Chapitre 1

Suites réelles

1.1 Introduction

Une suite réelle peut étre vue comme une liste infinie de nombres réels, écrit dans un certain
ordre :
Qt, G2, a3, G4, - - -

Ici, a; est le premier terme, ay le deuxieme terme, etc. On peut parler du terme général, a,,.
Le nombre naturel n est appelé I'indice (ou le rang) de a,,. Voici une définition plus précise.

Définition 1.1. Une suite de nombres réels est une application
a: N* — R
n— a(n) = a,.
On écrit (ay,)nen+, ou simplement (a,,), pour la suite définie ainsi.

Exemple 1.2. ® a,=n:1,2,3,4,5,...

o 4 —l.71111
n n' 72737475""
o a, =42:42 42,42 42 42, ...

¢ a,=(-1)":-1,1,-1,1,-1,1,...
* a, = n-iéme chiffre du développement décimal de 7 (7 = 3.14159...):1,4,1,5,9,2, ...
o
Il'y a plusieurs fagons de définir des suites :
e par une formule explicite de a, en fonction de n, par exemple a,, = n?;
* de maniere descriptive, ou implicite, par exemple a,, = n-ieme chiffre du développe-
ment décimal de 7;
* par une relation de récurrence, ol a,, est exprimé en fonction des termes précédents,
en précisant quelques premiers termes, par exemple a,+1 = 2a,, — 1,a; = 1.
Parfois, c’est utile de représenter les suites graphiquement. On peut représenter une suite
(a,) sur la droite réelle R :

R

} } L ——t \ —
-2 6, 0 4, a2 a4, a ¢

\' 4
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On peut aussi tracer le graphe de la fonction a : N* — R, a(n) = a,, dans le plan :

N

®

[ ]
° ™
o
} t t } % t >
1 2 3 4 5 é
[ ]

| 4

Les points dessinés sont de la forme (n, a,,).

1.2 Suites majorées, minorées, monotones

Définitions 1.3. Soit (a,,) une suite.
* (a,) est majorée (ou bornée supérieurement) s’il existe M/ € R tel que a,, < M pour
tout n € N*. Un tel M est appelé majorant (ou borne supérieure) de (a,,).
* (a,) est minorée (ou bornée inférieurement) s’il existe m € R tel que a,, > m pour
tout n € N*. Un tel m est appelé minorant (ou borne inférieure) de (a,,).
* (a,) est bornée si elle est majorée et minorée.

Remarques
* (ay) est bornée si et seulement s’il existe C' > 0 tel que |a,| < C pour tout n € N*.
* Une suite majorée (a,) posséde plusieurs majorants : si M est un majorant, alors
tout N > M est aussi un majorant. Si on voulait montrer qu’'une suite est majo-
rée, n'importe quel majorant suffit. La remarque analogue et aussi vraie pour le
minorant.

Exemples 1.4. * La suite a, = 1 est minorée car a,, > 0 pour tout n, et majorée car
a, < 1 pour tout n. Cette suite est donc bornée.
e La suite a,, = n* est minorée car a,, > 0 pour tout n. Par contre, (a,) n’est pas majorée
car il n’existe pas M tel que n* < M pour tout n.

Démonstration. Si M € R était un majorant, on aurait n* < M Vn. Mais en prenant
n > +/|M|,onan®> |M|> M et donc M ne peut pas étre un majorant de (a,,). o

e La suite a, = —n est majorée car a,, < 0 pour tout n. Par contre, (a,,) n’est pas mino-
rée : il n’existe pas m tel que —n > m pour tout n.

