
Chapitre 1

Suites réelles

1.1 Introduction

Une suite réelle peut être vue comme une liste infinie de nombres réels, écrit dans un certain
ordre :

a1, a2, a3, a4, . . .

Ici, a1 est le premier terme, a2 le deuxième terme, etc. On peut parler du terme général, an.
Le nombre naturel n est appelé l’indice (ou le rang) de an. Voici une définition plus précise.

Définition 1.1. Une suite de nombres réels est une application

a : N∗ −→ R
n 7−→ a(n) = an.

On écrit (an)n∈N∗ , ou simplement (an), pour la suite définie ainsi.

Exemple 1.2. • an = n : 1, 2, 3, 4, 5, . . .
• an = 1

n
: 1, 1

2
, 1
3
, 1
4
, 1
5
, . . .

• an = 42 : 42, 42, 42, 42, 42, . . .
• an = (−1)n : −1, 1,−1, 1,−1, 1, . . .
• an = n-ième chiffre du développement décimal de π (π = 3.14159 . . .) : 1, 4, 1, 5, 9, 2, . . .

⋄
Il y a plusieurs façons de définir des suites :

• par une formule explicite de an en fonction de n, par exemple an = n2 ;
• de manière descriptive, ou implicite, par exemple an = n-ième chiffre du développe-

ment décimal de π ;
• par une relation de récurrence, où an est exprimé en fonction des termes précédents,

en précisant quelques premiers termes, par exemple an+1 = 2an − 1, a1 = 1.
Parfois, c’est utile de représenter les suites graphiquement. On peut représenter une suite
(an) sur la droite réelle R :
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1.2. Suites majorées, minorées, monotones

On peut aussi tracer le graphe de la fonction a : N∗ → R, a(n) = an dans le plan :

Les points dessinés sont de la forme (n, an).

1.2 Suites majorées, minorées, monotones

Définitions 1.3. Soit (an) une suite.
• (an) est majorée (ou bornée supérieurement) s’il existe M ∈ R tel que an ⩽ M pour

tout n ∈ N∗. Un tel M est appelé majorant (ou borne supérieure) de (an).
• (an) est minorée (ou bornée inférieurement) s’il existe m ∈ R tel que an ⩾ m pour

tout n ∈ N∗. Un tel m est appelé minorant (ou borne inférieure) de (an).
• (an) est bornée si elle est majorée et minorée.

Remarques
• (an) est bornée si et seulement s’il existe C > 0 tel que |an| ⩽ C pour tout n ∈ N∗.
• Une suite majorée (an) possède plusieurs majorants : si M est un majorant, alors

tout N ⩾ M est aussi un majorant. Si on voulait montrer qu’une suite est majo-
rée, n’importe quel majorant suffit. La remarque analogue et aussi vraie pour le
minorant.

Exemples 1.4. • La suite an = 1
n

est minorée car an ⩾ 0 pour tout n, et majorée car
an ⩽ 1 pour tout n. Cette suite est donc bornée.

• La suite an = n2 est minorée car an ⩾ 0 pour tout n. Par contre, (an) n’est pas majorée
car il n’existe pas M tel que n2 ⩽ M pour tout n.

Démonstration. Si M ∈ R était un majorant, on aurait n2 ⩽ M ∀n. Mais en prenant
n >

√
|M |, on a n2 > |M | ⩾ M et donc M ne peut pas être un majorant de (an). ⋄

• La suite an = −n est majorée car an ⩽ 0 pour tout n. Par contre, (an) n’est pas mino-
rée : il n’existe pas m tel que −n ⩾ m pour tout n.

• an = (−1)n est bornée. En effet, |an| = 1, et donc en particulier −1 ⩽ an ⩽ 1 pour tout
n.
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1.2. Suites majorées, minorées, monotones

• an = (−1)n · n−1
n

est bornée. En effet, pour tout n ⩾ 1,

|an| =
∣∣∣∣n− 1

n

∣∣∣∣ = ∣∣∣∣1− 1

n

∣∣∣∣ = 1− 1

n
< 1 .

• an = n · (−1)n n’est ni majorée ni minorée.
• an = 2n−1

2n+1
est bornée : 0 ⩽ 2n−1

2n+1
⩽ 2n

2n
= 1 pour tout n ⩾ 1.

• an = 6n+100
n+10

est minorée. En effet, pour tout n ⩾ 1,

6n+ 100

n+ 10
⩾

6n

n+ 10
⩾

6n

11n
=

6

11
.

(Dans la deuxième inégalité, on a utilisé le fait que 10 ⩽ 10n.) On obtient un minorant
un peu meilleur en faisant

6n+ 100

n+ 10
⩾

6n+ 60

n+ 10
=

6(n+ 10)

n+ 10
= 6 .

