)1−λ] ≤ E[et1X ]λE[et2X ]1−λ .

The lower semicontinuity of Λ follows from the Lemma of Fatou: if tn → t,

Λ(t) = logE[ lim
n→∞

etnX ] ≤ log lim inf
n→∞

E[etnX ] = lim inf
n→∞

logE[etnX ] = lim inf
n→∞

Λ(tn) .

The convexity of Λ∗ is straightforward:

Λ∗(λx1 + (1− λ)x2) = sup
t

{
λ(tx1 − Λ(t)) + (1− λ)(tx2 − Λ(t))

}
≤ λΛ∗(x1) + (1− λ)Λ∗(x2) .

For the lower semicontinuity, it suffices to remark that if xn → x, then for
all n, Λ∗(xn) ≥ txn − Λ(t), and so lim infn Λ∗(xn) ≥ tx − Λ(t), which gives
lim infn Λ∗(xn) ≥ Λ∗(x). �

The effective domain of f : R→ (−∞,∞] is defined by Df := {t : f(t) <∞}.

Lemma 7.2. Assume m := E[X] exists.

(1) Λ∗(m) = 0.
(2) If x ≥ m, then Λ∗(x) = supt≥0{tx − Λ(t)}. Moreover, x 7→ Λ∗(x) is

non-decreasing on [m,∞).
(3) If x ≤ m, then Λ∗(x) = supt≤0{tx − Λ(t)}. Moreover, x 7→ Λ∗(x) is

non-increasing on (−∞,m].

53
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(4) Λ is C∞ on intDΛ, and there Λ′(t) = E[XetX ]
E[etX ]

.

Proof. Using Jensen, Λ(t) ≥ E[log etX ] = tm. Therefore, Λ∗(m) ≤ 0, i.e.
Λ∗(m) = 0. To show (2), observe that if x ≥ m, t ≤ 0, then tx − Λ(t) ≤ tm −
Λ(t) ≤ 0, and so supt≤0{tx− Λ(t)} ≤ 0, which gives Λ∗(x) = supt≥0{tx− Λ(t)}.
Since x 7→ tx − Λ(t) is non-decreasing for all t ≥ 0, then so is x 7→ Λ∗(x) for all
x ≥ m. Let M(t) := E[etX ]. Let t ∈ intDΛ. If µX denotes the distribution of X,
then for small enough ε > 0,

M(t+ ε)−M(t)

ε
=

∫
e(t+ε)x − etx

ε
µX(dx) .

By dominated convergence,

M ′(t) = lim
ε→0

M(t+ ε)−M(t)

ε
=

∫
xetxµX(dx) ≡ E[XetX ] .

Then, Λ′(t) = M ′(t)/M(t). C∞-differentiability follows by induction. �

We know that Λ(0) = 0 < ∞. We now show that if finiteness of Λ holds in a
neighbourhood of the origin, then Λ∗ diverges at infinity. When DΛ = R, this
divergence is faster than linear.

Lemma 7.3. If 0 ∈ intDΛ, then limx→±∞ Λ∗(x) = ∞, and therefore Λ∗ has
compact level sets. Moreover, if DΛ = R, then limx→±∞ Λ∗(x)/|x| =∞.

Proof. We have, for all t, Λ∗(x) ≥ tx− Λ(t). Therefore,

Λ∗(x)

|x|
≥ t sgn(x)− Λ(t)

|x|
.

If 0 ∈ intDΛ, then there exist t− < 0 < t+ such that Λ(t±) <∞. Therefore,

lim inf
x→+∞

Λ∗(x)

|x|
≥ t+ > 0 lim inf

x→−∞

Λ∗(x)

|x|
≥ −t− > 0 .

Let c ≥ 0 and K := {x : Λ∗(x) ≤ c}. Since Λ∗ is lower semicontinuous, K is
closed. Since Λ∗ diverges when x→ ±∞, K is bounded, hence compact. �

Therefore, if 0 ∈ intDΛ, Λ∗ is a good rate function.

2. Main Theorem

We move on to the main result of this chapter.

Theorem 7.1 (Theorem of Cramér on R). Let X1, X2, . . . be an i.i.d. sequence
such that m = E[X1] < ∞. Let Λ denote the logarithmic moment generating
function of X1 and Λ∗ its Legendre transform. Then,

(1) for all closed set F ⊂ R,

lim sup
n→∞

1

n
logP

(Sn
n
∈ F

)
≤ − inf

x∈F
Λ∗(x) . (101)
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(2) for all open set G ⊂ R,

lim inf
n→∞

1

n
logP

(Sn
n
∈ G

)
≥ − inf

x∈G
Λ∗(x) . (102)

In particular, if 0 ∈ intDΛ, then the sequence of distributions µn(·) := P (Sn
n
∈ ·)

satisfies a Large Deviation Principle with good rate function Λ∗.

Proof. Let µn denote the distribution of Sn
n

.
Upper bound: If infx∈F Λ∗(x) = 0, the bound is trivial, so assume infx∈F Λ∗(x) >
0. In particular, F does not contain m. Let x ≥ m. For all t ≥ 0, the Chebychev
Inequality gives

µn[x,∞) = P (Sn ≥ xn) = P (etSn ≥ etxn) ≤ E[etSn ]

etxn
= e−n(tx−Λ(t)) ,

since E[etSn ] =
∏n

j=1 E[etXj ] = enΛ(t). Therefore, by (2) of Lemma 3.4,

µn[x,∞) ≤ e−nΛ∗(x) .

In a similar was, if x ≤ m, µn(−∞, x] ≤ e−nΛ∗(x). Let then (x−, x+) denote the
union of all open finite intervals containing m, not intersecting F . Then x− <
m < x+, and possibly x− = −∞ or x+ =∞. We have F ⊂ (−∞, x−] ∪ [x+,∞),
and so µn(F ) ≤ µn(−∞, x−] + µn[x+,∞). If x+ = ∞ then µn[x+,∞) = 0.
Otherwise when x+ <∞ then x+ ∈ F and we have

µn[x+,∞) ≤ e−nΛ∗(x+) ≤ e−n infx∈F Λ∗(x) .

In the same way, µn(−∞, x−] ≤ e−n infx∈F Λ∗(x). This gives

µn(F ) ≤ 2e−n infx∈F Λ∗(x) , (103)

which implies the upper bound (101).

Remark 7.1. Observe that the proof of the upper bound has actually lead to a
stronger result than (101), since (103) holds for all n.

Lower bound: Since G is open, then for each x0 ∈ G, one can find some δ > 0
such that G ⊃ Bδ(x0) (Bδ(x) denotes the open interval os size 2δ centered at x).
If we can show that

lim inf
n→∞

1

n
logP

(Sn
n
∈ Bδ(x0)

)
≥ −Λ∗(x0) , (104)

then the lower bound follows by infimizing over x0 ∈ G. It will actually be
sufficient to prove the inequality in the case where x0 = 0.

Proposition 7.1. Let X1, X2, . . . be i.i.d. with logarithmic moment generating
function Λ. Then for all δ > 0,

lim inf
n→∞

1

n
logP

(Sn
n
∈ Bδ(0)

)
≥ −Λ∗(0) . (105)
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Assume the proposition is true (the proof is given below). Set X̃j := Yj − x0.

Then X̃1 has logarithmic generating function Λ̃(t) = Λ(t)− tx0, and so Λ̃∗(x) =

Λ∗(x+ x0). Applying the proposition to the sequence X̃k,

lim inf
n→∞

1

n
logP

(Sn
n
∈ Bδ(x0)

)
= lim inf

n→∞

1

n
logP

( S̃n
n
∈ Bδ(0)

)
≥ −Λ̃∗(0)

= −Λ∗(x0) .

�

Proof of Proposition 7.1: To show (105), we need to consider separately
the cases concerning the structure of the support of the distribution of X1, de-
noted µ.

a) µ(−∞, 0) > 0 and µ(0,∞) > 0, and µ has bounded support: in this case, it is

easy to verify that limt→±∞ Λ(t) = +∞. Since we also have DΛ = R, Λ is differ-
entiable everywhere. As a consequence, there exists t∗ ∈ R such that Λ′(t∗) = 0.
Define then

µ∗(dx) :=
et∗x

Z∗
µ(dx) ≡ et∗x−Λ(t∗)µ(dx) ,

where Z∗ =
∫
et∗xµ(dx) = eΛ(t∗). Let X∗1 , X

∗
2 , . . . be i.i.d. with distribution µ∗.

Observe that by Lemma 7.2,

E[X∗1 ] =

∫
xµ∗(dx) =

1

Z∗

∫
xet∗xµ(dx) = Λ′(t∗) = 0.

Then, by independence of the Xjs,

P
(Sn
n
∈Bδ(0)

)
=

∫
x1+···+xn

n
∈Bδ(0)

µ(dx1) . . . µ(dxn)

= enΛ(t∗)

∫
x1+···+xn

n
∈Bδ(0)

e−t∗(x1+···+xn)µ∗(dx1) . . . µ∗(dxn)

≥ enΛ(t∗)e−δ|t∗|n
∫
x1+···+xn

n
∈Bδ(0)

µ∗(dx1) . . . µ∗(dxn)

= enΛ(t∗)e−δ|t∗|nP
(S∗n
n
∈ Bδ(0)

)
,

where S∗n = X∗1 + · · ·+X∗n. By the Law of Large Numbers,

P
(S∗n
n
∈ Bδ(0)

)
→ 1 .
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In particular, for all δ′ < δ,

lim inf
n→∞

1

n
logP

(Sn
n
∈ Bδ(0)

)
≥ lim inf

n→∞

1

n
logP

(Sn
n
∈ Bδ′(0)

)
≥ Λ(t∗)− δ′|t∗|
≥ inf

t
Λ(t)− δ′|t∗|

= −Λ∗(0)− δ′|t∗| .

And (105) holds by taking δ′ → 0.

b) µ(−∞, 0) > 0 and µ(0,∞) > 0, and µ has unbounded support: Let M > 0 be

large enough so that µ(−M, 0) > 0 and µ(0,M) > 0. Let µM(·) := µ(·||x| ≤M).

Let X
(M)
1 , X

(M)
2 , . . . be i.i.d. with distribution µM . We write

P
(Sn
n
∈ Bδ(0)

)
≥ P

(Sn
n
∈ Bδ(0)

∣∣∣ n⋂
j=1

{|Xj| ≤M}
)
P
( n⋂
j=1

{|Xj| ≤M}
)

= P
(S(M)

n

n
∈ Bδ(0)

)
µ[−M,M ]n (106)

Now since µM has finite support the previous argument applies. The logarithmic
moment generating function of µM is given by

log

∫
etxµM(dx) = log

∫ M

−M
etxµ(dx)︸ ︷︷ ︸

=:ΛM (t)

− log µ[−M,M ] .

By (106) and a), we thus have that for all large enough M > 0,

lim inf
n→∞

1

n
logP

(Sn
n
∈ Bδ(0)

)
≥ lim inf

n→∞

1

n
logP

(S(M)
n

n
∈ Bδ(0)

)
+ log µ[−M,M ]

≥ −Λ∗M(0) = inf
t

ΛM(t) .

We must then verify that

lim inf
M→∞

inf
t

ΛM(t) ≥ inf
t

Λ(t) = −Λ∗(0) .

It is sufficient to find any t0 for which

λ := lim inf
M→∞

inf
t

ΛM(t) ≥ Λ(t0) . (107)

Since ΛM(t) ≤ ΛM+1(t) we actually have that inft ΛM(t)↗ λ. Since inft ΛM(t) ≤
ΛM(0) ≤ Λ(0) = 0, we have that −∞ < λ ≤ 0. Consider the sets CM := {t :
ΛM(t) ≤ λ}. These are non-empty, closed (since clearly each ΛM is lower semi-
continuous), and CM+1 ⊂ CM . Therefore,

⋂
M CM 6= ∅. Let t0 be any element of

this intersection. Then ΛM(t0) ≤ λ for all M . Moreover, dominated convergence
implies limM ΛM(t0) = Λ(t0). We have therefore shown (107).
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c) Either µ(−∞, 0) = 0, or µ(0,∞) = 0: Assume for example that µ(−∞, 0) = 0.

Then in this case t 7→ Λ(t) is non-decreasing. In particular,

−Λ∗(0) = inf
t

Λ(t) = lim
t→−∞

Λ(t) = log µ({0}) .

Now

P
(Sn
n
∈ Bδ(0)

)
≥ P

(Sn
n

= 0
)

= µ({0})n ,

which gives

lim inf
n→∞

1

n
logP

(Sn
n
∈ Bδ(0)

)
≥ log µ({0}) = −Λ∗(0) .

This finishes the proof of the proposition. �

3. The Theorem of Cramér in Rd

In higher dimensions, the logarithmic moment generating function of a random
variable Rd-valued random variable X is defined by

Λ := logE[e〈t,X〉] , ∀t ∈ Rd ,

where 〈t, x〉 :=
∑d

i=1 tixi is the Euclidian scalar product. The Legendre transform
of Λ is therefore given by

Λ∗(x) := sup
t∈Rd
{〈t, x〉 − Λ(t)} .

The extension of Theorem 7.1 to Rd is as follows. Its proof can be found in [?].

Theorem 7.2 (Theorem of Cramér on Rd). Let X1, X2, . . . be an i.i.d. sequence
with values in Rd, such that m = E[X1] exists. Let Λ(t) denote the logarithmic
moment generating function of X1 and Λ∗ its Legendre transform. Then,

(1) for all closed set F ⊂ Rd,

lim sup
n→∞

1

n
logP

(Sn
n
∈ F

)
≤ − inf

x∈F
Λ∗(x) . (108)

(2) for all open set G ⊂ Rd,

lim inf
n→∞

1

n
logP

(Sn
n
∈ G

)
≥ − inf

x∈G
Λ∗(x) . (109)

As an interesting consequence, one can derive the Theorem of Sanov for finite
alphabets as a corollary. Namely, ... COMPLETER



CHAPTER 8

The Ising Model (COMPLETER)

This chapter follows the notes by Velenik [?].

COMPLETER...

The Ising model is defined on the integer d-dimensional (d ≥ 1) lattice

Zd = {x = (x1, x2, . . . , xd) : xi ∈ Z∀i = 1, . . . , d} , (110)

equipped with the L1-distance d(x, y) :=
∑d

i=1 |xi − yi|. Subsets of Zd will often
be denoted Λ ⊂ Zd, and when Λ is finite we write Λ ⊂⊂ Zd. At each site x ∈ Zd
lives a spin ω(x) taking values in the set {±1}, which we denote by Ω0. Everything
below holds when Ω0 is an arbitrary finite alphabet. The space of configurations
for the Ising model in infinite model is the cartesian product

Ω := ΩZd
0 , (111)

i.e. the set of all maps ω : Zd → Ω0. We will nevertheless start by considering the
model in a volume Λ ⊂⊂ Zd and later take the limit Λ ⊂ Zd. The Ising model
can also be defined directly on Zd with the help of a Gibbs specification; this will
be done in Chapter 9.

Define, for any subset Λ ⊂ Zd, the product space ΩΛ := ΩΛ
0 . We equip ΩΛ with

the discrete σ-algebra containing all subsets of ΩΛ, denoted P(ΩΛ). The set of
probability distributions on (ΩΛ,P(ΩΛ)) is abreviated M1(ΩΛ).

We define a Gibbs distribution µωΛ ∈ M1(Ω) as follows. Consider a summable
potential φ, i.e. any bounded function φ : Zd → R such that φ(−x) = φ(x) and∑

x∈Zd
|φ(x)| <∞ . (112)

The potential is called ferromagnetic if φ ≥ 0. Let σ ∈ ΩΛ, ω ∈ Ω. The hamiltonian
is defined by

Hω
Λ(σ) := −

∑
{x,y}⊂Λ
x 6=y

φ(x− y)σxσy − h
∑
x∈Λ

σx −
∑
x∈Λ
y∈Λc

φ(x− y)σxωy . (113)

Hω
Λ is always well defined thanks to (112). The Gibbs distribution at inverse tem-

perature β > 0 with boundary condition ω is given by

µωΛ(σ) :=
e−βH

ω
Λ (σ)

Zω
Λ

. (114)
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When necessary, we will indicate the dependence of µωΛ on β and φ, by µωΛ;β,φ.

The Ising model corresponds to the nearest-neighbour ferromagnetic potential

φ(x) :=

{
1 if d(0, x) = 1 ,

0 otherwise.
(115)

1. The FKG Inequality

2. The thermodynamic limit

There will be two ways of defining the Ising model in infinite volume. The first
will be by taking the thermodynamic limit, the second by describing an infinite
system within the DLR formalism (see Chapter 9).

By thermodynamic limit we mean considering a sequence of boxes Λn := [−n, n]d∩
Zd, and to take the limit n → ∞. We usually denote this by the simple symbol
limΛ↗Zd . An example of the thermodynamic limit would be to study the limit

lim
Λ↗Zd

〈σ0〉+Λ;β,h .

More generally, one can imagine that a fairly good description of the system in
infinite volume is given if all the limits

lim
Λ↗Zd

〈f〉+Λ;β,h .

are known, for any local function f , i.e. functions that depend only on a finite
number of spins. Assuming all these limits exist (that is, for each local function),
one can wonder is there exists a probability measure µ on the whole space Ω such
that

µ(f) = lim
Λ↗Zd

〈f〉+Λ;β,h

for all local function f . Implementing this program requires a few definition.

