L'intégrale \(\displaystyle \int_1^2 \frac{1}{x\,(x^2+3)}\,\mathrm{d}x \)
vaut:
- \(\displaystyle\tfrac13\log(2)-\tfrac19\log\left(\tfrac74\right)\)
- \(\displaystyle\log(4)+\log\left(\tfrac72\right)\)
- \(\displaystyle\log(2)+\tfrac{1}{\sqrt{3}}\arctan(2)\)
- \(\displaystyle\tfrac13\log(2)-\tfrac16\log\left(\tfrac74\right)\)