• an =
√
n (n ⩾ 0) est clairement minorée par 0, mais n’est pas majorée. En effet, pour

M > 0 donné, soit A le plus petit entier plus grand ou égal à M . Alors

aA2+1 =
√
A2 + 1 >

√
A2 = A ⩾ M .

⋄
Remarque 1.5. Pour majorer un quotient A

B
où A,B > 0, on peut chercher A′ et B′ tels que

A′ ⩾ A et 0 < B′ ⩽ B, puis écrire
A

B
⩽

A′

B′ .

⋄

1.2.1 Monotonicité
Définitions 1.6. Soit (an) une suite.

• (an) est croissante si an ⩽ an+1 pour tout n ∈ N∗.
• (an) est strictement croissante si an < an+1 pour tout n ∈ N∗.
• (an) est décroissante si an ⩾ an+1 pour tout n ∈ N∗.
• (an) est strictement décroissante si an > an+1 pour tout n ∈ N∗.
• (an) est monotone si elle est croissante ou décroissante.
• (an) est strictement monotone si elle est strictement croissante ou strictement décrois-

sante.

Exemples 1.7. • an = 1
n

est strictement décroissante car an = 1
n
> 1

n+1
= an+1 pour tout

n.
• an = n2 est strictement croissante car an = n2 < (n+ 1)2 = an+1.
• an =

√
n est croissante.

• an = (−1)n n’est ni croissante, ni décroissante.
• an = (−1)n · n−1

n
n’est ni croissante ni décroissante : a2 > a1 mais a3 < a2.

• an = 3n+4
n+1

est strictement décroissante.
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1.3. Suites tendant vers l’infini

Démonstration.

an − an+1 =
3n+ 4

n+ 1
− 3(n+ 1) + 4

(n+ 1) + 1
=

1

(n+ 1)(n+ 2)
> 0 ,

donc an > an+1. ⋄

• Soit (αn) une suite telle que αn ⩾ 0 pour tout n. Alors la suite (an) définie par an =
α1 + α2 + · · ·+ αn est croissante, puisque an+1 − an = αn+1 ⩾ 0.

⋄

1.3 Suites tendant vers l’infini

On dit qu’une suite tend vers l’infini si pour n’importe quel nombre M , les termes de la suite
deviennent plus grand que M à partir d’un certain indice. Voici la définition formelle.

Définition 1.8. Une suite (an)

1. tend vers +∞ si pour tout M > 0 il existe N0 ∈ N∗ tel que an ⩾ M pour tout n ⩾ N0.
On écrit limn→∞ an = +∞, ou an → +∞.

2. tend vers −∞ si pour tout m < 0 il existe N0 ∈ N∗ tel que an ⩽ m pour tout n ⩾ N0.
On écrit limn→∞ an = −∞, ou an → −∞.

On dit aussi que la suite diverge vers l’infini.

Il faut penser de M comme un “seuil”. Une suite tendant vers +∞ va, au bout d’un moment,
dépasser et rester au dessus de n’importe quel seuil. L’indice N0 à partir duquel elle dépasse
seuil dépend de la valeur de M .

Définition 1.9. Une suite (an) tend vers −∞ si pour tout m < 0 il existe N0 ∈ N∗ tel que
an ⩽ m pour tout n ⩾ N0. On écrit limn→∞ an = −∞, ou an → −∞.

Pour pouvoir facilement parler du comportement d’une suite lorsque l’indice n devient de
plus en plus grand, il est pratique d’introduire la terminologie suivante : étant donné N0 ∈
N∗, l’ensemble {n ∈ N : n ⩾ N0} est appelé un voisinage de l’infini. La définition de tendre
vers l’infini devient donc : an → ∞ si pour tout M > 0, il existe un voisinage de l’infini tel
que an ⩾ M pour des indices n dans ce voisinage de l’infini.

Exemples 1.10. • {n ∈ N : n ⩾ 173} est un voisinage de l’infini.
• {n ∈ N : (n− 7)2 > 4} contient un voisinage de l’infini.
• {2n : n ∈ N} ne contient pas un voisinage de l’infini.

⋄
Exemple 1.11. Soit an = n2−1

3n
. Montrons que an → ∞.

Étant donné un M > 0, il nous faut montrer qu’il existe N0 tel que an ⩾ M pour tout n ⩾ N0.
On a
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1.3. Suites tendant vers l’infini

an ⩾ M ⇐⇒ n2 − 1

3n
⩾ M

⇐⇒ n2 − 1 ⩾ 3Mn

⇐⇒ n2 − 3Mn− 1 ⩾ 0

⇐⇒ n ∈

]
−∞,

3M −
√
9M2 + 4

2

]
∪

[
3M +

√
9M2 + 4

2
,∞

[
.