2.1. Random fields. We will define various σ-fields on Ω associated to sub-
sets Λ ⊂ Zd by introducing the usual notion of cylinder. Let Λ ⊂ Λ′ and consider
the canonical projection ΠΛ′

Λ : ΩΛ′ → ΩΛ, defined as follows: for each ωΛ′ ∈ ΩΛ′ ,
the configuration ΠΛ′

Λ (ωΛ′) ∈ ΩΛ is defined by ΠΛ′
Λ (ωΛ′)(t) := ωΛ′(t), ∀t ∈ Λ.

These maps are obviously measurable with respect to the discrete σ-algebras we
defined on the sets ΩΛ′ and ΩΛ. When Λ′ = Zd, we abbreviate ΠZd

Λ ≡ ΠΛ. We
have the obvious identity

ΠΛ = ΠΛ′

Λ ◦ ΠΛ′ . (116)

For each Λ ⊂⊂ Zd, consider the σ-algebra

C(Λ) := {Π−1
Λ (A) : A ∈ P(ΩΛ)} . (117)

Each set Π−1
Λ (A) is called a cylinder. Cylinders have the property that

C(Λ) ⊂ C(Λ′) when Λ ⊂ Λ′ . (118)
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Indeed, (116) gives, for allA ∈ P(ΩΛ), Π−1
Λ (A) = Π−1

Λ′

(
(ΠΛ′

Λ )−1(A)
)
. But (ΠΛ′

Λ )−1(A) ∈
P(ΩΛ′), and therefore Π−1

Λ (A) ∈ C(Λ′). For any subset S ⊂ Zd, consider the union

CS :=
⋃

Λ⊂⊂S

C(Λ) . (119)

As can be seen easily using (118), CS is an algebra of subsets of Ω called the
algebra of cylinder events in S. As can be seen easily, CS it has countably many
elements. The σ-algebra generated by cylinder events in S is then denoted

FS := σ(CS) . (120)

In words, FS is the σ-algebra of events A = {ω} which depend only on the values
ω(x), x ∈ Λ. The largest algebra is when S = Zd, in which case we write C := CZd ,
called the algebra of cylinders. The largest σ-algebra is thus F := σ(C). The set
of measures on the measurable space (Ω,F) is denoted M(Ω,F), and the set of
probability measures on (Ω,F), which we call random fields, is denoted M1(Ω,F).

2.2. Metric Structure and Quasilocality. For any two configurations
ω, σ ∈ Ω, consider the distance 1

d(ω, σ) :=
∑
x∈Zd

2−‖x‖1{ω(x)6=σ(x)} . (121)

Denote the family of open subsets of Ω with respect to this topology by T. The
facts stated in the following lemma will considerably simplify the study of Ising
Random Fields.

Lemma 8.1. (1) The space (Ω,T) is compact.
(2) We have C ⊂ T ⊂ F. In particular, if B denotes the Borel σ-algebra

generated by T, then B = F.

The set of everywhere continuous functions f : Ω → R (with respect to the
topology T) is denoted C(Ω). Since (Ω,T) is compact, each continuous function
is also uniformly continuous, bounded, and has compact support. Moreover, C(Ω)
is a Banach space for the norm

‖f‖ := sup
ω∈Ω
|f(ω)| . (122)

Observe also that since T ⊂ F (Lemma 8.1), each continuous function is measur-
able. We shall use the notation µ(f) =

∫
f dµ. If µ(f) = ν(f) for all f ∈ C(Ω),

then µ = ν. Namely, since the cylinders are open and closed, their indicators
are continuous, and therefore µ and ν coincide on C, which by Carathéodory’s
Extension Theorem implies that µ = ν.

Another feature of the space Ω being compact is that continuous functions can
be uniformly approximated by local function. Namely, call a function f : Ω→ R
local if there exists some Λ ⊂⊂ Zd such that f is FΛ-measurable. We denote by

1Here,
∑
x∈Zd := limn→∞

∑
x∈Λn

.
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Loc(Ω) the space of local functions on Ω. Therefore, C(Ω) is the closure of Loc(Ω)
with respect to ‖ · ‖.
Probability measures can be studied by testing them on local functions rather
than on continuous functions. Namely, if f ∈ C(Ω), let fn ∈ Loc(Ω) be any
sequence converging uniformly to f , limn ‖f − fn‖ = 0. Then, since ‖fn‖ ≤
‖fn − f‖+ ‖f‖ <∞, we have µ(f) = limn µ(fn) by the Dominated Convergence
Theorem.

Theorem 8.1 (Riesz-Markov Theorem on ΩZd
0 ). Consider a functional L : C(Ω)→

R with the following properties:

(1) Linearity: L(f1 + αf2) = L(f1) + αL(f2) ∀f1, f2 ∈ C(Ω), α ∈ R.
(2) Positivity: if f ≥ 0 then L(f) ≥ 0.
(3) Normalization: L(1) = 1.

Then there exists a unique probability measure µ ∈M such that L(f) = µ(f) for
all f ∈ C(Ω).

3. Proofs

Proof of Lemma 8.1: The proof is a standard diagonalization argument,
similar to what was done in the proof of Theorem 9.1. Consider a sequence
(ωn)n≥1 in Ω. Enumerate the points of Zd in an arbitrary manner x1, x2, . . . .
First consider the sequence (ωn(x1))n≥1 in Ω0. Since Ω0 is finite, there exists a
subsequence (ωn1

k
(x1))k≥1 ⊂ (ωn(x1))n≥1 which takes a fixed constant value, call it

ω∗(x1), for all large enough k. Then consider the subsequence (ωn1
k
(x2))k≥1. Again

one can extract a subsequence (ωn2
k
(x2))k≥1 ⊂ (ωn1

k
(x2))k≥1 such that ωn2

k
(x2)

takes a fixed value, say ω∗(x2), for all large enough k. Continuing this process
one obtains for all j ≥ 1 a subsequence (ωnjk

(xj))k≥1 such that ωnjk
(xj) = ω∗(xj)

for k large enough. By considering the diagonal subsequence (ωnkk)k≥1, one easily

sees that for all j ≥ 1, ωnkk(xj) = ω∗(xj) for large enough k, and therefore

d(ωnkk , ω
∗)→ 0 when k →∞, which finishes the proof of the first part.

Since (Ω,T) is a metric space, the set of open balls B(ω; r) := {σ : d(ω, σ) < r}
forms a base 2 of the topology T. We note the following fact: for each cylinder B
and for each ω ∈ B, there exists an r > 0 such that B(ω; r) ⊂ B. Namely, assume
the cylinder B has the form B = Π−1

Λ (A), with A ∈ P(ΩΛ). Let ω ∈ B. Then,
if rω > 0 is small enough, any σ ∈ B(ω; rω) coincides with ω on Λ, and therefore
ΠΛ(σ) ∈ A, i.e. σ ∈ B. Therefore, on can express B as B =

⋃
ω∈B B(ω, rω), i.e.

B ∈ T. This implies C ⊂ T.
Now consider the following fact: for each ball B(ω; r) and for each σ ∈ B(ω; r)
there exists a cylinder B ⊂ B(ω; r) containing σ (in other words, the cylinders
also form a base for T). Namely, fix any σ ∈ B(ω; r). Take Λ large enough

such that if σ′ coincides with σ on Λ then d(σ, σ′) < r−d(σ,ω)
2

. Define the cylinder

B := Π−1
Λ (σΛ) (σΛ = ΠΛ(σ)). Clearly, σ ∈ B and if σ′ ∈ B then ΠΛ(σ′) = σΛ

and therefore d(σ′, ω) ≤ d(σ′, σ) + d(σ, ω) < r, i.e. B ⊂ B(ω; r). Therefore,

2A collection of subsets S ⊂ T is a base for T if and only if each O ∈ T can be expressed as
a union of elements of S.
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each open ball can be expressed as a union of cylinders, and so each open A ∈ T

can be written as a union of cylinders: A =
⋃
αBα. But since the cylinders

are countable, this union is (at most) countable: A =
⋃
nBn. This implies that

T ⊂ F, by the definition of F. �

Proof of the Riesz-Markov Theorem: CHANGER LES NOTATIONS
Observe first that a functional satisfying the conditions of the theorem is bounded:
since −‖f‖ ≤ f ≤ ‖f‖ and Λ is normalized, we have |L(f)| ≤ ‖f‖. Therefore,
if fn ∈ C(Ω) is such that ‖fn − f‖ → 0, then |L(fn) − L(f)| = |L(fn − f)| ≤
‖fn − f‖ → 0. Therefore, L is continuous. Now, define, for each thin cylinder
B ∈ C,

µ(B) := L(1B) .

This definition extends to an arbitrary cylinder by summation. Then µ(B) ∈
[0, 1] for all cylinder, and if B1, B2 are two disjoint cylinders then µ(B1 ∪ B2) =
µ(B1) + µ(B2). Let Bn be a decreasing sequence of cylinders, with

⋂
nBn = ∅.

Since cylinders are closed and Ω is compact, the Finite Intersection Property
implies that Bn = ∅ for all large enough n. Therefore, limn→∞ µ(Bn) = 0. By
the Extension Theorem of Carathéodory, µ extends uniquely to a probability
measure on (Ω,F). To show that µ(f) = L(f) for all f ∈ C(Ω), we first show
that finite linear combinations of indicators of thin cylinders are dense in C(Ω).
Take f ∈ C(Ω) and fix ε > 0. Since f is also uniformly continuous, there exists
δ > 0 such that d(x, y) < δ implies |f(x) − f(y)| < ε. Let K ≥ 1 be such
that

∑
k>K 2−k < δ. Consider the partition of Ω into thin cylinders C(x(i)),

x(i) ∈ ΩK
0 , where C(x(i)) := {y ∈ Ω : yk = x

(i)
k , k = 1, . . . , K}. If y ∈ C(x(i)),

then d(y, x(i)) < δ and so |f(y) − f(x(i))| < ε. Consider the linear combination
h :=

∑
i f(x(i))1C(x(i)). Clearly, ‖h− f‖ < ε, which proves the above claim. Now

consider a sequence of linear combinations hn as above such that ‖hn − f‖ → 0.
Clearly, µ(hn) = L(hn). By Dominated Convergence (‖hn‖ ≤ ‖f‖ + ‖hn − f‖)
and continuity of L,

µ(f) = lim
n→∞

µ(hn) = lim
n→∞

L(hn) = L(f) ,

which proves the theorem. �





CHAPTER 9

The DLR Formalism

In this chapter, we consider the description of infinite spin systems, in the DLR
(Dobrushin-Lanford-Ruelle) Formalism. Different in spirit from the procedure
adopted in Section 2 of the previous chapter, this approach characterizes proba-
bility measures on Ω = {±1}Zd using the notion of specification.

The presentation of the general formalism on specifications found below is a
simplification of the book of Georgii [?]. The results that are of a purely technical
flavor are proven at the end of the section.

1. Random Fields via Kolmogorov’s Extension Theorem

Before moving onto specifications, we remind of a classical way of constructing
random fields.

Given a random field µ and a finite volume Λ, define the marginal distribution of
µ on Λ, which is a probability µΛ ∈M1(ΩΛ) given by

µΛ(A) := µ(Π−1
Λ (A)) , ∀A ∈ P(ΩΛ) . (123)

A natural problem is to know if a random field can be reconstructed from it’s
family of marginal distributions {µΛ,Λ ⊂⊂ Zd}.

A family of distributions {µΛ}Λ⊂⊂Zd , µΛ ∈ M1(ΩΛ), is said to be a consistent
system of marginal distributions if for all Λ′ ⊂⊂ Zd,

µΛ = µΛ′ ◦ (ΠΛ′

Λ )−1 ,∀Λ ⊂ Λ′ . (124)

The following is known as Kolmogorov’s Extension Theorem.

Theorem 9.1. Let {µΛ}Λ⊂⊂Zd, µΛ ∈M1(ΩΛ), be a consistent system of marginal
distributions. Then there exists a unique random field µ ∈ M1(Ω,F) such that
for all Λ ⊂⊂ Zd,

µ ◦ Π−1
Λ = µΛ . (125)

The simplest application of the preceding theorem is the construction of a prod-
uct measure. Namely, let λ0 be a probability distribution on (Ω0,P(Ω0)). For
each Λ ⊂⊂ Zd, define the finite product measure on (ΩΛ,P(ΩΛ)) by λΛ := λ⊗Λ

0 ≡
λ0 ⊗ · · · ⊗ λ0. Then clearly {λΛ,Λ ⊂⊂ Zd} is a consistent system of marginal
distributions. The unique random field obtained via Kolmogorov’s Extension

Theorem is denoted λ⊗Z
d

0 .

65
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Unfortunately, this method is not well suited for the construction of statistical
mechanical models in infinite volume, like the Ising model. Namely, let HΛ(σ)
denote the hamiltonian of the Ising in the volume Λ. Then the family (µΛ) of
Gibbs distributions with free boundary condition is not compatible in the sense of
(124) (this can be verified for volumes Λ ⊂ Λ′ with for example |Λ| = 1, |Λ′| = 2).

2. Random Fields via Specifications

In the previous section we have seen that a random field is uniquely determined
by it’s family of marginal distributions in finite sets. In the present section we
consider the problem of defining a random field by specifying its family of condi-
tional distributions in finite sets, as was first done by Dobrushin in [?].

As a motivation, let us consider the behaviour of a random field µ when it is
conditionned on some event living outside a finite region Λ. This is natural in
statistical mechanics, where one fixes boundary conditions. For any Λ ⊂⊂ Zd
and any event A ∈ F, consider the conditional probability

µ(A|FΛc)(ω) := Eµ(1A|FΛc)(ω) . (126)

By definition,

ω 7→ µ(A|FΛc)(ω) is FΛc-measurable (127)

and is defined only up to a set of µ-measure zero. Moreover, we have the following
property. Let A ∈ F, B ∈ FΛc . Then the properties of conditional expectation
imply that µ-a.s.,

µ(A ∩B|FΛc) = Eµ(1A1B|FΛc) = Eµ(1A|FΛc)1B = µ(A|FΛc)1B . (128)

On the other hand, if Λ ⊂ ∆, then F∆c ⊂ FΛc and therefore, µ-a.s.,

µ(µ(A|F∆c)|FΛc) = µ(A|F∆c) . (129)

Since the conditional distributions µ(·|FΛc) play the same role as the marginals of
the previous section, we ask whether it is possible to reconstruct the random field
starting from the family (µ(·|FΛc))Λ⊂⊂Zd , assuming that properties (127)-(129)
hold. The nuisance is that these properties hold µ-almost surely, and to start
we must define objects πΛ(A|·), playing the role of the distributions µ(A|FΛc)(·),
whose properties do not depend on any a priori given measure. Concerning the
two first properties (127)-(128), this is done by using the notion of probability
kernel.

Definition 9.1. Let Λ ⊂⊂ Zd. A probability kernel from FΛc to F is a map
πΛ : F × Ω→ [0, 1] with the following properties:

• For each A ∈ F, πΛ(A|·) is FΛc-measurable.
• For each ω ∈ Ω, πΛ(·|ω) is a probability measure on (Ω,F).

If, moreover,

πΛ(A ∩B|ω) = πΛ(A|ω)1B(ω) (130)

for each ω ∈ Ω and for each A ∈ F, B ∈ FΛc, the probability kernel π is called
proper.
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All the probability kernels we will consider in the sequel will be proper. Observe
that the properties imposed on πΛ are stronger than what is actually needed, in
the sense that we ask that for each ω, πΛ(·|ω) be a probability measure, which is
in general not the case for µ(·|FΛc)(ω). Moreover, observe that, unlike in (128),
we require the properness property (130) to hold for all ω rather than just for
µ-almost all ω.

Lemma 9.1. Condition (130) is equivalent to the following:

πΛ(B|ω) = 1B(ω) , ∀B ∈ FΛc . (131)

The following lemma shows that a probability kernel πΛ need actually be defined
only on the cylinders Π−1

Λ (σΛ), for σΛ ∈ ΩΛ:

Lemma 9.2. Let πΛ be proper. Then for all A ∈ F and all ω ∈ Ω,

πΛ(A|ω) =
∑
σΛ∈ΩΛ

πΛ(Π−1
Λ (σΛ)|ω)1A(σΛωΛc) . (132)

As a consequence, if f : Ω→ R be measurable and bounded, then∫
f(σ)πΛ(dσ|ω) =

∑
σΛ∈ΩΛ

πΛ(σΛ|ω)f(σΛωΛc) . . (133)

This lemma shows that a proper probability kernel can be defined only through
the probabilities of the cylinders Π−1

Λ (σΛ). Since no confusion is possible, we will
denote from now on

πΛ(Π−1
Λ (σΛ)|ω) ≡ πΛ(σΛ|ω) .

A probability kernel πΛ allows to transform measures and functions. For any
measurable bounded function f : Ω→ R, let πΛf : Ω→ R be defined by:

πΛf(ω) := πΛ(f |ω) ≡
∫
πΛ(dσ|ω)f(σ) , (134)

and for each µ ∈M1(Ω), define µπΛ ∈M1(Ω) by

µπΛ(A) :=

∫
πΛ(A|ω)µ(dω) . (135)

As can be easily verified, we have µ(πΛf) = µπΛ(f) for all bounded function.