* a, = (—1)" est bornée. En effet, |a,| = 1, et donc en particulier —1 < a,, < 1 pour tout
n.
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* a, = (—1)"- =1 est bornée. En effet, pour toutn > 1,

n—1 1 1
lay| = —ll-—|=1--<1.
n n n
® a, =n-(—1)" n’est ni majorée ni minorée.
| . 2n—1 _ 2n _
* a, =5 est bornée : 0 < i1 S 5, = lpour toutn > 1.
°* q, = % est minorée. En effet, pour tout n > 1,

6n+100> on >6n
n+10 ~ n+107 11n 11°

(Dans la deuxieme inégalité, on a utilisé le fait que 10 < 10n.) On obtient un minorant
un peu meilleur en faisant

6n+100>6n+60_6(n+10)_
n+10 = n+10  n+10

* a, = /n (n > 0) est clairement minorée par 0, mais n’est pas majorée. En effet, pour
M > 0 donné, soit A le plus petit entier plus grand ou égal a M. Alors

G =VAZ+1>VAZ=A> M.

o

Remarque 1.5. Pour majorer un quotient 4 ou A, B > 0, on peut chercher A’ et B’ tels que
A" > Aet0 < B’ < B, puis écrire

A A

S

B "D

1.2.1 Monotonicité

Définitions 1.6. Soit (a,) une suite.

* (a,) est croissante si a,, < a,1 pour tout n € N*.
a,) est strictement croissante si a,, < a,,4; pour tout n € N*.
a,) est décroissante si a,, > a,4; pour tout n € N*.

* (an)
(an)
(a,) est strictement décroissante si a,, > a,,; pour tout n € N*.
(an)
(an)

[ ]
[ ]
* (a,) est monotone si elle est croissante ou décroissante.

a, ) est strictement monotone si elle est strictement croissante ou strictement décrois-
sante.

Exemples 1.7. * a, = ; est strictement décroissante car a, =

3=

> = ay41 pour tout

1
n+1
* a, = n? est strictement croissante car a,, = n> < (n+1)? = a,41.

* a, = \/n est croissante.

® a, = (—1)" n’est ni croissante, ni décroissante.

* a,=(—-1)"- ”T_l n’est ni croissante ni décroissante : a; > a; mais as < as.
% est strictement décroissante.
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Démonstration.

3n+4 3(n+1)+4 1 0
ap — Qp = - = 5
T 41 m+D) 41 (n+D(n+2)

donc a,, > a,y1- o

e Soit (a,) une suite telle que a,, > 0 pour tout n. Alors la suite (a,,) définie par a,, =
oy + g + - - - + o, est croissante, puisque a1 — @, = apy1 = 0.
o

1.3 Suites tendant vers I’'infini

On dit qu'une suite tend vers 1'infini si pour n'importe quel nombre M, les termes de la suite
deviennent plus grand que M a partir d"un certain indice. Voici la définition formelle.

Définition 1.8. Une suite (a,,)

1. tend vers +oo si pour tout M > 0 il existe Ny € N* tel que a,, > M pour tout n > Nj.
On écrit lim,,_, a,, = +00, ou a,, — +0o0.

2. tend vers —oo si pour tout m < 0 il existe N, € N* tel que a,, < m pour tout n > N,.
On écrit lim,,_, a,, = —00, ou a,, — —o0.

On dit aussi que la suite diverge vers l'infini.

Il faut penser de M comme un “seuil”. Une suite tendant vers +oo va, au bout d’'un moment,
dépasser et rester au dessus de n'importe quel seuil. L'indice N, a partir duquel elle dépasse
seuil dépend de la valeur de M.

Définition 1.9. Une suite (a,,) tend vers —oo si pour tout m < 0 il existe Ny € N* tel que
a, < m pour tout n > Ny. On écrit lim,,_,+, a,, = —00, ou a,, = —o0.

Pour pouvoir facilement parler du comportement d"une suite lorsque I'indice n devient de
plus en plus grand, il est pratique d’introduire la terminologie suivante : étant donné N, €
N*, 'ensemble {n € N : n > N} est appelé un voisinage de l'infini. La définition de tendre
vers l'infini devient donc : a,, — oo si pour tout M > 0, il existe un voisinage de l'infini tel
que a,, > M pour des indices n dans ce voisinage de l'infini.

Exemples 1.10. e {n €N : n > 173} est un voisinage de l'infini.
e {neN : (n—7)?> 4} contient un voisinage de 'infini.
e {2n : n € N} ne contient pas un voisinage de l'infini.
n?-1

Exemple 1.11. Soit a,, = "5 =. Montrons que a,, — .