Si on choisit N0 ∈
[
3M+

√
9M2+4
2

,∞
[
, on aura an ⩾ M pour tout n ⩾ N0, par les équivalences

au-dessus. On peut donc par exemple prendre

N0 =

⌈
3M +

√
9M2 + 4

2

⌉
,

le nombre réel 3M+
√
9M2+4
2

arrondi vers le haut. ⋄
Exemple 1.12. Soit α > 0 et an = αn. On va montrer que an → ∞.

Etant donné M > 0, il faut donner un N0 tel que an > M pour tout n ⩾ N0. Or αn > M ⇔
n > M

α
. On choisit donc n’importe quel entier N0 >

M
α

, il sera tel que

n ⩾ N0 ⇒ n >
M

α
⇒ an > M.

⋄
Exemple 1.13. Montrons que an =

√
n tend vers l’infini.

Etant donné M > 0, il faut donner un N0 tel que an > M pour tout n ⩾ N0. Or
√
n > M ⇔

n > M2.

On choisit donc n’importe quel entier N0 > M2, il sera tel que

n ⩾ N0 ⇒ an > M.

⋄
Remarque 1.14. On a montré auparavant que an =

√
n n’est pas majorée :

∀M > 0 ∃N ∈ N∗ tel que aN > M.

Dans l’exemple ci-dessus, on vient de montrer que an =
√
n tend vers l’infini :

∀M > 0 ∃N ∈ N∗ tel que n ⩾ N ⇒ an > M.
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1.3. Suites tendant vers l’infini

Ces deux affirmations ne sont bien sûr pas équivalentes : si une suite an tend vers l’infini,
alors pour tout candidat majorant M > 0 qu’on nous propose, il existe un seuil N à partir
duquel tous les termes de la suite dépassent ce M . A plus forte raison, on peut exhiber un
terme de la suite qui dépasse M , ce qui montre que la suite n’est pas majorée. La réciproque
est fausse : par exemple, la suite (−2)n n’est pas majorée, mais elle ne tend pas vers l’infini :
elle admet une infinité de termes négatifs.

Une suite non majorée ne tend donc pas nécessairement vers l’infini, mais ce sera le cas si
une condition supplémentaire est vérifiée : si une suite an est croissante et non majorée, alors
elle tend vers l’infini (ce résultat sera prouvé dans un exercice facultatif). ⋄

Théorème 1.15 (Théorème du chien méchant). Soit (an) une suite.

1. Si (bn) est une autre suite telle que an ⩾ bn pour tout n, et bn → +∞, alors an → +∞.

2. Si (cn) est une autre suite telle que an ⩽ cn pour tout n, et cn → −∞, alors an → −∞.

Démonstration. On démontre la première affirmation.

Supposons que an ⩾ bn pour tout n, et que bn → +∞.

Fixons M > 0. Comme bn → +∞, on sait qu’il existe N0 tel que

bn ⩾ M ∀n ⩾ N0 .

Puisque an ⩾ bn, ceci implique donc

an ⩾ M ∀n ⩾ N0 .

On a donc montré que an → +∞.

Si la condition an ⩾ bn n’est vraie qu’à partir d’un certain indice, on a toujours la même
conclusion. On a un théorème analogue dans le cas de −∞.
Exemple 1.16. Reprenons l’exemple ci-dessus.

On a an = n2−1
3n

⩾ n2−3n
3n

= n
3
− 1 =: bn pour tout n ∈ N∗.

Or, bn → ∞ (en effet : pour M > 0, n
3
− 1 ⩾ M ⇐⇒ n ⩾ 3M + 3, donc en prenant un entier

N0 ⩾ 3M + 3, on a bn ⩾ M pour tout n ⩾ N0). Par le théorème du chien méchant, on a donc
aussi an → ∞. ⋄
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1.4. Suites convergentes

1.4 Suites convergentes

Informellement, on dit qu’une suite (an) converge vers une limite L si les termes de la suite
deviennent arbitrairement proches de L lorsque l’indice n est suffisamment grand. Pour
rendre cette définition plus mathématiquement précise, il nous faut une façon d’exprimer
cette notion de devenir “arbitrairement proche” de L.

On peut exprimer la distance entre deux nombres réels a et b en utilisant la valeur absolue :
|a− b|. Ainsi, {x ∈ R : |a− x| ⩽ ε} est l’ensemble des x qui sont à distance au plus ε de a. Un
tel x est dit ε-proche de a, et cet ensemble est appelé l’ε-voisinage de a. On a

{x ∈ R : |a− x| ⩽ ε} = [a− ε, a+ ε].

Pour que (an) converge vers L, on voudrait que les termes de la suite finissent par être dans
l’ε-voisinage de L, pour ε aussi petit qu’on veut.