As we said before, we wish to characterize those random fields whose conditional
distributions are described, in any finite Λ, by some probability kernel πΛ. Like
in the case of Kolmogorov’s Extension Theorem, this will be possible under some
compatibility assumption. Define, for any two probability kernels πΛ, πΛ′ ,

πΛπΛ′(A|ω) := πΛ

(
πΛ′(A|·)|ω

)
=

∫
πΛ(dη|ω)πΛ′(A|η) (136)

=
∑
ηΛ

πΛ(ηΛ|ω)πΛ′(A|ηΛωΛc) (137)

It is immediate to verify that πΛπΛ′ is a probability kernel from FΛc to F. As
suggested by the third condition (129), our kernels should satisfy π∆πΛ = π∆ when
Λ ⊂ ∆. We thus call a family of probability kernels π = (πΛ) (for simplicity we
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omit in the notation to always mention that Λ ⊂⊂ Zd) compatible if πΛπΛ′ = πΛ

for all Λ′ ⊂ Λ.

Definition 9.2. A compatible family π = (πΛ) of proper probability kernels is
called a specification.

Definition 9.3. Let π = (πΛ) be a specification. A random field µ ∈ M1(Ω) is
said to be specified by π if, for all A ∈ F, Λ ⊂⊂ Zd,

µ(A|FΛc)(·) = πΛ(A|·) , µ− a.s. (138)

The set of random fields specified by π is denoted by G(π).

After the previous definition, the first natural question is: what conditions should
a specification π satisfy in order to guaranty that G(π) 6= ∅? We will give an an-
swer to this question in Section 2.3.

Let us first give a criterium defining the random fields specified by π, easier to
handle than (138) in concrete situations.

Lemma 9.3. Let π = (πΛ) be a specification, µ a random field. The following are
equivalent:

• µ ∈ G(π)
• µπΛ = µ for all Λ ⊂⊂ Zd.

Proof. If µ ∈ G(π), then by definition of µπΛ

µπΛ(A) =

∫
πΛ(A|ω)µ(dω) =

∫
µ(A|FΛc)µ(dω) = µ(A) .

Now assume µπΛ = µ. Fix A ∈ F. Then for all B ∈ FΛc one has, using (130),

µ(A ∩B) = µπΛ(A ∩B) =

∫
πΛ(A ∩B|ω)µ(dω) =

∫
B

πΛ(A|ω)µ(dω) ,

and therefore πΛ(A|·) = µ(A|FΛc)(·) µ-almost surely. �

2.1. Main example: Gibbs specifications. The hamiltonian of the Ising
model (113) can be written

HΛ(σ) = −
∑
{x,y}⊂Λ
x 6=y

φ(x− y)σxσy −
∑
x∈Λ
y∈Λc

φ(x− y)σxσy . (139)

If we define the functions Φ{x,y}(σ) := −φ(x− y)σxσy, we thus have

HΛ(σ) =
∑

{x,y}∩Λ6=∅

Φ{x,y}(σ) . (140)

A more general form is thus

HΛ(σ) :=
∑

B∩Λ6=∅
|B|<∞

ΦB(σ) , (141)

where for each B ⊂ Λ, ΦB : Ω → R is FB-measurable, i.e. depends only on the
spins at sites x ∈ B. The collection Φ = (ΦB) is called a potential. In order
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for (141) to be well defined, we always assume that the potential is uniformly
absolutely summable, i.e. for all finite Λ ⊂ Zd,

c := sup
x∈Zd

∑
B3x
|B|<∞

‖ΦB‖ <∞ .

We have supσ |HΛ(σ)| ≤ c|Λ|. We wish to define a specification πΦ = (πΦ
Λ)

such that πΦ
Λ gives to each cylinder Π−1

Λ (σΛ) a probability proportional to the
Boltzmann weight prescribed by equilibrium statistical mechanics. That is, for a
boundary condition ω ∈ Ω,

πΦ
Λ(σΛ|ω) :=

exp(−HΦ
Λ (σΛωΛc))

ZΦ
Λ (ωΛc)

,

where ZΦ
Λ (ωΛc) is the partition function, given by

ZΦ
Λ (ωΛc) =

∑
σΛ∈ΩΛ

exp(−HΦ
Λ (σΛωΛc)) . (142)

This leads to the following definition: for all A ∈ F,

πΦ
Λ(A|ω) :=

∑
σΛ∈ΩΛ

πΦ
Λ(σΛ|ω)1A(σΛωΛc) . (143)

Lemma 9.4. πΦ = (πΦ
Λ) is a specification.

2.2. The Topology of Local Convergence. The standard notion of con-
vergence for random fields is the following (the terminology used is natural after
the remarks made in the previous paragraph):

Definition 9.4. A sequence of random fields (µn)n≥1 converges weakly to a ran-
dom field µ (denoted µn ⇒ µ) if µn(f) → µ(f) for each f ∈ C(Ω). Weak
convergence generates a topology on M1(Ω,F) called the topology of local conver-
gence.

The topology of local convergence has different equivalent characterizations, given
in the following lemma. We call a sequence Λn ⊂⊂ Zd invading if it is increasing
(i.e. Λn ⊂ Λn+1) and if

⋃
n Λn = Zd.

Lemma 9.5. Let µ and µn be random fields for all n ≥ 1. The following are
equivalent:

(1) µn⇒µ
(2) µn(B)→ µ(B) for all cylinder B ∈ C

(3) ρ(µn, µ)→ 0, where ρ is the distance defined by

ρ(µ, ν) := sup
n≥1

1

n
max

ωΛn∈ΩΛn

|µ(Π−1
Λn

(ωΛn))− ν(Π−1
Λn

(ωΛn))| , (144)

where Λn is any chosen invading sequence.

The last statement of the lemma says that the topology of local convergence is
metrizable. In the sequel all the topological considerations about random fields
will be with respect to any of the previous equivalent characterizations of local
convergence. In particular,
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Theorem 9.2. M1(Ω,F) is compact.

2.3. Quasilocal Specifications. In this section we answer the first basic
question about random fields: what should be assumed about a specification π
in order to guarantee that there exists at least one random field µ specified by π?
The answer will be positive under some continuity assumption on each πΛ(A|ω)
with respect to ω.

We start by defining the notion of continuity of a specification π = (πΛ) with
respect to its boundary condition, considered by Dobrushin. For each Λ ⊂⊂ Zd,
consider the distribution on ΩΛ with boundary condition ω inherited from π,
which we as usual abreviate by πΛ(·|ω). Say that π is D-continuous if, for all Λ,

lim
∆↗Zd

sup
ω,η:

ω∆=η∆

‖πΛ(·|ω)− πΛ(·|η)‖1 = 0 .

By ∆ ↗ Zd we mean taking the limit n → ∞ along any invading sequence Λn.
In words, π is D-continuous when the distributions πΛ(·|ω) depend weakly on the
values taken by ω far away from Λ.

Lemma 9.6. If Φ is uniformly absolutely summable, then πΦ is D-continuous.

Proof. Fix ω, η, and define, for all t ∈ [0, 1],

ht(σΛ) := tHΦ
Λ (σΛωΛc) + (1− t)HΦ

Λ (σΛηΛc) ,

and zt :=
∑

τΛ
e−ht(τΛ). By writing

πΦ
Λ(σΛ|ω)− πΦ

Λ(σΛ|η) =
e−h1(σλ)

z1

− e−h0(σλ)

z0

(145)

=

∫ 1

0

d

dt

e−ht(σλ)

zt
dt ,

and since d
dt
ht(σΛ) = HΦ

Λ (σΛωΛc)−HΦ
Λ (σΛωΛc), we easily get

‖πΦ
Λ(·|ω)− πΦ

Λ(·|η)‖1 ≤ 2 sup
σΛ

|HΦ
Λ (σΛωΛc)−HΦ

Λ (σΛηΛc)| ,

which is small if ω and η coincide on some large set ∆. �

Let’s go back to the general case, i.e. when [?], Dobrushin showed that G(π) 6= ∅
when π is D-continuous. D-continuity happens to be equivalent to another, more
tractable notion of continuity for specifications.

Definition 9.5. A specification π = (πΛ) is called quasilocal 1 if f ∈ C(Ω)
implies πΛf ∈ C(Ω) for all Λ ⊂⊂ Zd.

The verification that quasilocality is equivalent to D-continuity is left as an ex-
ercise. Now goes the existence theorem.

Theorem 9.3. Let π be a quasilocal specification. Then

1Such specifications are also said to possess the Feller Property. In general, the Feller
property is slightly stronger but in the case we are considering, where the spin space is finite,
it is equivalent.
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(1) G(π) 6= ∅.
(2) G(π) is closed. (In particular, G(π) is compact.)

Proof. Fix any ω ∈ Ω, consider an increasing sequence Λn ↗ Zd, and define
νωn (·) := πΛn(·|ω). By compactness (Theorem 9.2), there exist a subsequence of
(νωn )n≥1 (which we assume, for simplicity, to be the sequence itself) and a random
field νω such that νωn ⇒ νω. We verify that νω ∈ G(π). Take again f ∈ C(Ω),
and write

νωπΛ(f) = νω(πΛf) = lim
n→∞

νωn (πΛf)

= lim
n→∞

πΛnπΛ(f |ω) (146)

= lim
n→∞

πΛn(f |ω) (147)

= lim
n→∞

νωn (f) ≡ νω(f)

In (146) we used the Theorem of Fubini and in (147) we used consistency. There-
fore, νωπΛ = νω for all finite Λ, and therefore νω ∈ G(π). For the second affirma-
tion, assume that µn ⇒ µ, where µn ∈ G(π). Take any f ∈ C(Ω). By hypothesis,
πΛf ∈ C(Ω). We thus get, for all Λ ⊂⊂ Zd,

µπΛ(f) = µ(πΛf) = lim
n→∞

µn(πΛf) = lim
n→∞

µnπΛ(f) = lim
n→∞

µn(f) = µ(f) ,

which implies µπΛ = µ, i.e. µ ∈ G(π). �

It is an interesting and nontrivial question of knowing what is exactly the depen-
dence of νω on ω. For example, can each µ ∈ G(π) be obtained by a suitable
limiting procedure as we did in the previous proof? Observe that if G(π) = {µ},
that is when there is a unique random field specified by π, then νωn ⇒ µ for
all ω, which means that the limiting random field obtained via weak limits is
independent of the boundary condition ω.

3. The Ising model, again

On the other hand, sensitivity with respect to the boundary condition was the
main concern in the study of the Ising model in Chapter 8.

coG(β, h) ⊂ G(γβ,h)

COMPLETER

4. An Inhomogeneous Ising chain on N

As mentioned in the previous section, it is in general a difficult task to describe
completely the convex set of Gibbs states G(γΦ) associated to an absolutey uni-
formly convergent potential, even when Φ has finite range. In the present section,
we consider a simple model where this can be done explicitely.

COMPLETER
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5. Uniqueness; Dobrushin’s Condition of Weak Dependence

In the present section we consider the problem of giving conditions on a quasilocal
specification π = (πΛ) guaranteing that G(π) is a singleton. This criterium was
first introduced by Dobrushin [?] and is called Dobrushin’s Condition of Weak
Dependence.

The criterium is formulated in terms of the one-site probability kernels π{x}. With
a slight abuse of notation we will denote by πx(·|ω) the distribution of the spin
σx, induced by the kernel π{x}(·|ω). We consider the dependence of πx(·|ω) on
the values of ω(z), z 6= x. Define

cx,y(π) := sup
ω(z)=η(z)
∀z 6=y

‖πx(·|ω)− πx(·|η)‖1 (148)

The number cx,y(π) measures the sensivity of the distribution πx(·|ω) under
changes in ω(y). Since we assume that π is quasilocal, we must have cx,y(π)→ 0
when ‖x−y‖ → ∞. The theorem below shows that if the convergence of the coef-
ficients cx,y(π) to 0 is sufficient in order to turn them summable, then uniqueness
is guaranteed. Let

c(π) := sup
x∈Zd

∑
y∈Zd

cx,y(π) . (149)

Theorem 9.4. Let π be a quasilocal specification satisfying Dobrushin’s Condition
of Weak Dependence:

c(π) < 1 . (150)

Then G(π) contains exactly one random field: G(π) = {µ}.

The proof of this result is based on a fixed-point argument. One will define
an operator T (depending on π) acting on quasilocal functions, with two main
properties: 1) µ(Tf) = µ(f) for all µ ∈ G(π), and 2) when iterated infinitely
many times, T turns any quasilocal function into a constant.

5.1. The Total Oscillation of a Function. Let f : Ω → R. Define the
local oscillation of f at x by:

δx(f) := sup
ω(z)=η(z)
∀z 6=x

|f(ω)− f(η)| (151)

The local oscillation measures the variation of f(ω) when one changes ω into
another configuration by successive spin flips. Namely, assume ωΛc = ηΛc . Then
it is easy to see that

|f(ω)− f(η)| ≤
∑
x∈Λ

δx(f) . (152)

It is thus natural to define the total oscillation of f by

∆(f) :=
∑
x∈Zd

δx(f) . (153)

We denote the space of functions with finite total oscillation by ETO. Since
obviously Loc(Ω) ⊂ ETO, we have that ETO is dense in C(Ω). Intuitively, ∆(f)



5. UNIQUENESS; DOBRUSHIN’S CONDITION OF WEAK DEPENDENCE 73

measures how far f is from being constant. This is made clear in the following
lemma.

Lemma 9.7. Let f ∈ C(Ω). Then ∆(f) ≥ sup f − inf f .

Proof. Let f ∈ C(Ω). Since Ω is compact, there exist, for all ε > 0, two
configurations ω+, ω− such that ω+

Λc = ω−Λc for some sufficiently large box Λ, and
such that sup f ≤ f(ω+) + ε, inf f ≥ f(ω−)− ε. Then, using (152),

sup f − inf f ≤ f(ω+)− f(ω−) + 2ε ≤
∑
x∈Λ

δx(f) + 2ε ≤ ∆(f) + 2ε ,

which finishes the proof since ε can be chosen arbitrarily small. �

Another property of the oscillation is the following:

Lemma 9.8. If fn ∈ C(Ω) is any sequence converging to f ∈ C(Ω), limn ‖f −
fn‖ = 0, then limn→∞ δx(fn) = δx(f). As a consequence,

∆(f) ≤ lim inf
n→∞

∆(fn) . (154)

Proof. Consider two configurations ω∗, η∗ such that ω∗(y) = η∗(y) for y 6= x,
and δx(f) = |f(ω∗)− f(η∗)|. Let ε > 0. Then for n large enough we have

δx(f) = |f(ω∗)− f(η∗)| ≤ |fn(ω∗)− fn(η∗)|+ 2ε ≤ δx(fn) + 2ε ,

which implies δx(f) ≤ lim infn δx(fn). In the same way, consider two sequences
ω∗n, η

∗
n such that ω∗n(y) = η∗n(y) for y 6= x and

δx(fn) = |fn(ω∗n)− fn(η∗n)|
≤ |fn(ω∗n)− f(ω∗n)|+ |f(ω∗n)− f(η∗n)|+ |f(η∗n)− fn(η∗n)|
≤ ‖fn − f‖+ δx(f) + ‖f − fn‖ ,

which implies lim supn δx(fn) ≤ δx(f). The second claim follows from Fatou’s
Lemma. �

5.2. The Operator T. Enumerate the points of Zd in an arbitrary way:
x1, x2, . . . Any such enumeration has the property that for any Λ ⊂⊂ Zd, xn 6∈ Λ
for large enough n. For f ∈ C(Ω), let T0f := f and for n ≥ 1, define (remember
(134)):

Tnf(ω) := πx1πx2 . . . πxnf(ω) . (155)

Since π is quasilocal we have Tnf ∈ C(Ω). This operator is linear, and has the
following property: if µ ∈ G(π), then

µ(Tnf) = µ(f) . (156)

Moreover, as can be easily verified, ‖Tnf‖ ≤ ‖f‖.

Proposition 9.1. Let f ∈ C(Ω). Then the limit

Tf := lim
n→∞

Tnf (157)

exists, ‖Tf − Tnf‖ → 0, and therefore Tf ∈ C(Ω). Moreover, ‖Tf‖ ≤ ‖f‖ and
µ(Tf) = µ(f) for all µ ∈ G(π).
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Proof. We first define T on local functions. Let g ∈ Loc(Ω). Then

‖Tn+mg − Tng‖ = ‖Tn(πxn+1 . . . πxn+mg − g)‖
≤ ‖πxn+1 . . . πxn+mg − g‖ . (158)

Since g is local, there exists a finite Λ such that g can be expressed as in (169):
g =

∑
σΛ
gσΛ

1Π−1
Λ (σΛ). Therefore, if x 6∈ Λ, then each cylinder Π−1

Λ (σΛ) ∈ F{x}c , so

that by the properness of πx:

πxg(ω) =
∑
σΛ∈ΩΛ

gσΛ
πx(Π

−1
Λ (σΛ)|ω) =

∑
σΛ∈ΩΛ

gσΛ
1Π−1

Λ (σΛ)(ω) = g(ω) .

Therefore, the right-hand side of (158) is zero when n is large enough. As a
consequence, Tg := limn→∞ Tng exists. We also have Tg ∈ C(Ω) since the con-
vergence Tng → Tg is uniform, and ‖Tg‖ ≤ ‖g‖. Then take f ∈ C(Ω). Consider
any sequence gk ∈ Loc(Ω) such that limn ‖f − gk‖ = 0, and set Tf := limk Tgk.
This limit exists since

‖Tgk − Tgl‖ ≤ lim sup
n→∞

‖Tngk − Tngl‖ ≤ ‖gk − gl‖ ,

and clearly Tf does not depend on the choice of the sequence gk. We verify that
Tf = limn Tnf . Fix ε > 0. Take k large enough such that ‖f − gk‖ ≤ ε. Then we
also have ‖Tf −Tgk‖ ≤ ‖f − gk‖ ≤ ε. Then, take n sufficiently large (depending
on k and ε) such that ‖Tngk − Tgk‖ ≤ ε. Then we have

‖Tf − Tnf‖ ≤ ‖Tf − Tgk‖+ ‖Tgk − Tngk‖+ ‖Tngk − Tnf‖ ≤ 3ε .