Etant donné un M > 0, il nous faut montrer qu’il existe N, tel que a,, > M pour tout n > Nj.
Ona
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2
-1
ap =2 M <— r >

3n
~— n’—1>3Mn
— n*—3Mn—-1>0

3M — /IM?2 + 4 3M 4+ VIM?2 +4
<— ne€|—oo, U , 00| .
2 2
/Mo
3M-[gM2+l 3M—[gM2 +
2 2

Si on choisit Ny € [3M+— IMPH oo [, on aura a, > M pour tout n > Ny, par les équivalences
au-dessus. On peut donc par exemple prendre

N {3M+ NCYWE Mﬂ
0 — )
9

2 2 .
le nombre réel 2MHIME arrondi vers le haut. o

Exemple 1.12. Soit o > 0 et a,, = an. On va montrer que a,, — oo.

Etant donné M > 0, il faut donner un N, tel que a,, > M pour tout n > Ny. Or an > M &
n > 2 On choisit donc n’importe quel entier Ny > X, il sera tel que

M
n=Ng=>n>—=a,> M.
(0%

Exemple 1.13. Montrons que a,, = 1/n tend vers 'infini.

Etant donné M > 0, il faut donner un Nj tel que a,, > M pour toutn > Ny. Or \/n > M &
n > M2

On choisit donc n'importe quel entier N, > M?, il sera tel que

n > Ny = a, > M.

Remarque 1.14. On a montré auparavant que a,, = \/n n’est pas majorée :
VM > 03N € N* tel que any > M.
Dans 'exemple ci-dessus, on vient de montrer que a,, = /n tend vers l'infini :

VM > 03N € N telquen > N = a, > M.
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Ces deux affirmations ne sont bien stir pas équivalentes : si une suite a,, tend vers 1'infini,
alors pour tout candidat majorant A/ > 0 qu’on nous propose, il existe un seuil N a partir
duquel tous les termes de la suite dépassent ce M. A plus forte raison, on peut exhiber un
terme de la suite qui dépasse M, ce qui montre que la suite n’est pas majorée. La réciproque
est fausse : par exemple, la suite (—2)" n’est pas majorée, mais elle ne tend pas vers l'infini :
elle admet une infinité de termes négatifs.

Une suite non majorée ne tend donc pas nécessairement vers 1'infini, mais ce sera le cas si
une condition supplémentaire est vérifiée : si une suite a,, est croissante et non majorée, alors
elle tend vers l'infini (ce résultat sera prouvé dans un exercice facultatif). o

Théoreme 1.15 (Théoreme du chien méchant). Soit (a,,) une suite.
1. Si (by,) est une autre suite telle que a,, > b,, pour tout n, et b, — +oo, alors a,, — +o0.

2. Si (cy,) est une autre suite telle que a,, < ¢, pour tout n, et ¢,, — —oo, alors a,, — —oo.

I\ (“n)

°
° ( L
)
°
o o °
. o ¢
]
o
[ ]
1 1 i L i 1 1 Y
T 1 v L] ' L] \ 4
)
°
Démonstration. On démontre la premiere affirmation.
Supposons que a,, > b, pour tout n, et que b,, — +00.
Fixons M > 0. Comme b,, — +00, on sait qu’il existe N, tel que
Puisque a,, > b, ceci implique donc
Ay, 2 M n 2 NO .
On a donc montré que a,, — +o0. O

Si la condition a,, > b, n’est vraie qu’a partir d'un certain indice, on a toujours la méme
conclusion. On a un théoréme analogue dans le cas de —oc.

Exemple 1.16. Reprenons 1’'exemple ci-dessus.

Onaa, = "z;l > "23;13" =% —1=:b, pour toutn € N*.