Définition 1.17. Une suite (an) converge vers une limite L ∈ R si pour tout ε > 0, il existe
N ∈ N∗ tel que pour tout n ⩾ N , |an − L| ⩽ ε. On écrit limn→∞ an = L ou an → L.

L’indice N va en général dépendre de ε.
Exemples 1.18. • Soit an = 1

n
. On montre que an → 0.

Soit ε > 0. On cherche N tel que |an−0| ⩽ ε pour tout n ⩾ N . On a |an−0| =
∣∣ 1
n
− 0
∣∣ =

1
n
⩽ ε ⇐⇒ n ⩾ 1

ε
. Donc si on prend n’importe quel N tel que N ⩾ 1

ε
, on aura bien

que |an − 0| ⩽ ε pour tout n ⩾ N .
• Soit an = 1

2n+1
. On montre que an ne tend pas vers 1

2
.

On a
∣∣an − 1

2

∣∣ = ∣∣ 1
2n+1

− 1
2

∣∣ = ∣∣∣2−(2n+1)
2(2n+1)

∣∣∣ = 2n−1
4n+2

, et donc∣∣∣∣an − 1

2

∣∣∣∣ ⩽ ε ⇐⇒ 2n− 1

4n+ 2
⩽ ε ⇐⇒ n ⩽

1 + 2ε

2− 4ε
,

où la dernière équivalence est vraie pour ε < 1
2
. Donc il existe ε > 0 (par exemple,

ε = 1
4
) où on ne peut pas trouver N tel que ∀n ⩾ N , on a

∣∣an − 1
2

∣∣ ⩽ ε. Ceci veut dire
que an ↛ 1

2
.
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1.5. Propriétés des limites

• Soit an = 1√
n

. On montre que an → 0. Soit ε > 0. On veut exhiber un N tel que

n ⩾ N ⇒
∣∣∣ 1√

n
− 0
∣∣∣ < ε. Or∣∣∣∣ 1√
n
− 0

∣∣∣∣ < ε ⇐⇒ 1√
n
< ε ⇐⇒

√
n >

1

ε
⇐⇒ n >

1

ε2
.

On choisit donc n’importe quel N > 1
ε2

: il sera tel que tout n ⩾ N satisfait |an−0| < ε.
• Soit an = 2n2−1

n2+1
. On montre que an → 2.

Soit ε > 0. On cherche N tel que |an − 2| ⩽ ε pour tout n ⩾ N . On a

|an − 2| =
∣∣∣∣2n2 − 1

n2 + 1
− 2

∣∣∣∣ = ∣∣∣∣2n2 − 1

n2 + 1
− 2n2 + 2

n2 + 1

∣∣∣∣ = ∣∣∣∣2n2 − 1− 2n2 − 2

n2 + 1

∣∣∣∣ = 3

n2 + 1
.

Donc |an − 2| ⩽ ε ⇐⇒ 3
n2+1

⩽ ε ⇐⇒ n2 ⩾ 3
ε
− 1.

1. Si ε ⩾ 3, 3
ε
− 1 ⩽ 0 et donc tout n garantit |an − 2| ⩽ ε.

2. Si 0 < ε < 3, on a n2 ⩾ 3
ε
− 1 ⇐⇒ n ⩾

√
3
ε
− 1, car n ∈ N∗, et on peut donc choisir

n’importe quel N ⩾
√

3
ε
− 1 pour que |an − 2| ⩽ ε pour tout n ⩾ N .

⋄
Remarque 1.19. Une condition équivalente à an → L est que tout ε-voisinage de L contient
tous les termes de la suite sauf un nombre fini. Ceci donne une façon utile de montrer qu’une
suite ne converge pas : on montre que pour toute limite potentielle L ∈ R, il y a un ε > 0
tellement petit que l’ε-voisinage exclut une infinité de termes de la suite.

Par exemple, la suite an = (−1)n n’admet pas de limite car pour n’importe quel candidat
de limite L, une infinité de termes de la suite ne font pas partie de l’ε-voisinage de L pour
ε = 1

2
. ⋄

Donc une suite réelle peut

1. converger, c’est-à-dire admettre une limite réelle L

2. diverger (c’est-à-dire ne pas converger)
• en tendant vers −∞ ou +∞
• sans tendre vers −∞ ou +∞ : par exemple (−1)n, n · (−1)n, ...

1.5 Propriétés des limites

Théorème 1.20. Une suite convergente n’admet qu’une seule limite.

Démonstration. Exercice facultatif, utilisant la remarque précédente.

Théorème 1.21. Une suite convergente est bornée.