The last claim follows by writing

µ(Tf) = µ(Tnf) + µ(Tf − Tnf) = µ(f) + µ(Tf − Tnf) .

This last term goes to zero by dominated convergence, since ‖Tf−Tnf‖ → 0. �

The usefulness of T and its relation to the number c(π) as a contraction coefficient
is given in the following proposition, which is the central result of this section.

Proposition 9.2. Assume c(π) ≤ 1. Then, for any f ∈ C(Ω),

∆(Tf) ≤ c(π)∆(f) . (159)

This inequality (159) is useful, of course, when c(π) < 1 and f ∈ ETO. In such
case, T has the effect of strictly reducing the total oscillation of f .

Proof of Theorem 9.4. Since, π is quasilocal, G(π) 6= ∅ by Theorem 9.3,
and the operator T is well defined. Choose any µ ∈ G(π). Take g ∈ Loc(Ω). Then

µ(g) = µ(Tg) = · · · = µ(Tkg) = · · · = lim
k→∞

µ(Tkg) . (160)

But, by Proposition 9.2,

∆(Tkg) ≤ c(π)∆(Tk−1g) ≤ · · · ≤ c(π)k∆(g) .

Since Loc(Ω) ⊂ ETO, we have ∆(g) < ∞, and since we assume c(π) < 1, we get
limk→∞∆(Tkg) = 0. This implies that there exists a finite constant αg such that
‖Tkg − αg‖ → 0 when k → ∞. This follows from the fact that Tkg is bounded
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in k (since ‖Tkg‖ ≤ ‖g‖ < ∞) and from Lemma 9.7. Therefore, going back to
(160), the Dominated Convergence Theorem gives

lim
k→∞

µ(Tkg) = µ( lim
k→∞

Tkg) = µ(αg) = αg .

If ν ∈ G(π) is another random field specified by π, then in the same way we obtain
ν(g) = αg. Therefore µ = ν, which finishes the proof. �

Using Lemma 9.8, Proposition 9.2 is an immediate consequence of the following
result, often called “dusting lemma”.

Lemma 9.9. Assume c(π) ≤ 1. Then, for any f ∈ C(Ω) 2,

∆(Tnf) ≤ c(π)
n∑
j=1

δxj(f) +
∑
j>n

δxj(f) , ∀n ≥ 0 . (161)

Proof. We prove (161) by induction on n. For n = 0, (161) holds since its
right-hand side is just ∆(f). Therefore, assume the result has been proved for
n− 1 and all f ∈ C(Ω). We compute

∆(Tnf) = ∆(Tn−1(πxnf)) ≤ c(π)
n−1∑
j=1

δxj(πxnf) +
∑
j>n−1

δxj(πxnf)

= c(π)
n−1∑
j=1

δxj(πxnf) +
∑
j>n

δxj(πxnf) , (162)

since δxn(πxnf) = 0. We are thus lead to study the local variations δxj(πxnf) for
j 6= n.

Lemma 9.10. For any x 6= y,

δx(πyf) ≤ δx(f) + cy,x(π)δy(f) . (163)

Proof. Let ω, η be such that ωz = ηz for all z 6= x. If f̂ := f −m, where m
will be chosen below, we have by Lemma 9.2,

|πyf(ω)− πyf(η)| = |πyf̂(ω)− πyf̂(η)|

≤
∑
σy

∣∣πy(σy|ω)f̂(σyω{y}c)− πy(σy|η)f̂(σyη{y}c)
∣∣ .

Since |f̂(σyω{y}c)− f̂(σyη{y}c)| = |f(σyω{y}c)− f(σyη{y}c)| ≤ δx(f), we get

|πyf(ω)− πyf(η)| ≤ δx(f) + ‖πy(·|ω)− πy(·|η)‖1 sup
σy

|f̂(σyω{y}c)|

≤ δx(f) + cy,x(π) sup
σy

|f̂(σyω{y}c)|

≤ δx(f) + cy,x(π)δy(f) ,

where in the last line we made the choice m := f(+yω{y}c). �

2The first sum on the right-hand side is defined as 0 when n = 0.
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Using (163) two times in (162), rearranging the terms and using c(π) ≤ 1, we get

∆(Tnf) ≤
[
c(π)

n−1∑
j=1

δxj(f) +
∑
j>n

δxj(f)
]

+ δxn(f)
∑
j 6=n

cxn,xj(π)

≤
[
c(π)

n−1∑
j=1

δxj(f) +
∑
j>n

δxj(f)
]

+ δxn(f)c(π) ,

which is exactly (161). �

5.3. Application: a Criterion for Gibbsian Specifications. Let us con-
sider the form taken by the Dobrushin Condition of Weak Dependence when the
specification π is Gibbsian, with a uniformly absolutely summable potential. De-
fine the variation of f by δ(f) := supω,η |f(ω)− f(η)|.

Theorem 9.5. Let Φ = (ΦB) be a uniformly absolutely summable potential, and
πΦ the associated Gibbsian specification. If

sup
x∈Zd

∑
B3x

(|B| − 1)δ(ΦB) <
1

2
, (164)

then πΦ satisfies the Dobrushin Condition of Weak Dependence: c(πΦ) < 1.

Proof. Let ω, η be such that ωz = ηz for all z 6= y. Using (145) with Λ = {x},
‖πΦ

x (·|ω)− πΦ
x (·|η)‖1 ≤ 2 sup

σx

|Hx(σxω{x}c)−Hx(σxη{x}c)| (165)

≤ 2
∑
B3x

sup
σx

|ΦB(σxω{x}c)− ΦB(σxη{x}c)| . (166)

Observe that the difference ΦB(σxω{x}c)−ΦB(σxη{x}c) = 0 if B does not contain
y. Therefore,

cx,y(π
Φ) ≤ 2

∑
B3x

1B(y)δ(ΦB) .

By summing over y 6= x,

c(πΦ) ≤ 2 sup
x

∑
y 6=x

∑
B3x

1B(y)δ(ΦB) = 2 sup
x

∑
B3x

(|B| − 1)δ(ΦB) .

�

ISING, DONNER UNE BORNE EXPLICITE SUR βc(d).

5.4. Proofs.

Proof of Theorem 9.1. Let B ∈ C, i.e. B = Π−1
Λ (A) ∈ C(Λ) for some

finite Λ, and A ∈ P(ΩΛ). Define

µ0(B) := µΛ(A) . (167)

We first verify that µ0 is well defined, i.e. does not depend on the representation
of B. Namely, assume B can be written in two different ways (this can happen
because of (118)): B = Π−1

Λ1
(A1) = Π−1

Λ2
(A2). Let Λ′ := Λ1 ∪ Λ2. By (118),

there exists A′ ∈ P(ΩΛ′) such that Π−1
Λ′ (A

′) = Π−1
Λ1

(A1) = Π−1
Λ2

(A2). By (116),
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Π−1
Λ1

(A1) = Π−1
Λ′ ((Π

Λ′
Λ1

)−1(A1)), and therefore A′ = (ΠΛ′
Λ1

)−1(A1). Therefore, using
the consistency relation (124),

µΛ′(A
′) = µΛ′((Π

Λ′

Λ1
)−1(A1)) = µΛ1(A1) .

Similarly, one shows that µΛ′(A
′) = µΛ1(A1), and so (167) is independent of the

representation of B. We then verify that µ0 is a probability. Clearly, µ0(Ω) =
µΛ(ΩΛ) = 1. To verify that µ0 is finitely additive, let B1, B2 ∈ C be such that
B1∩B2 = ∅. We know that there exists Λ such that for i = 1, 2, Bi = Π−1

Λ (Ai) for
some Ai ∈ P(ΩΛ). We necessarily have A1∩A2 = ∅, and B1∪B2 = Π−1

Λ (A1∪A2).
Therefore,

µ0(B1 ∪B2) = µΛ(A1 ∪ A2) = µΛ(A1) + µΛ(A1) = µ0(B1) + µ0(B2) .

We then must verify that µ0 is continuous at ∅, that is: if B1 ⊃ B2 ⊃ . . .
is a decreasing sequence Bn ∈ C such that

⋂
nBn = ∅, then limn µ0(Bn) = 0.

Equivalently, we will show that if B1 ⊃ B2 ⊃ . . . is a decreasing sequence Bn ∈ C

such that µ0(Bn) ≥ λ > 0, then
⋂
nBn 6= ∅. Since Ω is compact and since the

cylinders are closed, this follows directly by the finite intersection property. The
extension of µ0 to F thus follows from the Extension Theorem of Carathéodory.
The validity of (125) is immediate. �

Proof of Lemma 9.1. Condition (130) clearly implies (131) by taking A =
∅. Then, assume (131) holds. Let A ∈ F, B ∈ FΛc . Then

πΛ(A ∩B|·) ≤ min{πΛ(A|·), πΛ(B|·)}
= min{πΛ(A|·), 1B(·)} = πΛ(A|·)1B(·) . (168)

Similarly, since A\B = A ∩Bc we have

πΛ(A\B|·) ≤ πΛ(A|·)1Bc(·) .
Using the identity

πΛ(A ∩B|·) + πΛ(A\B|·) = πΛ(A|·) = πΛ(A|·)1B(·) + πΛ(A|·)1Bc(·) ,
we get

πΛ(A ∩B|·) = πΛ(A|·)1B(·) + πΛ(A|·)1Bc(·)− πΛ(A\B|·) ≥ πΛ(A|·)1B(·) .
This finishes the proof. �

Proof of Lemma 9.2: We start the proof for cylinder events of the form
A = Π−1

∆ (η∆), which can always be expressed as

Π−1
∆ (η∆) = Π−1

∆∩Λ(η′) ∩ Π−1
∆∩Λc(η

′′) ,

where η′ ∈ Ω∆∩Λ (resp. η′′ ∈ Ω∆∩Λc) is the restriction of η∆ to ∆ ∩ Λ (resp.
∆ ∩ Λc). Since Π−1

∆∩Λc(η
′′) ∈ FΛc and πΛ is proper,

πΛ(A|ω) =
∑
σΛ∈ΩΛ

πΛ(A ∩ Π−1
Λ (σΛ)|ω)

=
∑
σΛ∈ΩΛ

πΛ(Π−1
∆∩Λ(η′) ∩ Π−1

Λ (σΛ)|ω)1{ω∆∩Λc=η′′} .
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Since

Π−1
∆∩Λ(η′) ∩ Π−1

Λ (σΛ) =

{
Π−1

Λ (σΛ) if σΛ coincides with η′ on ∆ ∩ Λ,

∅ otherwise,

we have proved (132) for cylinders. To extend this to any event A ∈ F, it suffices
to prove that the collection

D :=
{
A ∈ F : πΛ(A|ω) =

∑
σΛ∈ΩΛ

πΛ(Π−1
Λ (σΛ)|ω)1A(σΛωΛc)

}
is a Dynkin system, which is easy to verify. The second claim follows at once
from the first. Namely, if f = 1A, then (133) is (132). The general case follows
by standard approximation. �

Proof of Lemma 9.4: Since ω 7→ HΦ
Λ (σΛωΛc) is clearly FΛc-measurable,

ω 7→ πΦ
Λ(A|ω) is FΛc-measurable. It is immediate that πΦ

Λ(·|ω) is a probability
measure. By Lemma 9.1, properness follows from the following fact: if B ∈ FΛc ,

πΦ
Λ(B|ω) =

∑
σΛ∈ΩΛ

πΦ
Λ(σΛ|ω)1B(σΛωΛc)

=
∑
σΛ∈ΩΛ

πΦ
Λ(σΛ|ω)1B(ωΛωΛc) ≡ 1B(ω) .

Consistency is straightforward although a little boring to write down. We consider
two finite volumes Λ ⊂ ∆ ⊂ Zd, and show that πΦ

∆π
Φ
Λ = πΦ

∆. Using (137) and
Lemma 9.2,

πΦ
∆π

Φ
Λ(A|ω) =

∑
σ∆

πΦ
∆(σ∆|ω)πΛ(A|σ∆ω∆c)

=
∑
σ∆

∑
ηΛ

1A(ηΛσ∆\Λω∆c)πΦ
∆(σ∆|ω)πΦ

Λ(ηΛ|σ∆\Λω∆c)

We split the first sum in two, writing σ∆ = σ′Λσ
′′
∆\Λ. Using the definition of the

kernels πΦ
∆ and πΦ

Λ , the above thus becomes∑
σ′′

∆\Λ

∑
ηΛ

1A(ηΛσ
′′
∆\Λω∆c)

e−H
Φ
Λ (ηΛσ

′′
∆\Λω∆c )

ZΦ
∆(ω∆c)ZΦ

Λ (σ′′∆\Λω∆c)

∑
σ′Λ

e−H
Φ
∆(σ′Λσ

′′
∆\Λω∆c ) .

Decomposing the hamiltonian in this last sum,

HΦ
∆(σ′Λσ

′′
∆\Λω∆c) =

∑
B∩∆ 6=∅

ΦB(σ′Λσ
′′
∆\Λω∆c)

= HΦ
Λ (σ′Λσ

′′
∆\Λω∆c) +

∑
B∩∆ 6=∅
B∩Λ=∅

ΦB(σ′Λσ
′′
∆\Λω∆c)

= HΦ
Λ (σ′Λσ

′′
∆\Λω∆c) +

∑
B∩∆ 6=∅
B∩Λ=∅

ΦB(ηΛσ
′′
∆\Λω∆c) ,
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where we have used the FB-measurability of ΦB, and the fact that those Bs don’t
intersect Λ and thus don’t depend on σ′Λ. Therefore,

HΦ
∆(σ′Λσ

′′
∆\Λω∆c)−HΦ

Λ (σ′Λσ
′′
∆\Λω∆c) = HΦ

∆(ηΛσ
′′
∆\Λω∆c)−HΦ

Λ (ηΛσ
′′
∆\Λω∆c) ,

which gives∑
σ′Λ

e−H
Φ
∆(σ′Λσ

′′
∆\Λω∆c ) = ZΦ

Λ (σ′′∆\Λω∆c)e−H
Φ
∆(ηΛσ

′′
∆\Λω∆c )e−H

Φ
Λ (ηΛσ

′′
∆\Λω∆c ) .

Inserting this in the above expression, and renaming ηΛσ
′′
∆\Λ ≡ τ∆,

πΦ
∆π

Φ
Λ(A|ω) =

∑
σ′′

∆\Λ

∑
ηΛ

1A(ηΛσ
′′
∆\Λω∆c)

e−H
Φ
∆(ηΛσ

′′
∆\Λω∆c )

ZΦ
∆(ω∆c)

=
∑
τ∆

1A(τ∆ω∆c)
e−H

Φ
∆(τ∆ω∆c )

ZΦ
∆(ω∆c)

≡ πΦ
∆(A|ω) .

This shows that πΦ = (πΦ
Λ) is a specification. �

Proof of Lemma 9.5: (1) implies (2): Each cylinder B ∈ C is open. But
since C is an algebra, Bc is also a cylinder, and thus also open and therefore 1B
is continuous. This implies µn(B)→ µ(B).
(2) implies (1): Let f ∈ C(Ω). Fix ε > 0 and take g ∈ Loc(Ω) such that
‖f − g‖ ≤ ε. Since g is FΛ-measurable for some finite Λ, it can be written as

g =
∑
σΛ

gσΛ
1Π−1

Λ (σΛ) , (169)

where for example gσΛ
:= g(σΛ+Λc). Now, for all n,

|µ(f)− µn(f)| ≤ |µ(f)− µ(g)|+ |µ(g)− µn(g)|+ |µn(g)− µn(f)|

≤ 2ε+
∑
σΛ

|gσΛ
||µ(Π−1

Λ (σΛ))− µn(Π−1
Λ (σΛ))| .

We thus have lim supn |µ(f) − µn(f)| ≤ 2ε, which finishes the proof since ε is
arbitrary.
(2) implies (3): Fix ε > 0 and take n0 large enough such that 1

n
≤ ε for all

n > n0. Then, take k large enough such that

max
ωΛn

|µk(ΠΛn(ωΛn))− µ(Π−1
Λn

(ωΛn))| ≤ ε , ∀n ≤ n0 .

We thus have, for all n,

1

n
max
ωΛn

|µk(ΠΛn(ωΛn))− µ(Π−1
Λn

(ωΛn))| ≤

{
ε if n ≤ n0 ,

ε if n > n0 .

This implies ρ(µk, µ) ≤ ε.
(3) implies (2): Assume ρ(µn, µ)→ 0. Take B ∈ C, of the form B = Π−1

Λ (A) for
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some A ⊂ ΩΛ. Then

|µn(B)− µ(B)| ≤
∑
ωΛ∈A

|µn(Π−1
Λ (ωΛ))− µ(Π−1

Λ (ωΛ))| ,

and each term of the sum converges to zero when n → ∞. Namely, we have
C(Λ) ⊂ C(Λn) for large enough n. �

Proof of Theorem 9.2: Since the topology of local convergence is metriz-
able, we need only show that M1(Ω,F) is sequentially compact. Consider any
sequence (µn)n≥1 in M1(Ω,F). Since the set of cylinders C is countable, we
can proceed exactly as in the proof of Lemma 8.1 to construct a subsequence
(µnk)k≥1 such that µnk(Π

−1
Λ (A))→ µ∗Λ(A) for each A ∈ P(ΩΛ). Let us show that

{µ∗Λ : Λ ⊂⊂ Zd} is a consistent system of marginal distributions. As can be easily
verified, each µ∗Λ ∈M1(ΩΛ). Then, take Λ ⊂ Λ′, and compute

µ∗Λ(A) = lim
k→∞

µnk(Π
−1
Λ (A))

= lim
k→∞

µnk(Π
−1
Λ′ ((Π

Λ′

Λ )−1(A))) = µ∗Λ′((Π
Λ′

Λ )−1(A)) .