Or, b, — oo (en effet : pour M > 0, 3—12>2M < n=>3M+3, donc en prenant un entier
Ny > 3M +3,onab, > M pour tout n > N,). Par le théoréeme du chien méchant, on a donc
aussi a,, — 0. o
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1.4 Suites convergentes

Informellement, on dit qu'une suite (a,,) converge vers une limite L si les termes de la suite
deviennent arbitrairement proches de L lorsque l'indice n est suffisamment grand. Pour
rendre cette définition plus mathématiquement précise, il nous faut une facon d’exprimer
cette notion de devenir “arbitrairement proche” de L.

On peut exprimer la distance entre deux nombres réels a et b en utilisant la valeur absolue :
la —b|. Ainsi, {x € R : |a — x| < €} est 'ensemble des x qui sont a distance au plus ¢ de a. Un
tel z est dit e-proche de q, et cet ensemble est appelé 1’e-voisinage de a. On a

{reR:|la—z|<e}=la—eca+¢]

Pour que (a,) converge vers L, on voudrait que les termes de la suite finissent par étre dans
I'e-voisinage de L, pour ¢ aussi petit qu’on veut.

Définition 1.17. Une suite (a,,) converge vers une limite L € R si pour tout ¢ > 0, il existe
N € N* tel que pour toutn > N, |a,, — L| < €. On écrit lim,, , @, = L ou a,, — L.

L’'indice N va en général dépendre de «.

Exemples 1.18. e Soita, = % On montre que a,, — 0.
Soit & > 0. On cherche N tel que |a, —0| < e pour toutn > N.Ona |a,—0] = |2 — 0| =
1 < ¢ < n > i Doncsion prend n'importe quel N tel que N > 1, on aura bien
que |a, — 0] < ¢ pour toutn > N.

* Soit a, = 3. On montre que a, ne tend pas vers ;.
1 _|_1 L] _ [2=(2nt])| _ 2n—1
Ona ’a" - E‘ = ‘2n+1 - §| = | S@ar1y | = antar et donc
1 < 2n —1 < < 1+ 2
a, — | <e < e = n
"2 T dn+2 T 2-4¢

ot la derniere équivalence est vraie pour ¢ < 1. Donc il existe ¢ > 0 (par exemple,
e = 1) oll on ne peut pas trouver N tel que Vn > N, ona |a, — 1| < e. Ceci veut dire
que a, - 3.
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e Soit a, = \/Lﬁ On montre que a,, — 0. Soit ¢ > 0. On veut exhiber un N tel que

n>N= \%—0’<5.0r
! 0| <e <= ! <e<<=+n> L = n> !
— — € — <e n> - n> —.
NLD NZD 5 g2
On choisit donc n'importe quel N > = : il sera tel que toutn > N satisfait |a, — 0] < e.
e Soit a,, = 27:‘22;11. On montre que a,, — 2.
Soit € > 0. On cherche N tel que |a,, — 2| < € pour toutn > N.On a
| | 2n? —1 2n?2—1 2n®+2 2n? —1—2n? -2 3
an — —_ —_ pry — = p— .
n?+1 n?+1 n?+1 n?+1 n?+1

Donc |a, — 2| < & < <e <= n?23-1

3
n24+1
1. Sie > 3,2 —1 < 0 et donc tout n garantit |a, — 2| < e.

2.Si0<e<3,onan’*>2—-1 < n>,/2—1, carn € N*, et on peut donc choisir

n’importe quel N > /2 — 1 pour que |a,, — 2| < ¢ pour tout n > N.
p q e p q p

&

Remarque 1.19. Une condition équivalente a a,, — L est que tout e-voisinage de L contient
tous les termes de la suite sauf un nombre fini. Ceci donne une fagon utile de montrer qu'une
suite ne converge pas : on montre que pour toute limite potentielle L € R,ilyaune > 0
tellement petit que ’s-voisinage exclut une infinité de termes de la suite.

Par exemple, la suite a,, = (—1)" n"admet pas de limite car pour n'importe quel candidat

de limite L, une infinité de termes de la suite ne font pas partie de I's-voisinage de L pour

1
8—2. o

Donc une suite réelle peut
1. converger, c’est-a-dire admettre une limite réelle L

2. diverger (c’est-a-dire ne pas converger)
* en tendant vers —oo ou 400
* sans tendre vers —oo ou +o00 : par exemple (—1)", n - (—1)", ...