Démonstration. Supposons que an → L. Prenons un ε > 0 quelconque, par exemple ε = 3.
Puisque an → L, il existe N tel que pour tout n ⩾ N , |an − L| ⩽ 3. À partir de l’indice N , on
a donc |an| ⩽ 3 + |L|. Si on définit

C := max{|a1|, |a2|, |a3|, . . . , |aN−1|, 3 + |L|} ,

alors |an| ⩽ C pour tout n ; (an) est donc bornée.
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1.5. Propriétés des limites

Proposition 1. On a les propriétés des limites suivantes.

1. an → L, λ ∈ R =⇒ λan → λL.

2. an → L1, bn → L2 =⇒ an + bn → L1 + L2.

3. an → L1, bn → L2 =⇒ anbn → L1L2.

4. an → L1, bn → L2 ̸= 0 =⇒ an
bn

→ L1

L2
.

5. an → L1, bn → L2 et an ⩽ bn ∀n =⇒ L1 ⩽ L2.

6. an → L =⇒ |an| → |L|.
7. an → 0 ⇐⇒ |an| → 0.

Démonstration. • Preuve de 3) : Soit ε > 0 donné. Il faut montrer qu’il existe N tel que
|anbn − L1L2| ⩽ ε ∀n ⩾ N . Puisque (bn) est une suite convergente, elle est bornée et il
existe donc C tel que |bn| ⩽ C ∀n (par le théorème précédent).
Comme an → L1, ∃N1 tel que |an − L1| ⩽ ε

2C
∀n ⩾ N1.

Comme bn → L2, ∃N2 tel que |bn − L2| ⩽ ε
2|L1| ∀n ⩾ N2.

En prenant N := max{N1, N2}, on a ∀n ⩾ N :

|anbn − L1L2| = |anbn − L1bn + L1bn − L1L2|
= |bn(an − L1) + L1(bn − L2)|
⩽ |bn(an − L1)|+ |L1(bn − L2)|
= |bn| · |an − L1|+ |L1| · |bn − L2|

⩽ C
ε

2C
+ |L1|

ε

2|L1|
⩽ ε.

• Preuve de 5) : Par l’absurde : supposons que L1 > L2. Soit ε := L1−L2

3
et prenons N1

tel que an est dans l’ε-voisinage de L1 ∀n ⩾ N1, et N2 tel que bn est dans l’ε-voisinage
de L2 ∀n ⩾ N2. En particulier, ∀n ⩾ max{N1, N2}, on a an > bn, ce qui est absurde.

On laisse les preuves des autres assertions en exercice facultatif.

Exemple 1.22. Reprenons l’exemple de an = 2n2−1
n2+1

, pour lequel on avait montré que an → 2,
uniquement à l’aide de la définition de limite.

Une autre façon d’obtenir le même résultat est de remarquer que

an =
2n2 − 1

n2 + 1
=

n2(2− 1
n2 )

n2(1 + 1
n2 )

=
2− 1

n2

1 + 1
n2

.

Or on peut montrer que 1
n2 → 0. En effet, pour ε > 0, on a

∣∣ 1
n2

∣∣ ⩽ ε ⇐⇒ n ⩾ 1√
ε
. En prenant

N tel que N ⩾ 1√
ε
, on a donc

∣∣ 1
n2

∣∣ ⩽ ε ∀n ⩾ N .

Donc maintenant, à l’aide des propriétés de la limite listées ci-dessus,

lim
n→∞

an = lim
n→∞

2− 1
n2

1 + 1
n2

=
2− limn→∞

1
n2

1 + limn→∞
1
n2

=
2− 0

1 + 0
= 2 .

⋄
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1.5. Propriétés des limites

Théorème 1.23 (Théorème des deux gendarmes). Soit (xn) une suite. S’il existe deux suites (an)
et (bn) telles que

• an ⩽ xn ⩽ bn ∀n suffisamment grand, et
• limn→∞ an = limn→∞ bn = L,

alors limn→∞ xn = L.

Démonstration. Soit ε > 0. On cherche un N tel que |xn − L| ⩽ ε ∀n ⩾ N . On a
• ∃N1 tel que |an − L| ⩽ ε ∀n ⩾ N1,
• ∃N2 tel que |bn − L| ⩽ ε ∀n ⩾ N2, et
• ∃N3 tel que an ⩽ xn ⩽ bn ∀n ⩾ N3.

Pour n ⩾ N := max{N1, N2, N3}, on a

L− ε ⩽ an ⩽ xn ⩽ bn ⩽ L+ ε

et donc L− ε ⩽ xn ⩽ L+ ε, ce qui est équivalent à |xn − L| ⩽ ε. Donc limn→∞ xn = L.

Exemple 1.24. Montrons que la suite xn = (n−1)2

n!
tend vers zéro.