By Kolmogorov’s Extension Theorem 9.1, there exists a (unique) random field
µ∗ such that µ∗(Π−1

Λ (A)) = µ∗Λ(A) = limk→∞ µnk(Π
−1
Λ (A)). By Lemma 9.5, this

implies µnk ⇒ µ∗, and finishes the proof of the Theorem. �



CHAPTER 10

The Variational Principle

In this chapter, we present a variational characterization of translation invariant
Gibbs measures. As will be seen in Chapter 11, this variational principle has a
deep link with Large Deviation Theory. Most of the material presented here is
taken from [?].

1. Introduction

The DLR formalism exposed in the previous chapter characterizes equilibrium
measures, describing infinite systems, by a collection of local conditions. Namely,
a Gibbs measure is defined by fixing its conditional distributions on all finite re-
gions, through the help of a specification.

The idea behind the variational principle is of a different nature, and of more
thermodynamical flavor: a functional W(·) is defined on the set of probability
distributions describing the system, of the form

W(µ) = Entropy(µ)− β × Energy(µ) . (170)

In thermodynamics, − 1
β
W(µ) is called the free energy 1 of the state µ. The varia-

tional principle states that the probability distributions that describe a system in
thermal equilibrium are those that maximize its functional W.

We illustrate this on a simple example, in the case where the phase space of the
system is a finite set. Let Λ be a finite region of Zd, and let M1(ΩΛ) denote the
set of all probability distributions on ΩΛ. Let UΛ : ΩΛ → R be an energy function
(which can for example be defined with the help of a potential, but this has no
importance here). Define the functional WΛ : M1(ΩΛ)→ R as

WΛ(µ) := HΛ(µ)− β〈UΛ, µ〉 , (171)

where HΛ(µ) is the Shannon Entropy of µ, and 〈UΛ, µ〉 := µ(UΛ) the energy of µ.
Before showing that the Gibbs distribution is the only maximizer of W(·), it is
interesting to consider limit cases. If β ↘ 0 (high temperatures), the dominant
term is the entropy term, and WΛ is maximal for the uniform distribution. On
the other hand, in the limit β ↗ ∞ (low temperatures), the dominant term is
the energy term, and WΛ is maximal for distributions with a minimal energy.

1In textbooks, the Helmoltz free energy is usually found in the form F = U − TS, where
U is the internal energy, T the temperature, and S the entropy.

81
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This mechanism has already been encountered in the study of the large deviations
of the Curie-Weiss model, where an explicit study of the functional (see page 51)

χ(z) := I(z)− βf(z) , z ∈ [−1, 1]

has lead to different macroscopic features of the model, depending strongly on
the inverse temperature β. The point there was that the entropy I was concave
and the energy f was convex, giving a non-trivial dependence of the maximizers
of χ on β. The Peierls argument for the two-dimensional Ising model in Chapter
8 was similar in spirit.

Coming back to our example, consider the Gibbs distribution µGibbs ∈M1(ΩΛ),

µGibbs(σ) :=
e−βUΛ(σ)

ZΛ

.

As can be easily verified, WΛ(µGibbs) = logZΛ. We claim that

WΛ(µGibbs) = sup
µ

WΛ(µ) . (172)

Namely, for any µ ∈ M1(ΩΛ), by the concavity of x 7→ log x and Jensen’s In-
equality,

WΛ(µ) =
∑
ω∈ΩΛ

µ(ω) log
e−βUΛ(ω)

µ(ω)

≤ log
∑
ω∈ΩΛ

µ(ω)
e−βUΛ(ω)

µ(ω)
= logZΛ = WΛ(µGibbs) ,

with equality if and only if µ = µGibbs.

The purpose of this chapter is to develop an equivalent theory in infinite volume,
and to show that the infinite volume Gibbs measures on Zd, associated to a po-
tential Φ, are exactly those probability measures that maximize a functional W
on the space of probability measures.

As we remembered above when mentioning the Curie-Weiss model, variational
problems like (172) appeared naturally in Large Deviation Theory. In fact, the
extremality property of the Gibbs distribution in (172) should not be surprising
since we know from Proposition 3.1 of Chapter 3 that the relative entropy µ 7→
D(µ‖µGibbs) attains its minimum at the unique distribution µGibbs but also that,
as a consequence of its definition,

D(µ‖µGibbs) = logZΛ − {HΛ(µ)− β〈UΛ, µ〉} (173)

≡WΛ(µGibbs)−WΛ(µ) ≥ 0 .

Maximizing the functional WΛ is thus equivalent to minimizing the relative en-
tropy. As a consequence, most of the development presented below consists in
introducing a definition of relative entropy in infinite volumes, and its link with
the extension of the thermodynamic limit of the terms on the right hand side of
(173) to infinite volume limits. The precise link with Large Deviation Theory
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will be explained in Chapter 11.

In what follows, the inverse temperature β will be absorbed into the energy
function: βUΛ ≡ UΛ.

2. The Entropy of an Invariant Random Field

In the case of finite alphabets, we defined the Shannon Entropy of a probability
distribution in Chapter 2, and the relative entropy between two probability distri-
butions appeared naturally in Chapter 3 when studying the Theorem of Sanov.
For these notions make sense in infinite volume, it is necessary to restrict our
study to systems that are invariance under translations. Before defining transla-
tion invariance, we remind the important definition of relative entropy, adapted
to our needs.

Consider a random field µ ∈M1(Ω). For a finite Λ ⊂ Zd, denote the marginal of
µ on Λ by µΛ = πΛµ := µ ◦ π−1

Λ ∈ M1(ΩΛ). The marginals of µ are compatible:
if Λ ⊂ ∆, then µΛ = µ∆ ◦ (π∆

Λ )−1. If µ, ν ∈ M1(Ω), the relative entropy of µ with
respect to the reference measure ν in Λ is defined by 2

HΛ(µ|ν) :=

{∑
σΛ∈ΩΛ

µΛ(σΛ) log µΛ(σΛ)
νΛ(σΛ)

if µΛ � νΛ ,

+∞ otherwise.
(174)

Here, µΛ � νΛ means that µΛ(σΛ) = 0 each time νΛ(σΛ) = 0. With the notation
of Chapter 3, HΛ(µ|ν) ≡ D(µΛ‖νΛ).

Lemma 10.1. If Λ,∆ ⊂ Zd are finite, µ, ν ∈M1(Ω),

(1) HΛ(µ|ν) ≥ 0 with equality if and only if µΛ = νΛ.
(2) µ 7→ HΛ(µ|ν) is convex.
(3) If Λ ⊂ ∆, then HΛ(µ|ν) ≤ H∆(µ|ν).

Proof. (1) and (2) were proved in Proposition 3.1, so we need only prove
(3). If µ∆ 6� ν∆ then the inequality is trivial since H∆(µ|ν) =∞. On the other
hand, if µ∆ � ν∆, then µΛ � νΛ. Therefore, since we can always assume that
the sum is over those σ∆ such that ν∆(σ∆) > 0,

H∆(µ|ν) =
∑
σ∆

ψ
(µ∆(σ∆)

ν∆(σ∆)

)
ν∆(σ∆) ,

where ψ(x) = x log x. Since Λ ⊂ ∆, we can split the sum over σ∆ = ωΛη∆\Λ. By
writing (observe the abuse of notation) ν∆(ωΛη∆\Λ) = ν∆(η∆\Λ|ωΛ)ν∆(ωΛ), and

2Here and in what follows, the conventions are: log 0 = −∞, 0 log 0
0 := 0, 0 log 0 := 0.
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since ψ is convex,

H∆(µ|ν) =
∑
ωΛ

{∑
η∆\Λ

ψ
(µ∆(ωΛη∆\Λ)

ν∆(ωΛη∆\Λ)

)
ν∆(η∆\Λ|ωΛ)

}
ν∆(ωΛ)

≥
∑
ωΛ

{
ψ
(∑
η∆\Λ

µ∆(ωΛη∆\Λ)

ν∆(ωΛη∆\Λ)
ν∆(η∆\Λ|ωΛ)

)}
ν∆(ωΛ)

=
∑
ωΛ

ψ
(µ∆(ωΛ)

ν∆(ωΛ)

)
ν∆(ωΛ)

≡ HΛ(µ|ν) .

Namely, µ∆(ωΛ) ≡ µ∆((π∆
Λ )−1(ωΛ)) = µΛ(ωΛ). �

Since the relative entropy is non-decreasing in the volume, it is tempting to define
the specific relative entropy of µ with respect to ν by

h(µ|ν) := lim
n→∞

1

|Λn|
HΛn(µ|ν) . (175)

Here and in the sequel, Λn always denotes the sequence of boxes [−n, n]d ∩ Zd.
The above definition will be shown to make sense only when the two measures µ
and ν are translation invariant (see below). We will then be able to show the ex-
istence of the limit (175) when the reference measure ν is 1) the uniform product
measure, 2) a Gibbs measure associated to a potential. We now introduce the
notation needed in order to proceed.

For x ∈ Zd, consider the translation θx : Zd → Zd defined by θxy := x + y.
Observe that θ−1

x = θ−x, and that θxθy = θx+y. The set of translations of the
lattice Zd (which actually forms a group) is denoted θ := (θx)x∈Zd . We use
the same symbol θx to denote the action of the translation on configurations as
(θxω)y := ωy−x, on functions f : Ω → R as θxf(ω) := f(θxω), and on measures,
as θxµ(A) := µ(θ−1

x A). A probability measure µ is called (translation) invariant
if θxµ = µ for all x ∈ Zd. The set of invariant probability measures is denoted
M1,θ(Ω). As can be verified easily, µ is invariant if and only if µ(θxf) = µ(f)
for all f ∈ C(Ω) and all x. Throughout the chapter, the topology considered on
M1(Ω) is the topology of weak convergence. Observe that M1,θ(Ω) ⊂ M1(Ω) is
closed, and therefore compact.

Let λ = 1
2
δ+1 + 1

2
δ−1 denote the uniform distribution on {±1}. For all S ⊂ Zd,

let λS := λ⊗S. For simplicity, we write λZd ≡ λ. Observe that

HΛ(µ|λ) = |Λ| log 2−HΛ(µ) , (176)

where HΛ(µ) is the Shannon entropy of µ in Λ,

HΛ(µ) := −
∑
σΛ∈ΩΛ

µΛ(σΛ) log µΛ(σΛ) . (177)

Therefore, when the reference measure is λ, showing the existence of (175) boils
down to
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Theorem 10.1. For all µ ∈M1,θ(Ω), the limit

h(µ) := lim
n→∞

1

|Λn|
HΛn(µ) (178)

exists, is finite, and is called the specific entropy of µ. Moreover, the map h :
M1,θ(Ω)→ R is affine and upper semicontinuous 3, and for all c ∈ R, {h ≥ c} is
compact.

The proof of (178) relies on the two lemmas found below. The first shows that
Λ 7→ HΛ(µ) is subadditive, and the second gives a multi-dimensional version of the
well known convergence property of subadditive sequences on R (xn+m ≤ xn+xm).

Lemma 10.2. If Λ, ∆ are two disjoint finite subsets of Zd,

HΛ∪∆(µ) ≤ HΛ(µ) + H∆(µ) . (179)

Proof. Start by writing

HΛ(µ) = −
∑
σΛ

µΛ(σΛ) log µΛ(σΛ) = −
∑
σΛ∪∆

µΛ∪∆(σΛ∪∆) log µΛ(σΛ) ,

which gives

HΛ(µ)−HΛ∪∆(µ) =
∑
σΛ∪∆

µΛ∪∆(σΛ∪∆) log
µΛ∪∆(σΛ∪∆)

µΛ(σΛ)

=
∑
σΛ∪∆

µΛ∪∆(σΛ∪∆) log
µΛ∪∆(σΛ∪∆)

µΛ(σΛ)λ∆(σ∆)
λ∆(σ∆) , (180)

Let ν := µΛ⊗λΛc . Observe that νΛ∪∆(σΛ∪∆) = µΛ(σΛ)λ∆(σ∆). As a consequence,
µΛ∪∆ � νΛ∪∆, and (180) can be expressed as

HΛ(µ)−HΛ∪∆(µ) = HΛ∪∆(µ|ν)− |∆| log 2

≥ H∆(µ|ν)− |∆| log 2

= −H∆(µ) .

We used Lemma 10.1 in the second line, and ν∆ = λ∆ in the third. �

Lemma 10.3. Let R be the collection of all rectangular boxes 4 of Zd. Let {a(Λ)}Λ∈R
be a collection of real numbers satisfying the following properties:

(1) a(Λ) = a(θxΛ) for all x ∈ Zd,
(2) if Λ,∆ ∈ R are disjoint, with Λ∪∆ ∈ R, then a(Λ∪∆) ≤ a(Λ) + a(∆).

Then

lim
n→∞

a(Λn)

|Λn|
= inf

Λ∈R

a(Λ)

|Λ|
. (181)

3A map f : M1,θ(Ω)→ R is affine if f(sµ+ (1− s)ν) = sf(µ) + (1− s)f(ν) for all 0 < s < 1
and all µ, ν ∈M1,θ(Ω), and upper semi-continuous if µn ⇒ µ implies lim supn f(µn) ≤ f(µ).

4A rectangular box is a set of the form R = {x ∈ Zd : ai ≤ xi ≤ bi} where each ai ≤ bi.
Isolated points are therefore also considered as rectangular boxes.
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Proof. Let α := infΛ∈R a(Λ)/|Λ|. Take ε > 0 and let Λ ∈ R be such that
a(Λ)/|Λ| ≤ α+ ε. For large n, decompose Λn into a maximal union of Kn disjoint

translates of Λ: Λn =
(⋃Kn

i=1 Λ(i)
)
∪ Rn, where Rn := Λn\

⋃Kn
i=1 Λ(i) is such that

|Rn|/|Λn| → 0. Then

a(Λn) ≤
Kn∑
i=1

a(Λ(i)) +
∑
x∈Rn

a({x}) = Kna(Λ) + |Rn|a({0}) .

Since |Λn| = Kn|Λ|+ |Rn|,

α ≤ lim inf
n→∞

a(Λn)

|Λn|
≤ lim sup

n→∞

a(Λn)

|Λn|
≤ a(Λ)

|Λ|
≤ α + ε .

The proof finishes by taking ε↘ 0. �

Proof of Theorem 10.1: If µ ∈ M1,θ(Ω), then aµ(Λ) := HΛ(µ) satisfies
aµ(θxΛ) = aµ(Λ) for all x ∈ Zd. Therefore, the existence of the limit (178) follows
at once from (179) and Lemma 10.3. In particular, h(µ) ≤ aµ(Λ)/|Λ| for all finite
Λ. If µk ⇒ µ, then lim supk h(µk) ≤ lim supk aµk(Λ)/|Λ| = aµ(Λ)/|Λ|. By taking
the infimum over Λ we get that h is upper semicontinuous: lim supk h(µk) ≤ h(µ).
Since M1,θ(Ω) is compact, the sets {h ≥ c} being closed imply they are also
compact, which proves the last claim. We then show that h is affine. Since
h is concave by (176) and by (2) of Lemma 10.1, it suffices to show that it is
also convex. Let therefore µ = sµ1 + (1 − s)µ2, with µ1, µ2 ∈ M1,θ(Ω), and
0 < s < 1. Since log is non-decreasing, we have log µΛ(σΛ) ≥ log[sµ1

Λ(σΛ)], and
log µΛ(σΛ) ≥ log[(1− s)µ2

Λ(σΛ)]. Therefore,

HΛ(µ) = −s
∑
σΛ

µ1
Λ(σΛ) log µΛ(σΛ)− (1− s)

∑
σΛ

µ2
Λ(σΛ) log µΛ(σΛ)

≤ −s
∑
σΛ

µ1
Λ(σΛ) log[sµ1

Λ(σΛ)]− (1− s)
∑
σΛ

µ2
Λ(σΛ) log[(1− s)µ2

Λ(σΛ)]

= sHΛ(µ1) + (1− s)HΛ(µ2)− s log s− (1− s) log(1− s) .

Dividing by |Λ| and taking Λ↗ Zd, we get that h is convex. �

Theorem 10.1 and (176) imply that for all µ ∈ M1,θ(Ω), the specific relative
entropy with respect to λ,

h(µ|λ) := lim
n→∞

1

|Λn|
HΛn(µ|λ) , (182)

exists and equals log 2− h(µ). Our next step now is to show that the limit exists
also when λ is replaced by a Gibbs measure specified by a Gibbsian specification.