1.5 Propriétés des limites

Théoreme 1.20. Une suite convergente n’admet qu’une seule limite.

Démonstration. Exercice facultatif, utilisant la remarque précédente. O

Théoreme 1.21. Une suite convergente est bornée.

Démonstration. Supposons que a, — L. Prenons un ¢ > 0 quelconque, par exemple ¢ = 3.
Puisque a,, — L, il existe N tel que pour toutn > N, |a,, — L| < 3. A partir de 'indice N, on
a donc |a,| < 3+ |L|. Si on définit

C = max{|ai|, |az], |as|, ..., |an-1],3 + |L|},

alors |a,,| < C pour tout n; (a,) est donc bornée. O
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Proposition 1. On a les propriétés des limites suivantes.
1. a, > L, A€ R = Aa, — AL.
. a, = L1,b, = Ly = a, +0b, = L1+ Lo.
. ap — Lq,b, = Ly = a,b, — LiLo.

. an—>L1,bn—>Lgetangann:>L1<L2.

2
3
4. an—>L1,bn—>L27éO:>‘Z—:_>%
S
6. a, > L = |a,| — |L|.

7

. ap — 0 <= |a,| — 0.

Démonstration. * Preuve de 3) : Soit € > 0 donné. Il faut montrer qu’il existe NV tel que
|anby, — L1Ls| < € Vn > N.Puisque (b,) est une suite convergente, elle est bornée et il

existe donc C tel que |b,| < C Vn (par le théoreme précédent).
Comme a,, — Ly, 3N, tel que |a, — L] < 55 ¥n > Ny
Comme b, — Loy, 3N, tel que |b, — Ly| < 2|z | Vn > Ns.

En prenant N := max{N;, No},onaVn > N :

|anbn - L1L2| = |anbn - len + len - L1L2|

= |bn(an — L1) + Ly(by, — Ly)|
< |bn(an — Ly)| + [L1(bp — Lo)|
= |bn]| - |an — Li| 4 [L1] - |bp — Lo
€ €
<C— + || ———
2c Il

* Preuve de 5) : Par I'absurde : supposons que L; > L. Soit ¢ := £12£2 et prenons N,

tel que a,, est dans I'e-voisinage de L; Vn > Ny, et N, tel que b, est dans I'e-voisinage
de Ly Vn > Ns. En particulier, Vn > max{N;, N}, ona a,, > b, ce qui est absurde.
On laisse les preuves des autres assertions en exercice facultatif. O

22—

Exemple 1.22. Reprenons 'exemple de a,, = =5+ +1 ,

uniquement a l’aide de la définition de limite.

pour lequel on avait montré que a,, — 2,

Une autre fagon d’obtenir le méme résultat est de remarquer que

m?—1 n’(2-5) 2-%

a‘TL = = =
n?+1 n2(1+3%) 1+
Or on peut montrer que 5 — 0. En effet, pour ¢ > 0,on a | ! ] = nz \/ig En prenant
N tel que N > f,onadonc‘l‘ evVn > N.

Donc maintenant, a I’aide des propriétés de la limite listées ci-dessus,

Q—W_z—hmnw#_2—o

lim a, = lim - = = =
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Théoreme 1.23 (Théoreme des deux gendarmes). Soit (x,,) une suite. S’il existe deux suites (a,,)
et (by,) telles que

* a, <z, < b, Vn suffisamment grand, et

° lim, o ap = lim, oo b, = L,
alors lim,, oo x,, = L.

Démonstration. Soit € > 0. On cherche un N tel que |z, — L| < eVn > N.Ona
e N, telque |a, — L| < eVn = Ny,
e dN,tel que |b, — L| < eVn > Ny, et
* JN; tel que a,, < z, < b, Vn > Njs.