On va trouver an, bn → 0 telles que an ⩽ xn ⩽ bn. Puisque xn ⩾ 0 ∀n, on peut prendre an = 0.
Pour trouver une suite (bn), on remarque que

xn =
(n− 1)(n− 1)

n(n− 1)(n− 2) · · · 3 · 2 · 1
=

n− 1

n(n− 2) · · · 3 · 2 · 1

=

(
n− 1

n

)(
1

n− 2

)(
1

n− 3

)
· · · 1

2

⩽
1

n− 2
.

On peut donc prendre bn = 1
n−2

, et on a bn → 0. Le théorème des deux gendarmes implique
que xn → 0. ⋄
On peut aussi utiliser ce théorème pour montrer la propriété des limites suivante.

Corollaire 1. Soient (xn) et (yn) deux suites. Si xn → 0 et (yn) est bornée, alors xnyn → 0.

Démonstration. Puisque (yn) est bornée, il existe C tel que |yn| ⩽ C ∀n. On a donc 0 ⩽
|xnyn| = |xn| · |yn| ⩽ C|xn|. On pose alors an = 0 et bn = C|xn|. Puisque an, bn → 0, par
le théorème des deux gendarmes, on a |xnyn| → 0, et donc xnyn → 0 par les propriétés des
limites vues ci-dessus.

Exemple 1.25. La suite an = sin(n2+7 cos(n2))
n

tend vers zéro, car an = xnyn où xn = 1
n
→ 0 et

yn = sin(n2 + 7 cos(n2)) est bornée, car |yn| ⩽ 1. ⋄
Le résultat suivant est souvent résumé en disant que toute suite monotone et bornée converge.

Théorème 1.26. • Une suite croissante et majorée converge.
• Une suite décroissante et minorée converge.
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Exemples 1.27. • an = n
n+1

est croissante car

an+1 − an =
n+ 1

n+ 2
− n

n+ 1
=

(n+ 1)2 − n(n+ 2)

(n+ 1)(n+ 2)
=

1

(n+ 1)(n+ 2)
⩾ 0.

De plus, an = n
n+1

⩽ n+1
n+1

= 1 ∀n, et donc (an) est majorée. Par le théorème ci-dessus,
(an) est convergente.

• an = n est croissante mais pas majorée. Cette suite diverge, limn→∞ an = +∞.
• an = (−1)n est bornée mais pas monotone. Elle n’a pas de limite.
• an = (−1)n

n
est bornée, pas monotone, et converge : an → 0.

⋄
Le dernier exemple montre qu’être monotone et borné n’est pas une condition nécessaire
pour la convergence.

1.6 Limites “combinées” et indéterminations

• (an → +∞ et bn → +∞) =⇒ an + bn → +∞.
• (an → +∞ et bn → +∞) =⇒ an − bn est indéterminé (“∞−∞”).

Exemples :
— limn→∞(3n − 2n) = +∞,
— limn→∞(

√
n+ 1−

√
n) = limn→∞

(
√
n+1−

√
n)(

√
n+1+

√
n)√

n+1+
√
n

= limn→∞
(n+1−n)√
n+1+

√
n
= limn→∞

1√
n+1+

√
n
= 0.

• (an → +∞ et bn → +∞) =⇒ an
bn

est indéterminé
(
“∞
∞”
)
.

Exemple :

— limn→∞
n2+1
2n2−1

= limn→∞
n2(1+ 1

n2 )
n2(2− 1

n2 )
= limn→∞

1+ 1
n2

2− 1
n2

= 1
2
.

• (an → +∞ et bn est bornée ) =⇒ an + bn → +∞.

• (an → +∞ et bn → L,L ̸= 0) =⇒ anbn →

{
+∞ si L > 0,

−∞ si L < 0.

• (an → +∞ et bn → 0) =⇒ anbn est indéterminé (“∞× 0”).
Exemples :
— n2 · 1

n
→ +∞,

— n · 1
n
→ 1,

— n · 1
n2 → 0,

— n · (−1)n

n
ne converge pas.

• (an → +∞ et ∃δ > 0 tel que bn ⩾ δ ∀n suffisamment grand ) =⇒
anbn → +∞.
Exemple :
— xn = n

(
1 + 1

3
cos(n2 + 7)

)
→ +∞, car n → +∞ et 1 + 1

3
cos(n2 + 7) ⩾ 1− 1

3
= 2

3
=

δ > 0.
• (an → +∞ et ∃δ > 0 tel que bn ⩽ −δ ∀n suffisamment grand ) =⇒

anbn → −∞.
Remarquons que pour les deux dernières propriétés, il ne suffit pas d’avoir bn > 0 (ou bn <
0) : il nous faut que bn “reste loin de 0”. Par exemple, si an = n → +∞ et bn = 1

n
, on a anbn = 1

∀n, même si bn > 0 pour tout n.
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1.7. Séries géométriques

1.7 Séries géométriques

Lemme Soit r ∈ R et soit an := rn. Alors

lim
n→∞

an


tend vers +∞ si r > 1,

= 1 si r = 1,

= 0 si − 1 < r < 1,

n’existe pas si r ⩽ −1.