3. Gibbs measures as reference measures

From now on, Φ = (ΦB) denotes a translation invariant potential. This means that
for all finite set B ⊂ Zd, ΦθxB = θxΦB for all x ∈ Zd. We will also assume that
Φ is uniformly absolutely summable. Therefore,

∞ > sup
x∈Zd

∑
B3x

‖ΦB‖ =
∑
B30

‖ΦB‖ =: ‖Φ‖0 (183)
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The convergence of the sum above is understood in the following sense:∑
B30

‖ΦB‖ := lim
n→∞

∑
B30
B⊂Λn

‖ΦB‖ . (184)

Let γΦ be the Gibbsian specification associated to Φ. That is,

γΦ
Λ (σΛ|ω) =

e−H
Φ
Λ (σΛωΛc )

ZΦ
Λ (ωΛc)

, where ZΦ
Λ (ωΛc) =

∑
σΛ∈ΩΛ

e−H
Φ
Λ (σΛωΛc ) .

We denote by G(Φ) := G(γΦ) the set of Gibbs measures specified by γΦ, and
Gθ(Φ) := G(Φ) ∩M1,θ(Ω). As an exercise, the reader can verify that Gθ(Φ) 6= ∅.
The starting point for the study of the entropy of Gibbs measures is the following:

Proposition 10.1. Let µ ∈ M1,θ(Ω) and (νn), (ν ′n) be two arbitrary sequences
in M1(Ω). If either of the limits

lim
n→∞

1

|Λn|
HΛn(µ|νnγΦ

Λn) , lim
n→∞

1

|Λn|
HΛn(µ|ν ′nγΦ

Λn) (185)

exists, then the other one also exists, and they are equal.

Proof. Let Λ be finite. Observe that by definition of γΦ
Λ , there exists a

constant cΦ
Λ > 0 such that γΦ

Λ (σΛ|ω) ≥ cΦ
Λ for all σΛ, ω. Therefore, we always have

µΛn � νnγ
Φ
Λn

, µΛn � ν ′nγ
Φ
Λn

. Now,

HΛ(µ|νnγΦ
Λ )−HΛ(µ|νnγΦ

Λ ) =
∑
σΛ

µΛ(σΛ) log
ν ′nγ

Φ
Λ (σΛ)

νnγΦ
Λ (σΛ)

.

Define
rΦ

Λ := sup
σΛ,ω,η

|HΦ
Λ (σΛωΛc)−HΦ

Λ (σΛηΛc)| .

Then clearly, uniformly in σΛ,

e−2rΦ
Λ ≤ ν ′nγ

Φ
Λ (σΛ)

νnγΦ
Λ (σΛ)

≤ e2rΦ
Λ .

Therefore, the two limits in (185) coincide if one can show that rΦ
Λn

= o(|Λn|),
i.e. that limn r

Φ
Λn
/|Λn| = 0. This follows by the uniform absolute summability of

Φ, and can be seen as follows:

rΦ
Λ ≤

∑
B∩Λ 6=∅
B 6⊂Λ

sup
σΛ,ω,η

|ΦB(σΛωΛc)− ΦB(σΛηΛc)| ≤ 2
∑

B∩Λ6=∅
B 6⊂Λ

‖ΦB‖ ≤ 2
∑
x∈Λ

∑
B3x
B 6⊂Λ

‖ΦB‖

For each x, let Λk(x) := Λk + x. For a fixed k, we decompose∑
x∈Λ

∑
B3x
B 6⊂Λ

‖ΦB‖ =
∑
x∈Λ:

Λk(x)⊂Λ

∑
B3x
B 6⊂Λ

‖ΦB‖+
∑
x∈Λ:

Λk(x) 6⊂Λ

∑
B3x
B 6⊂Λ

‖ΦB‖ . (186)

The first sum on the right-hand side is bounded by

|Λ| sup
x∈Zd

∑
B3x

B 6⊂Λk(x)

‖ΦB‖ ≡ |Λ|
∑
B30
B 6⊂Λk

‖ΦB‖ ≡ |Λ|αk ,
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where αk → 0 when k → ∞ (see (184)). Then, observe that the only points
x ∈ Λ that contribute to the second sum are those for which Λk(x) ∩ ∂−k Λ 6= ∅
(∂−k Λ := {x ∈ Λ : d(x,Λc) ≤ k}). Therefore,∑

x∈Λ:
Λk(x)6⊂Λ

∑
B3x
B 6⊂Λ

‖ΦB‖ ≤ |∂−k Λ|‖Φ‖0 .

Altogether, lim supn
rΦ
Λn

|Λn| ≤ αk. The proof finishes by taking k →∞. �

We will now use Proposition 10.1 in two different ways, making different choices
for µ and for the sequences (νn), (ν ′n) that appear in (185).

Let first µ in (185) be in Gθ(Φ), and take νn := µ, ν ′n := δω, where ω is any fixed
configuration. Then νnγ

Φ
Λn

= µγΦ
Λn

= µ and so HΛn(µ|νnγΦ
Λn

) = 0, and the limit
on the left-hand side of (185) is zero. Therefore the limit on the right-hand side
is also zero. But, as a distribution on ΩΛn ,

ν ′nγ
Φ
Λn(·) =

∫
γΦ

Λn( · |σ)δω(dσ) = γΦ
Λn( · |ω) =

e−H
Φ
Λn

( ·ωcΛn )

ZΦ
Λn

(ωΛcn)
,

and therefore (remember (173))

HΛn(µ|ν ′nγΦ
Λn) = logZΦ

Λn(ωΛcn)−
(
HΛn(µ)− µ(HΦ

Λn( ·ωΛc))
)
. (187)

Since HΛn(µ)/|Λn| has a limit when n→∞, we see that if either of the limits

lim
n→∞

1

|Λn|
µ(HΦ

Λn( ·ωΛcn)) , lim
n→∞

1

|Λn|
logZΦ

Λn(ωΛcn)

exists, then the other one also exists. We show existence of the first. Define

ϕΦ :=
∑
B30

1

|B|
ΦB , (188)

which measures the energy of a configuration in the neighbourhood of the origin
(the 1/|B| is to avoid over-counting). Observe that ϕΦ ∈ C(Ω), and that ‖ϕΦ‖ ≤
‖Φ‖0. If µ ∈M1,θ(Ω), then 〈ϕΦ, µ〉 := µ(ϕΦ) is called the (specific) energy of µ.

Lemma 10.4. Let µ ∈M1,θ(Ω). Then,

lim
n→∞

1

|Λn|
µ(HΦ

Λn( ·ωΛcn)) = 〈ϕΦ, µ〉 .

In particular, the limit doesn’t depend on ω.

Proof. Since θxµ = µ for all x,

1

|Λ|
µ(HΦ

Λ ( ·ωΛc)) =
1

|Λ|
∑
x∈Λ

µ(θxϕΦ) +
1

|Λ|
µ
(
HΦ

Λ ( ·ωΛc)−
∑
x∈Λ

θxϕΦ

)
= µ(ϕΦ) +

1

|Λ|
µ
(
HΦ

Λ ( ·ωΛc)−
∑
x∈Λ

θxϕΦ

)
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To estimate the difference, write

HΦ
Λ ( ·ωΛc) =

∑
B⊂Λ

ΦB( ·ωΛc) +
∑

B∩Λ 6=∅
B 6⊂Λ

ΦB( ·ωΛc)

=
∑
x∈Λ

∑
B3x
B⊂Λ

1

|B|
ΦB(·) +

∑
B∩Λ 6=∅
B 6⊂Λ

ΦB( ·ωΛc)

=
∑
x∈Λ

{
θxϕΦ(·)−

∑
B3x
B 6⊂Λ

1

|B|
ΦB(·)

}
+
∑

B∩Λ6=∅
B 6⊂Λ

ΦB( ·ωΛc)

Therefore, ∣∣∣HΦ
Λ ( ·ωΛc)−

∑
x∈Λ

θxϕΦ(·)
∣∣∣ ≤ 2

∑
x∈Λ

∑
B3x
B 6⊂Λ

‖ΦB‖ = o(|Λ|) , (189)

as was shown in (186). �

Remark 10.1. Observe that if Φ has finite range, i.e. if there exists 0 < R <∞
such that ΦB ≡ 0 if diam(B) > R, then the difference in (189) is bounded by a
term of order O(|∂−RΛ|).

Together with (187) and Theorem 10.1, Lemma 10.4 implies that

ψ(Φ) := lim
n→∞

1

|Λn|
logZΦ

Λn(ωΛcn) (190)

exists, and does not depend on ω ∈ Ω. Moreover, if µ ∈ Gθ(Φ), then

h(µ)− 〈ϕΦ, µ〉 = ψ(Φ) . (191)

On the other hand, let now the measure µ in (185) be any µ ∈ M1,θ(Ω), and let
ν ∈ Gθ(Φ). Take νn := ν, so that νnγ

Φ
Λn

= νγΦ
Λn

= ν, and ν ′n := δω, where ω is any
fixed configuration, as before. Then Proposition 10.1 combined with the above
comments imply that

h(µ|ν) := lim
n→∞

1

|Λn|
HΛn(µ|ν) (192)

exists and equals
h(µ|ν) = ψ(Φ)− {h(µ)− 〈ϕΦ, µ〉} . (193)

This last display is the infinite-volume equivalent of (173).

Notice that the right hand side of (193) does not depend on ν but only on the
potential Φ which specifies ν. It is thus more natural to define h(µ|Φ) := h(µ|ν).
By (191), h(µ|Φ) = 0 if µ ∈ Gθ(Φ). We have therefore proved the first part of the
following theorem, called the Variational Principle:

Theorem 10.2. Let Φ be a translation invariant, uniformly absolutely convergent
potential. Then for all (compare with (173))

h(µ|Φ) := ψ(Φ)− {h(µ)− 〈ϕΦ, µ〉} (194)
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defines an affine, lower-semicontinuous mapping h(·|Φ) : M1,θ(Ω) → [0,∞] with
compact level sets. Moreover, h(µ|Φ) = 0 if and only if µ ∈ Gθ(Φ).

Proof. Since 〈ϕΦ, ·〉 and h(·) are affine, h(·|Φ) also is. The lower semiconti-
nuity follows by the upper semicontinuity of h and from the obvious fact that if
µn ⇒ µ, then limn〈ϕΦ, µn〉 = 〈ϕΦ, µ〉, by the continuity of ϕΦ. We have already
seen that h(·|Φ) = 0 on Gθ(Φ). The main point is thus to prove the second half
of the variational principle, namely that if µ ∈M1,θ(Ω) is such that h(µ|Φ) = 0,
then µ is a Gibbs measure for Φ. This will be a consequence of the following
proposition, which is slightly more general than what we need here. �

Proposition 10.2. Let Φ be translation invariant and uniformly absolutely con-
vergent. Let ν ∈ Gθ(Φ). If µ ∈M1,θ(Ω) is such that

lim inf
n→∞

1

|Λn|
HΛn(µ|ν) = 0 , (195)

then µ ∈ Gθ(Φ).

Proof. We fix a finite Λ ⊂ Zd and prove that µγΦ
Λ (g) = µ(g) for all local

function g ∈ Loc(Ω). The proof contains three main steps.

Step 1: For all δ > 0 and all cube R ⊃ Λ, there exists ∆ ⊃ R such that H∆(µ|ν)−
H∆\Λ(µ|ν) ≤ δ. By (195), n can be taken large enough so that |Λn| ≥ |R|, and

1

|Λn|
HΛn(µ|ν) ≤ δ

2d|R|
.

Let then m ≥ 1 be an integer satisfying md|R| ≤ |Λn| < (2m)d|R|. Roughly,
md is a lower bound on the number of disjoint translates of R that can be put
into Λn. Choose then md points x(1), . . . , x(md) in Λn such that the translates
R(i) := θx(i)R are disjoint subsets of Λn. Let ∆(i) := R(1) ∪ · · · ∪ R(i), and
Λ(i) := θx(i)Λ. Observe that ∆(i)\R(i) ⊂ ∆(i)\Λ(i) and that ∆(md) ⊂ Λn.
Therefore, defining H∅(µ|ν) := 0 and using twice (3) of Lemma 10.1,

1

md

md∑
i=1

{
H∆(i)(µ|ν)−H∆(i)\Λ(i)(µ|ν)

}
≤ 1

md

md∑
i=1

{
H∆(i)(µ|ν)−H∆(i)\R(i)(µ|ν)

}
=

1

md
H∆(md)(µ|ν)

≤ 1

md
HΛn(µ|ν) ≤ δ .

Therefore, there exists at least one i ∈ {1, 2, . . . ,md} such that H∆(i)(µ|ν) −
H∆(i)\Λ(i)(µ|ν) ≤ δ. Take ∆ := θ−x(i)∆(i). Then, by the translation invariance of
µ and ν, H∆(µ|ν)−H∆\Λ(µ|ν) = H∆(i)(µ|ν)−H∆(i)\Λ(i)(µ|ν) ≤ δ.

As already seen before, the fact that ν is specified by a Gibbsian specification
implies that for all finite region ∆ ⊂ Zd, ν∆(σ∆) > 0 for all σ∆ ∈ Ω∆ and therefore
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µ∆ � ν∆. We can thus define the Radon-Nikodým densities

f∆ = f∆(σ∆) :=
µ∆(σ∆)

ν∆(σ∆)
.

Step 2: For all ε > 0, there exists δ > 0 such that if H∆(µ|ν) −H∆\Λ(µ|ν) ≤ δ,
then ν(|f∆ − f∆\Λ|) ≤ ε. Using the densities,

H∆(µ|ν)−H∆\Λ(µ|ν) = µ
(

log
f∆

f∆\Λ

)
= ν

(
f∆ log

f∆

f∆\Λ

)
= ν

(
f∆\Λφ

( f∆

f∆\Λ

))
, (196)

where φ(x) := 1 − x + x log x. As can be easily verified, there exists r > 0
(depending on ε) such that φ(x) ≥ r(|x − 1| − ε/2) for all x ≥ 0. Therefore, if
H∆(µ|ν)−H∆\Λ(µ|ν) ≤ δ, (196) gives δ ≥ r

(
ν(|f∆− f∆\Λ|)− ε/2

)
. The proof of

the claim follows by taking δ := ε/2r.

Step 3: For all g ∈ Loc(Ω), µγΦ
Λ (g) = µ(g). Fix some ε > 0. Let δ > 0 be as

in Step 2. Since γΦ is quasilocal, γΦ
Λg ∈ C(Ω). Let g∗ ∈ Loc(Ω) be such that

‖γΦ
Λg − g∗‖ ≤ ε. Let R ⊃ Λ be a cube, large enough so that g is FR-measurable

and g∗ is FR\Λ-measurable. Let ∆ be chosen as in Step 1, in function of δ and R.
By Step 2, ν(|f∆ − f∆\Λ|) ≤ ε. Then write

|µγΦ
Λ (g)− µ(g)| ≤µ(|γΦ

Λg − g∗|) + |µ(g∗)− ν(f∆\Λg∗)|+ ν(f∆\Λ|g∗ − γΦ
Λg|)

+ |ν(f∆\Λ(γΦ
Λg − g))|+ ‖g‖ν(|f∆ − f∆\Λ|) + |ν(f∆g)− µ(g)| .

The first and third terms are ≤ ε. The second and sixth terms are zero. The fifth
is ≤ ‖g‖ε. The fourth is zero. Namely, observe that f∆\Λγ

Φ
Λg = γΦ

Λ (f∆\Λg) due
to the FΛc-measurability of f∆\Λ. But since by hypothesis ν is specified by γΦ,
ν(f∆\Λγ

Φ
Λg) = ν(γΦ

Λ [f∆\Λg]) = νγΦ
Λ (f∆\Λg) = ν(f∆\Λg). Altogether,

|µγΦ
Λ (g)− µ(g)| ≤ 3ε+ ε‖g‖ .

Since ε was arbitrary, this shows that µγΦ
Λ (g) = µ(g). �

We have thus adapted the finite-volume considerations of the introduction to the
Gibbsian description of translation invariant infinite systems, making a closer link
with thermodynamics. For a given potential Φ, the functional we were looking
for is thus

W(µ) := h(µ)− 〈ϕΦ, µ〉 ,
and if µGibbs is any Gibbs measure specified by γΦ, then

h(µ|Φ) = W(µGibbs)−W(µ) .

This description of Gibbs measures is completely equivalent to the description in
terms of specifications. It is interesting to notice that invariant Gibbs measures
are sometimes (in ergodic theory, for example) defined using the variational char-
acterization.
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It is interesting to note that if M1,θ(Ω) is considered together with the metric
ρ(·, ·) of Lemma 9.5, then by Theorem 10.2, h(·|Φ) : M1,θ(Ω) → [0,∞] satisfies
all the properties of a good rate function, in the sense of Definition 5.2. In partic-
ular, by Lemma 5.4, there exists at least one µ∗ ∈M1,θ(Ω) such that h(µ∗|Φ) = 0.
This gives an alternate proof of the existence of invariant Gibbs measures asso-
ciated to Φ: M1,θ(Ω) 6= ∅.

The fact that h(·|Φ) has the properties of a good rate function is of course not
an accident. In the next chapter, we present a Large Deviation analysis of Gibbs
measures, where the Variational Principle will appear naturally, as a consequence
of a Large Deviation Principle.



CHAPTER 11

Gibbs Measures and Large Deviations

1. Introduction

In Chapter 3, we considered sequences of i.i.d. random variables Xk with distri-
bution ν, and considered two random quantities associated to a finite sample of
size n: the empirical mean 1

n

∑n
k=1Xk = Sn

n
, and the empirical measure

Ln =
1

n

n∑
k=1

δXk . (197)

The Theorem of Sanov gave a Large Deviation Principle for the exponential con-
centration of Ln around the only zero of the rate function D(·‖ν), given by ν.
In this sense, the distribution ν could be read from the empirical measure. The
contraction principle then allowed to derive a LDP for the empirical mean.