Pour n > N := max{N;, N2, N3}, on a

L_ggangxngbngl/—i_g

etdonc L — e < z,, < L + ¢, ce qui est équivalent a |z, — L| < e. Donc lim,, o 2, = L. O

(n— 1)

Exemple 1.24. Montrons que la suite z,, = tend vers zéro.

On va trouver a,, b, — 0 telles que a,, < z,, < b,,. Puisque z,, > 0 Vn, on peut prendre a,, = 0.
Pour trouver une suite (b,,), on remarque que

. (n—l)(n—l) B n—1

" n(n—1)(n— 3-2:1 nn-2)---3-2-1
EHEATRE
gn—Z'

On peut donc prendre b, = —, et on a b, — 0. Le théoréme des deux gendarmes implique
que z,, — 0. o
On peut aussi utiliser ce théoréeme pour montrer la propriété des limites suivante.

Corollaire 1. Soient (z,,) et (y,) deux suites. Si x,, — 0 et (y,) est bornée, alors z,y, — 0.

Démonstration. Puisque (y,) est bornée, il existe C' tel que |y,| < C Vn. On a donc 0 <

|Znyn| = |2n| - Jyn] < Clzyn|- On pose alors a, = 0 et b, = C|z,|. Puisque a,,b, — 0, par
le théoreme des deux gendarmes, on a |z,y,| — 0, et donc z,,y, — 0 par les propriétés des
limites vues ci-dessus. U

sin(n2?+7 cos(n?)) 1

Exemple 1.25. La suite a,, = - tend vers zéro, car a,, = z,y, ot x, = - — Oet
yn = sin(n? + 7 cos(n?)) est bornée, car |y, | < 1. o

Le résultat suivant est souvent résumé en disant que toute suite monotone et bornée converge.

Théoréme 1.26. e Une suite croissante et majorée converge.
e Une suite décroissante et minorée converge.
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Exemples 1.27. * a, = ;75 est croissante car
1 1)% — 2 1
an+1_an:n+ S :(n+ ) —nln £ ): = 0.
n+2 n+1l (n+1)(n+2) (n+1)(n+2)
De plus, a,, = 5 < Z—ﬁ = 1Vn, et donc (a,) est majorée. Par le théoreme ci-dessus,

(a,) est convergente.
a, = n est croissante mais pas majorée. Cette suite diverge, lim,,_,, a,, = +00.
a, = (—1)" est bornée mais pas monotone. Elle n’a pas de limite.

-1)" 4
Qp = % est bornée, pas monotone, et converge : a,, — 0.
o

Le dernier exemple montre qu’étre monotone et borné n’est pas une condition nécessaire
pour la convergence.

1.6

Limites “combinées” et indéterminations

(a, — +oc etb, - +00) = a, + b, — +00.

(a, — +o0 et b, - +00) = a,, — b, estindéterminé (“oco — cx”).
Exemples :

— limy, 00 (3" — 27) = 400,

— lim, oo(vV + 1 —y/n) = lim,_,o (\/m?/\n@l(@jLﬁ)
(n+1-—n) _

P— 3 . 1 .
= lim,,_, W EsEeY lim,, oo NCsEw 0.
(an — +ooetb, — +00) = ¢ est indéterminé (“%”).

Exemple :

=)

— lim;,, 0 % = lim,, 00 % = lim, 00 ;J:
(a, — +o0 et b, est bornée ) —- Lan + b, — +0o0.
+oo siL >0,
—oo siL <0.

(a, — +o0 etb, — 0) = a,b, est indéterminé (“oco x 0”).

m""
I
N

n

3

(a, — +ooetb, — L, L #0) = a,b, —

Exemples :

— n* L 5 oo,

—n- % — 1,

—n- # — 0,

— n - EU% ne converge pas.

(a, = +oo et 36 > 0 tel que b, > § Vn suffisamment grand ) =

anb, — +00.

Exemple :

— z, =n(1+ 3cos(n®+ 7)) — oo, carn — +ooet 1+ scos(n? +7) 21— 3 =2 =
6 > 0.

(a, = +oo et 36 > 0 tel que b, < —0 Vn suffisamment grand ) =

anb, — —o0.