Définition 1.28. Une suite de la forme an = rn, r ∈ R, est appelée suite géométrique.

On considère maintenant la suite (Sn)n⩾0 définie par

S0 := 1

S1 := 1 + r

S2 := 1 + r + r2

...
Sn := 1 + r + r2 + · · ·+ rn

...

Théorème 1.29.

lim
n→∞

Sn


= +∞ (diverge) si r ⩾ 1,

= 1
1−r

si − 1 < r < 1,

n’existe pas si r ⩽ −1.

Sur l’animation suivante, on observe le comportement de la suite (Sn)n⩾0, en fonction de r :

Animation disponible sur botafogo.saitis.net/analyse-1

Démonstration. Si r ⩾ 1, Sn = 1+ r+ r2 + · · ·+ rn ⩾ 1 + 1 + 1+ · · ·+ 1 = n+ 1 → +∞, donc
Sn → +∞ par le théorème du chien méchant.

Si r < 1, on a

Sn = 1 + r + r2 + · · ·+ rn

rSn = r + r2 + r3 + · · ·+ rn+1,
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1.7. Séries géométriques

et donc Sn − rSn = Sn(1− r) = 1− rn+1. On obtient

Sn =
1− rn+1

1− r
.

En vue du lemme précédent, si −1 < r < 1, on a limn→∞ Sn = 1
1−r

, et si r ⩽ −1, Sn n’a pas
de limite.

On voit donc que pour |r| < 1, la somme infinie 1 + r + r2 + r3 + · · · converge.

La suite (Sn) au-dessus est appelée la suite des sommes partielles.

Définition 1.30. Soit r ∈ R tel que |r| < 1. La somme infinie 1 + r + r2 + r3 + · · · est appelée
série géométrique, et r est dit la raison de cette série. On peut écrire

∑∞
n=0 r

n.

Attention : une somme infinie n’a de sens que si elle converge.
Exemples 1.31. • On évalue la somme infinie 1−0.7+0.72−0.73+0.74−· · · en utilisant

la série géométrique de raison −0.7 :

1− 0.7 + 0.72 − 0.73 + · · · = 1 + (−0.7) + (−0.7)2 + (−0.7)3 + · · · = 1

1− (−0.7)
=

10

17
.

• On évalue la somme infinie 1
2
+
(
1
2

)2
+
(
1
2

)3
+ · · · en utilisant la série géométrique de

raison 1
2

:

1

2
+

(
1

2

)2

+

(
1

2

)3

+ · · · = 1

2

[
1 +

1

2
+

(
1

2

)2

+ · · ·

]
=

1

2
· 1

1− 1
2

= 1.

• La somme infinie 1 + 2 + 22 + 23 + 24 + · · · ne converge pas, puisque r = 2 > 1.
⋄

Exemple 1.32. Les séries géométriques sont utiles dans plein de contextes. Voici un exemple
géométrique : le flocon de von Koch.

On construit les formes géométriques suivantes par récurrence, en commençant par un tri-
angle équilatéral F0, d’aire 1. À chaque étape, on “colle” des petits triangles équilatéraux au
milieu de chaque côté de la forme précédente (la longueur des côtés d’un petit triangle est
un tiers de la longueur du côté à laquelle on le colle).

NumChap: chap-suites, Dernière compilation: 2025-03-19 15:19:20+01:00. (Version Web:botafogo.saitis.net/analyse-B) 17

botafogo.saitis.net/analyse-B


1.7. Séries géométriques

On pose An := aire de Fn

et Cn := nombre de côtés de Fn.

Ainsi, on a

A0 = 1

C0 = 3

A1 = A0 + C0 ·
1

9
= 1 + 3 · 1

9
C1 = 3 · 4

A2 = A1 + C1 ·
(
1

9

)2

= 1 + 3 · 1
9
+ 3 · 4 ·

(
1

9

)2

C2 = 3 · 4 · 4

A3 = A2 + C2 ·
(
1

9

)3

= 1 + 3 · 1
9
+ 3 · 4 ·

(
1

9

)2

+ 3 · 4 · 4 ·
(
1

9

)3

C3 = 3 · 4 · 4 · 4
...

On déduit donc les expressions

An = 1 + 3 · 1
9
+ 3 · 4 ·

(
1

9

)2

+ · · ·+ 3 · 4n−1

(
1

9

)n

Cn = 3 · 4n

On peut réécrire An de la façon suivante :

An = 1 +
3

9

[
1 +

4

9
+

(
4

9

)2

+

(
4

9

)3

+ · · ·+
(
4

9

)n−1
]
.