In this chapter, we consider a similar approach for the study of a Gibbs random
field on Zd. Assume the collection of random variables σ = (σx)x∈Zd is described
by a random field µ. The natural higher dimensional analogue of (197) is the
sequence of empirical fields Ln ∈M1(Ω), where 1

Ln = Ln(σ) :=
1

|Λn|
∑
x∈Λn

δθxσ . (198)

The aim of this chapter is to study the concentration of Ln under a Gibbs mea-
sure µ associated to a potential Φ. Similarly to the setting of the Theorem of
Sanov, a large deviation analysis of the distribution of Ln will lead to a rate
function given exactly by the relative entropy h(·|Φ) of Chapter 10. The interest
lies in the fact that from the Variational Principle (Theorem 10.2), the set on
which h(·|Φ) attains its minimum zero on the set of translation invariant Gibbs
measures, Gθ(Φ). And as we know from the study of the Ising model, Gθ(Φ) can
contain more than one element.

1The reason for defining the empirical measure in this way is the following. Assume the
distribution µ describing the system is unknown, and that one wants to guess the probability
that the the spin at the origin is +1, say, by looking only at a given configuration ω that was
drawn randomly. A natural way to do so is to estimate this probability by averaging the spins
in a neighbourhood of the origin:

LΛ({σ0 = +1}) :=
1

|Λ|
∑
x∈Λ

1{ωx=+1} ≡
1

|Λ|
∑
x∈Λ

δθxω({ω0 = +1})

93
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We will use two central results of Chapter 5, on the abstract theory of Large
Deviations: the Varadhan Lemma and the Theorem on tilted measures. Note
that since we are working on Zd, considering the thermodynamic limit along a
sequence of boxes Λn, the large deviation principles aluded to are always of speed
an := |Λn| (see Remark 5.1).

The material presented presented here is taken from Section 3.4 of [?], which
itself is largely inspired by Pfister’s lecture notes [?].

2. The Free Gibbs Measure

Let Φ be a translation invariant uniformly absolutely convergent potential. To
settle the large deviation study of the distribution of Ln under a Gibbs measure
specified by Φ, we will make a simplification which consists essentially in remov-
ing boundary terms which don’t contribute on the exponential scale, at which
large deviations occur 2. The resulting measure defined in (201) will be called
the free Gibbs measure. A more general treatment of the full Gibbs measure, with
boundary terms, can be found in [?].

First, we make explicit the appearance of the reference product measure λ in
the definition of the Gibbs measure, as was done with the distribution of the
magnetization for the Curie-Weiss model (see page 50). The sums over σΛ that
appear in the kernel γΦ

Λ are changed into integrals with respect to the product
reference measure λ. We start with the partition function:∑

σΛ∈ΩΛ

e−H
Φ
Λ (σΛωΛc ) = 2|Λ|

∫
ΩΛ

e−H
Φ
Λ (σΛωΛc )λΛ(dσΛ) .

We can thus redefine ZΦ
Λ (ωΛc) without the factor 2|Λ|,

ZΦ
Λ (ωΛc) :=

∫
ΩΛ

e−H
Φ
Λ (σΛωΛc )λΛ(dσΛ) ≡

∫
Ω

e−H
Φ
Λ (σΛωΛc )λ(dσ) ,

and do the same with the sum appearing in the numerator of the kernel, to obtain

γΦ
Λ (σΛ|ω) =

e−H
Φ
Λ (σΛωΛc )

ZΦ
Λ (ωΛc)

λΛ(σΛ) .

We then turn to the boundary terms. Since we will consider only the sequence
of cubes Λn, We know from (189) in Chapter 10 that uniformly in σ and ω,

HΦ
Λn(σΛnωΛcn)−

∑
x∈Λn

θxϕΦ(σ) = o(|Λn|) . (199)

2It is important to notice here that the construction of a Gibbs measure can indeed be very
sensitive to boundary terms, as we have seen with the Ising model at low temperature. Nev-
ertheless, our interest here is in large deviations properties of the measure, in which boundary
terms play no role.
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We can thus redefine the partition function without the boundary term o(|Λn|),
since it doesn’t contribute to the volume in the thermodynamic limit:

ZΦ
n :=

∫
Ω

e−
∑
x∈Λn

θxϕΦ(σ)λ(dσ) (200)

Then, the free Gibbs measure µΦ
n is defined naturally by

dµΦ
n

dλ
:=

e−
∑
x∈Λn

θxϕΦ(σ)

ZΦ
n

≡ e−|Λn|〈ϕΦ,Ln〉

ZΦ
n

. (201)

To define the distribution of Ln under µΦ
n , we endow M1(Ω) with the Borel σ-

algebra generated by the open sets of the topology of local convergence. For all
measurable B ⊂M1(Ω),

QΦ
n (B) := µΦ

n (Ln ∈ B) . (202)

We also define the distribution of Ln under the reference product measure:

Q0
n(B) = λ(Ln ∈ B) . (203)

Transporting the measure µΦ
n onto M1(Ω) thus gives

QΦ
n (B) =

∫
B

e−|Λn|〈ϕΦ,µ〉

ZΦ
n

Q0
n(dµ) . (204)

QΦ
n is thus a tilting of Q0

n, in the sense of (90) in Chapter 5. Moreover, µ 7→
−〈ϕΦ, µ〉 is bounded and continuous. We know that if a LDP holds for the se-
quence (Q0

n), Theorem 5.2 allows to derive a LDP for (QΦ
n ).

Remember that the same procedure was used for the Curie-Weiss model, in Chap-
ter 6. There, Q0

n denoted the distribution of the empirical mean Sn
n

of a sequence
of i.i.d. uniform {±1}-valued random variables, and a LDP for (Q0

n) followed
from the Cramér Theorem for i.i.d. sequences. Here, a LDP for the distribution
of Ln under the product measure λ will be more involved, due to the geometry
of Zd 3.

3. The LDP for Ln under the product measure

Theorem 11.1. Let Q0
n denote the distribution of Ln under the uniform product

measure λ (see (203)). Then (Q0
n) satisfies a LDP on M1(Ω) with speed |Λn| and

good affine rate function Iλ given by

Iλ(µ) =

{
h(µ|λ) if µ ∈M1,θ(Ω) ,

+∞ if µ ∈M1(Ω)\M1,θ(Ω) .
(205)

3A LDP for the empirical field of an i.i.d. sequence can be found in [?]. Observe that the
technique used therein is based on the Eulerian paths we considered in the proof of Theorem
3.2, and does not generalize easily to higher dimensions.
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Remember from Chapter 10 that h(µ|λ) equals log 2 − h(µ), and is lower semi-
continuous with compact level sets (Theorem 10.1). The strategy of the proof
is the following. First, we will show in Section 3.1 that a LDP holds for each

marginal πΛkLn, with a rate function I
(k)
λ . We then extend this to a LDP for

Ln with the rate function Iλ = supk≥1 I
(k)
λ , without knowing its relation with the

relative entropy given in (205). To identify Iλ(·) as h(·|λ), we will introduce in
Section 3.2 a generalization of the free energy ψ(Φ): for all f ∈ C(Ω),

ψ(f |λ) := lim
n→∞

1

|Λn|
log

∫
exp

( ∑
x∈Λn

θxf(σ)
)
λ(dσ) . (206)

f 7→ ψ(f |λ) is convex and lower semi-continuous. The relations between Iλ(·),
h(·|λ) and ψ(·|λ) are as follows. On one hand, using the Varadhan Lemma in
(206) will show that ψ(·|λ) is the Legendre transform of Iλ(µ) with respect to µ,
which we denote by I∗λ = ψ:

ψ(f |λ) = sup
µ∈M1,θ(Ω)

{〈f, µ〉 − Iλ(µ)} . (207)

On the other, we will see that h(·|λ) is the Legendre transform of ψ(f |λ) with
respect to f , ψ∗ = h(·|λ): for all µ ∈M1,θ(Ω),

sup
f∈C(Ω)

{〈f, µ〉 − ψ(f |λ)} = h(µ|λ) . (208)

Therefore, h(·|λ) equals the double Legendre transform of Iλ(·): (I∗λ)∗ = h(·|λ).
Since Iλ is convex and lower semi-continuous, an classical duality theorem from
convex analysis implies that (I∗λ)∗ = Iλ, i.e. that Iλ(·) = h(·|λ).

3.1. The LDP for the marginals of Ln. Let πΛkLn denote the marginal
of Ln on M1(ΩΛk). We will denote a generic element of M1(ΩΛk) by α. The open
ball with radius δ > 0 centered at α is denoted Bδ(α) := {α′ : ‖α′ − α‖1 < δ}.

Proposition 11.1. Let Q
(k)
n denote the distribution of πΛkLn under λ. Then the

sequence (Q
(k)
n )n≥1 satisfies a LDP with speed |Λn| and with the good convex rate

function I
(k)
λ : M1(ΩΛk)→ [0,+∞], given by

I
(k)
λ (α) := − lim

ε↘0
lim sup
n→∞

1

|Λn|
log λ

{
πΛkLn ∈ Bε(α)

}
, (209)

= − lim
ε↘0

lim inf
n→∞

1

|Λn|
log λ

{
πΛkLn ∈ Bε(α)

}
. (210)

The technical estimate needed for the proof is given in
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Lemma 11.1. Let f : Ω → Rl be local, and φ : Rl → [0,∞) be convex. For all
ε > 0 and Λ ⊂ Zd finite, let EΛ(ε) be the event defined by

EΛ(ε) :=
{
σ ∈ Ω : φ

( 1

|Λ|
∑
x∈Λ

θxf(σ)
)
< ε
}
. (211)

Then for all δ > 0 and all ε′ > ε, there exists M0 = M0(δ, ε, ε′) and N0 =
N0(ε, ε′,m, δ) such that for all m ≥M0 and all n ≥ N0,

1

|Λn|
log λ(EΛn(ε)) ≥ (1− δ) 1

|Λm|
log λ(EΛm(ε′)) . (212)

Proof. Let r > 0 be such that f is FΛr -measurable. Fix δ, ε and ε′ as in
the statement. For large n, we decompose Λn into a maximal union of disjoint
translates of Λm+r: Λn =

⋃K
i=1 Λi

m+r ∪ Rn. For each i, let ai ∈ Zd denote the

center of the box Λi
m+r, and let Λ

(i)
m := Λm + ai. We write (see Figure 1)

Λn =
K⋃
i=1

Λ(i)
m ∪ R̃m,n . (213)

The corridors R̃m,n satisfy limm limn
|R̃m,n|
|Λn| = limm

|Λm+r\Λm|
|Λm| = 0. Since φ is

convex, it is continuous. Since f is local it is also bounded. Therefore, m and n
can be taken large enough so that

φ
( 1

|Λn|
∑
x∈Λn

θxf(σ)
)
≤ φ

( 1

| ∪Ki=1 Λ
(i)
m |

∑
x∈∪Ki=1Λ

(i)
m

θxf(σ)
)

+ (ε− ε′) ,

uniformly in σ. We also take m and n large enough to that K|Λm| ≥ (1− δ)|Λn|.
By the convexity of φ we have, on

⋂K
i=1 EΛ

(i)
m

(ε′),

φ
( 1

| ∪Ki=1 Λ
(i)
m |

∑
x∈∪Ki=1Λ

(i)
m

θxf(σ)
)

= φ
( 1

K

K∑
i=1

1

|Λ(i)
m |

∑
x∈Λ

(i)
m

θxf(σ)
)

(214)

≤
K∑
i=1

1

K
φ
( 1

|Λ(i)
m |

∑
x∈Λ

(i)
m

θxf(σ)
)
< ε′ ,

Figure 1. The decomposition of Λn in (213), in two dimensions.

The gray part represents R̃m,n, the corridors between the boxes

Λ
(i)
m .
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which implies that
⋂K
i=1 EΛ

(i)
m

(ε′) ⊂ EΛn(ε). So, by independence of the events

E
Λ

(i)
m

(ε′) and translation invariance of λ,

1

|Λm|
log λ(EΛm(ε′)) =

1

K|Λm|
log λ

( K⋂
i=1

E
Λ

(i)
m

(ε′)
)

≤ 1

K|Λm|
log λ(EΛn(ε)) ≤ 1

(1− δ)
1

|Λn|
log λ(EΛn(ε)) .

�

Observe that the only place where we used the fact that λ is a product measure
is in the last display. It happens that the lemma above is a simplification of a
more general statement, valid when λ is replaced by any asymptotically decoupled
measure. See [?] or [?] for more details.

Proof of Proposition 11.1: We first show the equivalence of the limits
(209)-(210) (although both may be infinite). Fix k ≥ 1 and consider temporarily
the alphabet A := ΩΛk . We identify A with a subset of Rl, where l := |Ak|, and
write A = {a1, . . . , al}. Consider f : Ω → Rl defined by f(σ)j := 1{πΛk

σ=aj}.

Fix α ∈ M1(A), and define the convex function φα : Rl → [0,∞) by φα(x) :=∑l
j=1 |α(aj)− xj|. We get

{πΛkLn ∈ Bε(α)} = {φα(πΛkLn) < ε} ≡ EαΛn(ε)

Let cn(ε) := |Λn|−1 log λ(EαΛn(ε)), c(ε) := lim infn cn(ε), c(ε) := lim supn cn(ε). Fix
δ > 0, ε > ε′ > 0, m and n as in Lemma 11.1. By (212), cn(ε) ≥ (1 − δ)cm(ε′).
This implies c(ε) ≥ c(ε′) ≥ c(ε′). Taking ε′ ↘ 0 followed by ε ↘ 0 proves that
(209)=(210).

We show that I
(k)
λ is lower semi-continuous. Let α be such that I

(k)
λ (α) > a. Then

there exists ε > 0 such that

lim sup
n→∞

1

|Λn|
log λ

{
πΛkLn ∈ Bε(α)

}
< −a .

If α′ ∈ Bε/2(α) and ε′ < ε/2, then Bε′/2(α′) ⊂ Bε(α). Therefore,

lim sup
n→∞

1

|Λn|
log λ

{
πΛkLn ∈ Bε′(α

′)
}
< −a .

Taking ε′ ↘ 0 gives −I(k)
λ (α′) < −a, so I

(k)
λ is lower semi-continuous.

We then show that

I
(k)
λ

(α + β

2

)
≤ 1

2
(I

(k)
λ (α) + I

(k)
λ (β)) , (215)

which implies that I
(k)
λ is convex. The proof is similar to that of Lemma 11.1.

Consider the decomposition (213), where for simplicity we can assume that K is

even. Divide the set of boxes Λ
(i)
m in two groups: those with i ∈ E, and the others
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j ∈ D, where E = {1, 2, . . . , K/2}, D = {K/2, . . . , K}. We then proceed as in
(214), to decompose 4

φα+β
2

( 1

| ∪Ki=1 Λ
(i)
m |

∑
x∈∪Ki=1Λ

(i)
m

θxf
)

≤ 1

2|E|
∑
i∈E

φα

( 1

|Λ(i)
m |

∑
x∈Λ

(i)
m

θxf
)

+
1

2|D|
∑
j∈D

φβ

( 1

|Λ(j)
m |

∑
x∈Λ

(j)
m

θxf
)

This implies that (⋂
i∈E

Eα
Λ

(i)
m

(ε′) ∩
⋂
j∈D

E
β

Λ
(j)
m

(ε′)
)
⊂ E

α+β
2

Λn
(ε) ,

from which (215) follows, after the proper limiting procedures. We then show

that the sequence (Q
(k)
n ) satisfies a LDP with rate function I

(k)
λ . We start with

the lower bound. Let G ⊂M1(A) be open, non-empty, and take any α ∈ G. If ε
is small enough, then G ⊃ Bε(α). Therefore by (210),

lim inf
n→∞

1

|Λn|
logQ(k)

n (G) ≥ lim
ε↘0

lim inf
n→∞

1

|Λn|
logQ(k)

n (Bε(α)) = −I(k)
λ (α) .

For the upper bound, let F ⊂ M1(A) be closed. Since M1(A) is compact, F is
also compact. Cover F with a finite set of open balls Bε(αi), αi ∈ F , i = 1, . . . , N .
By Lemma 5.5 of Chapter 5,

lim sup
n→∞

1

|Λn|
logQ(k)

n (F ) ≤ max
1≤i≤N

lim sup
n→∞

1

|Λn|
logQ(k)

n (Bε(αi))

After taking ε↘ 0, (209) gives

lim sup
n→∞

1

|Λn|
logQ(k)

n (F ) ≤ − min
1≤i≤N

I
(k)
λ (αi) ≤ − inf

α∈F
I

(k)
λ (α) .

�

We are now ready to prove the first part of Theorem 11.1, i.e. the validity of a
LDP, without yet identifying the rate function as in (205). Remember the metric
ρ(·, ·) we used to characterize the weak topology on M1(Ω):

ρ(µ, ν) := sup
n≥1

1

n
max

ωΛn∈ΩΛn

|µ(Π−1
Λn

(ωΛn))− ν(Π−1
Λn

(ωΛn))|

Denote again by Bδ(µ) := {µ′ : ρ(µ′, µ) < ε} the open ball of radius δ centered
at µ.