Remarquons que pour les deux derniéres propriétés, il ne suffit pas d’avoir b, > 0 (ou b, <
0) : il nous faut que b,, “reste loin de 0”. Par exemple, sia,, = n — +ooetb, = %, onaayb, =1
Vn, méme si b, > 0 pour tout n.
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1.7 Séries géométriques
Lemme Soitr € R et soit a,, := r". Alors

tend vers + 00 sir > 1,

. =1 sir=1,
lim a, )
n—00 =0 si —1<r<l,
n’existe pas sir < —1.

Définition 1.28. Une suite de la forme a,, = r", r € R, est appelée suite géométrique.

On considere maintenant la suite (.S,,),,>o définie par

Solzl
Sl =1+
Sy i=147r+7°

Spi=14r4+r24+. 4"

Théoréme 1.29.
= +o0 (diverge) sir > 1,
lim S, { == si —1<r<l,
n—oo . .
n’existe pas sir < —1.

Sur I’animation suivante, on observe le comportement de la suite (.S, ),>o, en fonction de r :

....................................... s i SRSV AL HIRAT ST R 2 AP
- T e i R
7 8 o ° [ ]
55 . ®
85 P
s @
83 @
®

52
.
51
L]
r=0.800

r-
b o

Animation disponible sur botafogo.saitis.net/analyse-1

Démonstration. Sir >1,S, =1+r+r+---+r">14+1+1+---4+1=n+1— +00,donc
Sy — +oo par le théoreme du chien méchant.

Sir<1l,ona

Sp=14r+ri4 41"
rSy =141 417 4
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etdonc S,, — S, = S,(1 —r) =1 — "1, On obtient
1 — n+1
S, — ior

1—1r

En vue du lemme précédent, si —1 < r < 1, on a lim,,_, S, = l—ir, etsir < —1, 5, n'apas
de limite.
O

On voit donc que pour |r| < 1, la somme infinie 1 4+ r + 7% + r® + - - - converge.
La suite (.5,,) au-dessus est appelée la suite des sommes partielles.

Définition 1.30. Soit r € R tel que |r| < 1. La somme infinie 1 + r + r? + 7% + - - - est appelée
série géométrique, et r est dit la raison de cette série. On peut écrire » ~ ™.

Attention : une somme infinie n’a de sens que si elle converge.

Exemples 1.31. * On évalue la somme infinie 1 — 0.7+ 0.72 — 0.7 4-0.7* — - - - en utilisant
la série géométrique de raison —0.7 :

1 10

1—0. 7= 074 =1+ (0. 072+ (=072 + = ———— = .
0.7+ 0.7 — 0.7 + +(=0.7) 4+ (=0.7)* + (—=0.7)° + (07 17

e On évalue la somme infinie % + (%)2 + ( )3 + - - - en utilisant la série géométrique de

1
. 1 2
raison j :

1+ 12+ 13+ ——11+1+ 12+
2 2 2 2 2 2

e Lasomme infinie 1 + 2 + 2% + 2% + 2% 4 ... ne converge pas, puisque r = 2 > 1.

1 1
21—

=1

1
2

&

Exemple 1.32. Les séries géométriques sont utiles dans plein de contextes. Voici un exemple
géométrique : le flocon de von Koch.

On construit les formes géométriques suivantes par récurrence, en commengant par un tri-
angle équilatéral F,, d’aire 1. A chaque étape, on “colle” des petits triangles équilatéraux au
milieu de chaque coté de la forme précédente (la longueur des cotés d'un petit triangle est
un tiers de la longueur du coté a laquelle on le colle).
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On pose A, := airede F,

et C,, := nombre de cbHtés de F,.

Ainsi, on a
Ay =
Co=3
Ay = Ay + C 1—1+3 L
1= Ao 09~ 9
Ci=3-4
1\? 1 1\?
A=A +C - (=) =14+43.24+3.4.(=
2 1+ 04 (9) + 9+ (9)

As = A, +C 13—1+3 1+34 1
3 — 2 2 9 — 9 9

Cy=3-4-4-4

~
[\
+
w
e~
e~
VR
Q| =
N~
w

On déduit donc les expressions

1 1\? 1\"

A, =143 =434 (=] +---+3-4v1(=
9 9

C, =3 -4"

On peut réécrire A,, de la fagon suivante :

RRORORON|

On voit apparaitre donc la série géométrique de raison r = 3. Ainsi, on a

. 3 1 8
A=l Ty

3
Ap=1+°
"9

<

Exemple 1.33. On peut montrer que tout nombre réel dont le développement décimal est
périodique est un nombre rationnel, a 1’aide des séries géométriques. On prend 1'exemple
de x = 1.151515151515. .., mais ce qu’on va dire se généralise facilement a n’'importe quel
nombre a développement décimal périodique. On exprime z ainsi :

x=1+0.15+0.0015 + 0.000015 + 0.00000015 + - - -

=1+15 L +15 L 2+15 L 3—+
N 100 100 100

=1+15 1 1+ L + L 2+— L 3+
N 100 100 100 100

1 1 15 114
=1+15- =1 =

00 1-1L " Tg9T 99
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On voit donc que z = & € Q. 3
Exemple 1.34. La série geometnque suivante est une des premieéres a étre évaluée dans I'his-
toire des mathématiques, par Archimede.

1

L’aire A indiquée ci-dessus en rouge peut étre évaluée en utilisant une série géométrique.

4= 1(%) G3) (3 3)

La méthode de Archimede était plutdt géométrique : on constate que trois fois 'aire rouge
donne l'aire du carré. Onadonc3A =1,dou A = % o

1.8 Le nombree

Une application importante des suites géométriques est 1’existence du nombre d’Euler, e.
Rappel : 1a factorielle n! de n € N est définie par

nl=1-2-3-4---(n—=1)-n

19
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Pour le cas de n = 0, on pose 0! = 1.
Soit (e,) la suite définie par

n

1 1 1 1 1 1_ 1
€ = —l-ﬂ—l-a—i-g—i-a-i-"'—'—ﬁ— E

k=0
Proposition 2. La suite (e,,) converge.

Démonstration. On va montrer que (e,,) est croissante et majorée, et donc elle converge.

* (e,)estcroissante: e, 1 = e, + m > e

* (e,) estmajorée: e, = > _, 4 et pour k > 2, chaque ;; peut étre majoré,

1 1 1 1
- < = )
Bl 1.2.34--k S1.2.2.2...2 2k1
On a donc
vyl ai oy Loy
AP SVELRNTADIPER S
k=0 k=2

Alorsonae, < 3Vn.
* (e,) converge car elle est croissante et majorée.

Définition 1.35. La limite de la suite convergente (e,,) est appelée e.
_ ~ 1 — 1
o= Jim (Zy> =35

On note que la valeur numérique de e est 2.71828 . . .. On peut montrer que e = lim,, o, (1 + )"
(exercice facultatif).

Remarque 1.36. On a utilisé la notation ) | pour faciliter (ou pas!) I'écriture des sommes.
C’est utile de savoir manipuler cette notation, voici quelques exemples de différentes facons

d’écrire les mémes expressions.
[ ]

10 10
1+2+3+4+---9+1O:Zn22k.
n=1 k=1

L’indice utilisé n'importe pas.
[ ]

10 10
2+4+6+---18+20222n:22n.
n=1 n=1

Ceci découle des regles basiques de calcul.

°
11

10
14243+4+4--9410=) n=>Y (k-1)
n=1 k=2

Ceci découle d'un changement d’indice, k = n + 1.
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Si|r| <1, T’NZTn = ZT".
n=0 n=N
Ceci découle de la définition de cette somme infinie (cf. exercice facultatif).
* 10
>k =10k.
n=1

Dans cet exemple, l'indice n’apparait pas dans I’expression, c’est donc la somme £ +
k+---+k, ou k apparait 10 fois.

Attention : S°1° &k = 11k.
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22
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