On voit apparaître donc la série géométrique de raison r = 4
9
. Ainsi, on a

lim
n→∞

An = 1 +
3

9
· 1

1− 4
9

=
8

5
.

⋄
Exemple 1.33. On peut montrer que tout nombre réel dont le développement décimal est
périodique est un nombre rationnel, à l’aide des séries géométriques. On prend l’exemple
de x = 1.151515151515 . . ., mais ce qu’on va dire se généralise facilement à n’importe quel
nombre à développement décimal périodique. On exprime x ainsi :

x = 1 + 0.15 + 0.0015 + 0.000015 + 0.00000015 + · · ·

= 1 + 15 · 1

100
+ 15 ·

(
1

100

)2

+ 15 ·
(

1

100

)3

+ · · ·

= 1 + 15 · 1

100

[
1 +

1

100
+

(
1

100

)2

+

(
1

100

)3

+ · · ·

]
= 1 + 15 · 1

100
· 1

1− 1
100

= 1 +
15

99
=

114

99
.
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On voit donc que x = 114
99

∈ Q. ⋄
Exemple 1.34. La série géométrique suivante est une des premières à être évaluée dans l’his-
toire des mathématiques, par Archimède.

L’aire A indiquée ci-dessus en rouge peut être évaluée en utilisant une série géométrique.

A =

(
1

2

)2

+

(
1

2
· 1
2

)2

+

(
1

2
· 1
2
· 1
2

)2

+ · · ·

=
1

4
+

(
1

4

)2

+

(
1

4

)3

+ · · ·

=

[
1 +

1

4
+

(
1

4

)2

+

(
1

4

)3

+ · · ·

]
− 1

=
1

1− 1
4

− 1 =
1

3
.

La méthode de Archimède était plutôt géométrique : on constate que trois fois l’aire rouge
donne l’aire du carré. On a donc 3A = 1, d’où A = 1

3
. ⋄

1.8 Le nombre e

Une application importante des suites géométriques est l’existence du nombre d’Euler, e.
Rappel : la factorielle n! de n ∈ N est définie par

n! = 1 · 2 · 3 · 4 · · · (n− 1) · n.
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Pour le cas de n = 0, on pose 0! = 1.

Soit (en) la suite définie par

en := 1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+ · · ·+ 1

n!
=

n∑
k=0

1

k!

Proposition 2. La suite (en) converge.

Démonstration. On va montrer que (en) est croissante et majorée, et donc elle converge.
• (en) est croissante : en+1 = en +

1
(n+1)!

> en.
• (en) est majorée : en =

∑n
k=0

1
k!

et pour k ⩾ 2, chaque 1
k!

peut être majoré,

1

k!
=

1

1 · 2 · 3 · 4 · · · k
⩽

1

1 · 2 · 2 · 2 · · · 2
=

1

2k−1
.

On a donc

en =
n∑

k=0

1

k!
⩽ 1 +

1

1!
+

n∑
k=2

1

2k−1
⩽ 2 + 1 = 3.

Alors on a en ⩽ 3 ∀n.
• (en) converge car elle est croissante et majorée.

Définition 1.35. La limite de la suite convergente (en) est appelée e.

e = lim
n→∞

(
n∑

k=0

1

k!

)
=

∞∑
k=0

1

k!
.

On note que la valeur numérique de e est 2.71828 . . .. On peut montrer que e = limn→∞
(
1 + 1

n

)n
(exercice facultatif).
Remarque 1.36. On a utilisé la notation

∑
pour faciliter (ou pas !) l’écriture des sommes.

C’est utile de savoir manipuler cette notation, voici quelques exemples de différentes façons
d’écrire les mêmes expressions.

•

1 + 2 + 3 + 4 + · · · 9 + 10 =
10∑
n=1

n =
10∑
k=1

k.

L’indice utilisé n’importe pas.
•

2 + 4 + 6 + · · · 18 + 20 =
10∑
n=1

2n = 2
10∑
n=1

n.

Ceci découle des règles basiques de calcul.
•

1 + 2 + 3 + 4 + · · · 9 + 10 =
10∑
n=1

n =
11∑
k=2

(k − 1).

Ceci découle d’un changement d’indice, k = n+ 1.
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•

Si |r| < 1, rN
∞∑
n=0

rn =
∞∑

n=N

rn.

Ceci découle de la définition de cette somme infinie (cf. exercice facultatif).
•

10∑
n=1

k = 10k.

Dans cet exemple, l’indice n’apparaît pas dans l’expression, c’est donc la somme k +
k + · · ·+ k, où k apparaît 10 fois.
Attention :

∑10
n=0 k = 11k.

⋄
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