Corollary 11.1. Let Q0
n denote the distribution of Ln under the uniform product

measure λ. The sequence (Q0
n) satisfies a LDP on M1(Ω) with speed |Λn| and good

4Observe that φα+β
2

(x) ≤ 1
2φα(x) + 1

2φβ(x).
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rate function Iλ : M1(Ω) → [0,+∞], given by Iλ(µ) := supk≥1 I
(k)(πΛkµ). Iλ is

convex and satisfies:

Iλ(µ) = − lim
ε↘0

lim sup
n→∞

1

|Λn|
log λ

{
Ln ∈ Bε(µ)

}
, (216)

= − lim
ε↘0

lim inf
n→∞

1

|Λn|
log λ

{
Ln ∈ Bε(µ)

}
. (217)

Moreover, Iλ =∞ on M1(Ω)\M1,θ(Ω).

Proof. We first show that there exists k ≥ 1 such that

lim
ε↘0

lim inf
n→∞

1

|Λn|
log λ{Ln ∈ Bε(µ)} ≥ −I(k)

λ (πΛkµ) . (218)

Namely, fix ε > 0 and take k ≥ 0 such that 1/k < ε. If ‖πΛkLn−πΛkµ‖1 < ε2−|Λk|,
then for all j ≤ k,

1

j
max
ωΛj

|πΛjLn(ωΛj)− πΛjµ(ωΛj)| ≤ 2|Λk|max
ωΛk

|πΛkLn(ωΛk)− πΛkµ(ωΛk)|

≤ 2|Λk|‖πΛkLn − πΛkµ‖1 < ε ,

and therefore ρ(Ln, µ) < ε. We thus have

lim inf
n→∞

1

|Λn|
log λ{Ln ∈ Bε(µ)} ≥ lim inf

n→∞

1

|Λn|
log λ

{
πΛkLn ∈ B ε

2|Λk|
(πΛk(µ))

}
,

and (218) follows by taking ε ↘ 0. On the other hand, ρ(Ln, µ) < ε implies
‖πΛkLn − πΛkµ‖1 < εk2|Λk| for all k, and so

lim sup
n→∞

1

|Λn|
log λ{Ln ∈ Bε(µ)} ≤ lim sup

n→∞

1

|Λn|
log λ

{
πΛkLn ∈ Bεk2|Λk|(πΛkµ)

}
.

By taking the limit ε ↘ 0 followed by the infimum over k ≥ 0, this concludes
the proof that (216) = (217) = supk≥1 I

(k)(πΛkµ). The lower semi-continuity of

Iλ follows from the lower semi-continuity of each I
(k)
λ and from the continuity of

each projection πΛk . The convexity of Iλ also follows from the convexity of I
(k)
λ .

Once the above properties of Iλ are established, the upper and lower bounds of

the LDP for (Q0
n) are obtained exactly as for the sequences (Q

(k)
n ). In particular,

the upper bound for closed sets is obtained using the compacity of M1(Ω).
For the last statement, let µ ∈M1(Ω)\M1,θ(Ω). Then δ := ρ(µ, θxµ) > 0 for some
x ∈ Zd. By the triangle inequality, δ ≤ ρ(µ, Ln) + ρ(Ln, θxLn) + ρ(θxLn, θxµ).
Since ρ(Ln, θxLn)→ 0 when n→∞, uniformly on Ω, we have {ρ(µ, Ln) < δ/3}∩
{ρ(θxµ, θxLn) < δ/3} = ∅ when n is large enough. If there existed a subsequence
Lnk such that ρ(µ, Lnk) → 0, then we would also have ρ(θxµ, θxLnk) → 0, which
is impossible. So there exists ε > 0 such that lim infn ρ(µ, Ln) ≥ 2ε > 0. As a
consequence, Ln 6∈ Bε(µ) for all large enough n, and so

Iλ(µ) = − lim
ε↘0

lim sup
n→∞

1

|Λn|
log λ{Ln ∈ Bε(µ)} = +∞ . �
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3.2. The Free Energy and the Varadhan Lemma. The key to the iden-
tification of the rate function Iλ as the relative entropy studied in the previous
section is to introduce a generalization of the free energy studied in Chapter 10.

Theorem 11.2. For all f ∈ C(Ω), n ≥ 1, let

ψn(f |λ) :=
1

|Λn|
log

∫
Ω

exp
( ∑
x∈Λn

θxf(σ)
)
λ(dσ) . (219)

Then ψ(f |λ) := limn→∞ ψn(f |λ) exists, and equals

ψ(f |λ) = sup
µ∈M1(Ω)

{〈f, µ〉 − Iλ(µ)} . (220)

The mapping f 7→ ψ(f |λ) is convex. Since |ψ(f |λ)−ψ(g|λ)| ≤ ‖f − g‖, it is also
continuous.

Proof. By writing
∑

x∈Λn
θxf = |Λn|〈f, Ln〉, transporting the measure onto

M1(Ω) gives

ψn(f |λ) =
1

|Λn|
log

∫
Ω

e|Λn|〈f,Ln〉λ(dσ) =
1

|Λn|
log

∫
M1(Ω)

e|Λn|〈f,µ〉Q0
n(dµ) .

Since the sequence (Q0
n) satisfies a LDP with speed |Λn| and rate function Iλ and

since µ 7→ 〈f, µ〉 is continuous and bounded, the Varadhan Lemma 5.1 implies
(220). Convexity of f 7→ ψn(f |λ) (and thus of f 7→ ψ(f |λ)) follows by the Hölder
Inequality, as was done for the Curie-Weiss and Ising models. For the last claim,
let f, g ∈ C(Ω). Set ft := tf + (1− t)g. Then f ′t = f − g and so

|ψn(f |λ)− ψn(g|λ)| = 1

|Λn|

∣∣∣ ∫ 1

0

dt
d

dt
log

∫
Ω

exp
( ∑
x∈Λn

θxft

)
dλ
∣∣∣ ≤ ‖f − g‖ . �

The difference between ψn(−ϕΦ|λ) ≡ 1
|Λn| logZΦ

n and the finite volume free en-

ergy 1
|Λn| logZΦ

Λn
(ωΛcn) (see (190) of Chapter 10) is, as we have seen, that the latter

contains a boundary term, which we estimated in (199). Since this term vanishes
in the thermodynamic limit, ψ(Φ) = log 2 + ψ(−ϕΦ|ν) (the log 2 comes from the
fact that ψ(·|λ) is defined with the help of the normalized reference measure λ).

We now turn to the link between ψ(f |λ) and the relative entropy. Let ψ∗(·|λ) :
M1(Ω)→ R denote the Legendre transform of ψ(f |λ) with respect to f :

ψ∗(µ|λ) := sup
f∈C(Ω)

{〈f, µ〉 − ψ(f |λ)} . (221)

Proposition 11.2. For all µ ∈M1,θ(Ω), ψ∗(µ|λ) = h(µ|λ).

We need the following result, which was essentially proved in the Introduction of
Chapter 10, and which gives the finite volume equivalent of Proposition 11.2.

Lemma 11.2. Let Λ ⊂ Zd be finite. Then for all µ ∈M1(Ω),

HΛ(µ|λ) = sup
U

{
〈U, µ〉 − log

∫
eU(σ)λ(dσ)

}
, (222)

where the supremum is over all FΛ-measurable functions U : Ω→ R.
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Figure 2. The maximal decomposition of Λn into translates of
Λm, with a rest Rn.

Proof. By Jensen’s Inequality,

HΛ(µ|λ)− 〈U, µ〉 = −
∑
σΛ

µΛ(σΛ) log
[λΛ(σΛ)

µΛ(σΛ)
eU(σΛ)

]
≥ − log

∑
σΛ

eU(σΛ)λΛ(σΛ)

≡ − log

∫
eU(σ)λ(dσ) .

On the other hand, if U∗(σ) := log µΛ(σΛ)
λΛ(σΛ)

, then

〈U∗, µ〉 − log

∫
eU∗(σ)λ(dσ) ≡ HΛ(µ|λ) . �

Proof of Proposition 11.2: We first show that

sup
f∈Loc(Ω)

{〈f, µ〉 − ψ(f |λ)} ≤ h(µ|λ) . (223)

Let f ∈ Loc(Ω) be FΛr -measurable for some r ≥ 1. Define U :=
∑

x∈Λn
θxf , which

is FΛn+r -measurable. Using Lemma 11.2 in the box Λn+r and the invariance of µ,

HΛn+r(µ|λ) ≥ 〈U, µ〉 − log

∫
eU(σ)λ(dσ)

= |Λn|{〈f, µ〉 − ψn(f |λ)} .

Dividing by |Λn| and taking n→∞ gives h(µ|λ) ≥ 〈f, µ〉 − ψ(f |λ). This proves
(223). We then show that

sup
f∈Loc(Ω)

{〈f, µ〉 − ψ(f |λ)} ≥ h(µ|λ) . (224)

Let k ≥ 1 and let f be FΛk-measurable. For large n, decompose Λn into a
maximal disjoint union of translates of Λk, as we did in the first steps of the
proof of Lemma 11.1: Λn =

⋃K
i=1 Λi

k ∪Rn (see Figure 2). Let ai denote the center
of Λi

k. Then,

∣∣∣ ∑
x∈Λn

θxf −
∑
x∈Λk

K∑
i=1

θx+aif
∣∣∣ =

∣∣∣ ∑
x∈Λn

θxf −
K∑
i=1

∑
x∈Λik

θxf
∣∣∣ ≤ |Rn|‖f‖ .
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Now,

ψn(f |λ) ≤ 1

|Λn|
log

∫
exp

( ∑
x∈Λk

K∑
i=1

θx+aif
)
λ(dσ) +

|Rn|‖f‖
|Λn|

≤ 1

|Λn|
log

∫
exp

(
|Λk|

K∑
i=1

θaif
)
λ(dσ) +

|Rn|‖f‖
|Λn|

=
K

|Λn|
log

∫
exp

(
|Λk|f

)
λ(dσ) +

|Rn|‖f‖
|Λn|

≤ 1

|Λk|
log

∫
exp

(
|Λk|f

)
λ(dσ) +

|Rn|‖f‖
|Λn|

In the second inequality we used the Hölder’s Inequality repeatedly, in the equality
we used the independence of the functions θaif and the invariance of λ. Defining
U := |Λk|f ,

〈f, µ〉 − ψn(f |λ) ≥ 1

|Λk|

{
〈U, µ〉 − log

∫
eUdλ

}
− |Rn|‖f‖
|Λn|

.

Taking n→∞, the term |Rn|‖f‖
|Λn| disappears. This shows that

sup
f∈Loc(Ω)

{〈f, µ〉 − ψ(f |λ)} ≥ 1

|Λk|

{
〈U, µ〉 − log

∫
eUdλ

}
Taking then the sup over U gives, using Lemma 11.2 in the box Λk,

sup
f∈Loc(Ω)

{〈f, µ〉 − ψ(f |λ)} ≥ 1

|Λk|
HΛk(µ|λ) .

We then get (224) by taking k → ∞. Since Loc(Ω) is dense in C(Ω), and since
f 7→ 〈f, µ〉−ψ(f |λ) is continuous, Loc(Ω) in (223) and (224) can then be replaced
by C(Ω), which proves that ψ∗(µ|λ) = h(µ|λ). �

Proof of Theorem 11.1: Since we know that Iλ =∞ on M1(Ω)\M1,θ(Ω),
we only need to show that Iν(µ) = h(µ|ν) for all µ ∈ M1,θ(Ω) to conclude the
proof of Theorem 11.1. We know that I∗λ = ψ(·|λ), and we have just seen that
ψ∗(µ|λ) = h(µ|ν). That is, (I∗λ)∗ = h(·|λ) on M1(Ω). Since Iλ is convex and
lower semi-continuous, a well-known theorem of convex analysis (see next section)
implies that (I∗λ)∗ = Iλ, thus showing that Iλ(·) = h(·|λ). �

3.3. Parenthesis: Convex duality. The conclusion of the proof of Theo-
rem 11.1 was based on a convex duality argument, saying under which conditions
can a function be recuperated from its Legendre transform.

Theorem 11.3. Let X be a locally convex Hausdorff topological vector space. Let
F : X → (−∞,∞] be convex and lower semi-continuous. Let X∗ denote the
topological dual of X, i.e. the set of all continuous linear functionals x∗ : X→ R
(we write x∗(x) ≡ 〈x, x∗〉). Let F ∗ : X∗ → R be the Legendre transform of F :

F ∗(x∗) := sup
x∈X
{〈x, x∗〉 − F (x)} . (225)
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Then F is the Legendre transform of F ∗: for all x ∈ X,

F (x) = sup
x∗∈X∗

{〈x, x∗〉 − F ∗(x∗)} . (226)

For our needs, X ≡ M(Ω), the space of signed measures on Ω, whose dual is
C(Ω), and F := Iλ (extended by setting Iλ :=∞ on M(Ω)\M1(Ω)).
Below, we give a proof of this result in the case where X ≡ R, whose dual is R
itself, and 〈x, x∗〉 := xx∗, but we continue using the notation with brackets 〈·, ·〉.

Theorem 11.4. Let f : R → (−∞,∞] be convex, lower semi-continuous, and
such that f 6≡ ∞. Then (f ∗)∗ = f .

Let the epigraph of f be defined by E := {(x, y) : y ≥ f(x)}. It is easy to show
that E ⊂ R2 is closed (resp. convex) if and only if f is lower semi-continuous
(resp. convex). Of course, E 6= ∅ if and only if f 6≡ ∞. The epigraph of f ∗,
denoted E∗, is defined in the same way.

Proof. First, write f(x) = infy≥f(x) y, and the Legendre transform as

f ∗(x∗) = sup
x∈R

sup
y≥f(x)

{〈x, x∗〉 − y} ≡ sup
(x,y)∈E

{〈x, x∗〉 − y} .

Therefore, f ∗(x∗) ≥ 〈x, x∗〉−y for all x∗ and for all (x, y) ∈ E. As a consequence,
y ≥ supx∗{〈x, x∗〉 − f ∗(x∗)} for all (x, y) ∈ E. In particular,

f(x) ≥ sup
x∗

{〈x, x∗〉 − f ∗(x∗)} , ∀x . (227)

To show the converse inequality, i.e. f(x) ≤ supx∗{〈x, x∗〉 − f ∗(x∗)}, we must
show that for all y < f(x), there exists x∗ such that 〈x, x∗〉 − f ∗(x∗) ≥ y. To do
so, we will show the following stronger statement:

∀(x, y) 6∈ E , ∃ (x∗, y∗) ∈ E∗ such that 〈x, x∗〉 − y∗ ≥ y .

Since E is convex and closed, there exists a unique (x0, y0) ∈ E which realizes
the distance from (x, y) to E (see Figure 3). Let π denote the straight line

Figure 3. The separating line π.

separating (x, y) from E, orthogonal and passing through the midpoint of the
segment joinging (x, y) to (x0, y0). Let (x∗, y∗) ∈ R2 be the pair characterizing
the inclination and abcisse at the origin of π, in the sense that π has equation
x 7→ 〈x, x∗〉 − y∗. Since (x, y) lies below π, we have 〈x, x∗〉 − y∗ ≥ y. Then, since
E lies above π, we have f(x) ≥ 〈x, x∗〉 − y∗ for all x, and so y∗ ≥ 〈x, x∗〉 − f(x),
i.e. also y∗ ≥ f ∗(x∗). That is, (x∗, y∗) ∈ E∗. �

Observe that the first half of the proof goes through in the case treated in Theorem
11.1 giving the equivalent of the lower bound (227) for all µ ∈M1(Ω):

Iλ(µ) ≥ sup
f∈C(Ω)

{〈f, µ〉 − ψ(f |λ)} .
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For the upper bound, a geometric argument similar to the one used on Figure
3 must be used, but in an infinite-dimensional setting. There, the existence of
separating hyperplanes follows by an abstract functional-analytic argument (the
Geometric Hahn-Banach Theorem). We refer the reader to Chapter 6 of [?] for a
complete proof of Theorem 11.3.

4. The LDP for Ln under the Free Gibbs measure

We can finally make the link between the Variational Principle of the previous
chapter and the Large Deviations of the empirical field.

Theorem 11.5. Let Φ be a translation invariant uniformly absolutely summable
potential. Let QΦ

n denote the distribution of Ln under µΦ
n . The sequence (QΦ

n )
satisfies a Large Deviation Principle with a good rate function JΦ : M1(Ω) →
[0,+∞] given by

JΦ(µ) :=

{
h(µ|Φ) if ν ∈M1,θ(Ω) ,

∞ if ν ∈M1(Ω)\M1,θ(Ω) .
(228)

Proof. We know that µ 7→ 〈−ϕΦ, µ〉 is continuous and bounded. By the
representation of QΦ

n in (204), the LDP for (Q0
n) in Theorem 11.1, and from

Theorem 5.2 on tilted measures, (QΦ
n ) satisfies a LDP with the rate function

JΦ(µ) = sup
µ∈M1(Ω)

{〈−ϕΦ, µ〉 − Iλ(µ)} − {〈−ϕΦ, µ〉 − Iλ(µ)} ,

= ψ(−ϕΦ|λ)− {〈−ϕΦ, µ〉 − Iλ(µ)} .
If µ ∈M1(Ω)\M1,θ(Ω), then JΦ(µ) =∞. Remembering that ψ(−ϕΦ|λ) = ψ(Φ)−
log 2 and that Iλ(µ) = h(µ|λ) = log 2− h(µ) on M1,θ(Ω) we get, for µ ∈M1,θ(Ω),

JΦ(µ) = ψ(Φ)− {h(µ)− 〈ϕΦ, µ〉} ≡ h(µ|Φ) ,

by the Variational Principle. �


