Chapitre 3

Limites de fonctions

3.1 Limites z — +c0

On va d’abord parler des limites de fonctions lorsque = tend vers +oo ou —oo, car cette
situation est en analogie avec les limites de suites. Pour pouvoir étudier le comportement de
[ lorsque x — 00, il faut que f soit définie en tout point aribtrairement loin de l'origine.

Définition 3.1. * On dit que f est définie sur un voisinage de +oo s’il existe u € R tel
que [u, oo[C Dy.
e Ondit que f est définie sur un voisinage de —oo s’il existe v € R tel que |—o0, v] C Dy.

Exemples 3.2. o 1estdéfinie sur R*, et donc sur un voisinage de +oo, donné par |0, +oof,
ainsi que sur un voisinage de —oo, donné par | — oo, 0].
* tan(x) est définie sur R\ {5 + k7, k € Z}, et donc sur aucun voisinage de l'infini.
o

Avant de définir formellement lim, .., f(z), parlons de l'idée intuitive derriere : f tend
vers une limite L lorsque x — +o0 si f(z) devient arbitrairement proche de L lorsque z est
suffisamment grand. Il faut donc que, pour € > 0 arbitrairement petit, on puisse trouver une
valeur de z suffisamment grande a partir de laquelle f(z) est e-proche de L.

Définitions 3.3. * Soit f une fonction définie sur un voisinage de +oo, et soit L € R.
lirf f(z) =LsiVe >0,3IN >0tel que |f(x) — L| <eVz > N.
T—r+00

* Soit f une fonction définie sur un voisinage de —oo, et soit L € R.

lim f(z)=LsiVe>0,3N <0telque|f(z)— L] <eVx < N.

T—r—00
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3.1. Limites + — +o0

Remarquons que la valeur de N va en général dépendre de .

1
Exemples 3.4. * Soit f(z) := %5, Dy = R\{2}. Montrons que lnil f(z) = =.
z—+00
Soite > 0.0On a
1 x 1 2 2
‘f(x)_§‘_ 3;1:—2_5’_‘3(3x—2)‘_3\3x—2\'
Donc
1 2 2
— - <€ = 5S¢ = |3x—2
‘f(x) 3‘ © 3B3r—2] ~° Be=2> 5.

Puisque on s'intéresse &  — +00, on peut poser = > 2 (en effet, on cherche a trouver
un voisinage de l'infini dans lequel f(z) est e-proche de ;. Imposer une condition
supplémentaire du type “z est assez grand” ne changera rien a l'existence d"un tel
voisinage de l'infini). On a donc

f(x) 1< — 3r—-2> 2<:> >2+2
T)— <= 3 T — > —+ -
3 3e 9¢ 3

et donc on peut choisir N := 2 + 2. En effet, ce N satisfait

1
—+ = — 35| <
e (CRE T
On en conclut que hrf flz) ==
T—r+00
¢ Montrons que lim,_, o 25 = 0.
Soite > 0.On a
1 1
—2—0 Le <— —2<€
x x
5 1
= = -
€
— .TE] 7\[] [\[7 [7

donc si on choisit N < \[, on aura que Vz <

o

Etant donnée une suite (z,,), en appliquant une fonction f a chaque terme, on obtient une

nouvelle suite (f(z,)). On remarque que si lim, ., f(z) = L, alors pour n'importe quelle
suite de nombres (z,,) avec x,, — oo, ona f(z,,) — L. La réciproque est vraie aussi!

Théoreme 3.5 (Caractérisation par les suites). * Soit f une fonction définie sur un voisi-

nage de +oo.
lir+n f(z) = L <= pour toute suite (x,) telle que x,, — oo, ona lim f(x,)= L.
T—>+00 n—oo

* Soit f une fonction définie sur un voisinage de —oo

lim f(x) =L <= pour toute suite (z,,) telle que x,, - —oo, ona lim f(z,) = L.

T—r—00 n—oo
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3.1. Limites x — +o0

Démonstration. Montrons la version x — +oo (la version z — —oo peut étre montrée de
maniére analogue).

Voici la direction “facile” : supposons d’abord que lim,_,,, f(x) = L. Par définition, ceci
veut dire que Ve > 0, AN = N(¢) > 0 tel que |f(x) — L| < e Vo > N. Soit (x,,) une suite telle
que x, — 0o, et soit ¢ > 0. Il nous faut trouver un indice a partir duquel f(z,) est e-proche
de L.

Puisque z,, — o0, il existe un indice Ny a partir duquel z,, > N(¢). Pour n > N, on a alors
z, > N(¢) etdonc | f(z,) — L| < e. Ny est donc I'indice qu’on voulait trouver.

Pour l'autre direction, on va montrer la contraposée : si lim, ,., f(z) # L, alors il existe
une suite (z,,) telle que x,, — +o00, mais lim,_,, f(z,) # L. D’abord, explicitons ’assertion
lim, ., f(z) # L.

lim, . f(z) # L veutdire : 3¢ > 0 tel que VN > 0, 3z > N tel que |f(z) — L| > «.

Supposons donc que lim,_,, f(x) # L. On aimerait construire une suite (z,,) telle que z,, —
oo etlim,, , f(x,) # L. On sait qu’il existe ¢ > 0 tel que VN > 0,3z > N tel que |f(z) — L| >
E.

. En prenant N = 1 d’abord, on aura donc z; > 1 tel que |f(z1) — L| > «.

L|>e.

1 1
2. En prenant N = 2, on aura z, > 2 tel que |f(z2) —
3. En prenant N = 3, on aura =3 > 3 tel que |f(z3) — L| > «.
4. etc.

En continuant de cette maniere, on a construit une suite (x,,) telle que x, > n, et donc
T, — oo, et |f(x,)— L| > e Vn. Ainsi, lim,,_, f(z,) # L puisque f(x,) est toujours a distance
> ¢ de L, et on a donc prouvé la contraposée.

0

Ce théoreme est surtout utile pour montrer qu'une fonction ne tend pas vers une certaine
limite L € R lorsque x — 400 : il suffit de trouver une suite (z,,) qui tend vers +0o mais telle
que f(z,) ne tend pas vers L.

Exemple 3.6. Montrons que lim,_,, sin(z) n’existe pas.

y/

Soit (x,) la suite définie par x,, = 5 +7n. On a bien que z,,+ — oco. Or sin(xz,) = (—1)"*!, qui
n’a pas de limite lorsque n — oco. Le théoreme ci-dessus implique que la limite lim,_, sin(z)
n’existe pas. (Parce que si il existait L € R tel que lim,_,, sin(z) = L, alors on devrait aussi
avoir lim,,_,, sin(z,) = L.) o
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3.1. Limites + — +o0

Comme pour les suites, on peut définir la divergence a l'infini :

Définitions 3.7. * Soit f définie sur un voisinage de +ooc.
— On dit que lirJlrn f(z) =4o0siVM > 0, 3N tel que f(x) > M Vx > N.
T—r+00
— On dit que liIJ]ra f(z) = —oc0siVM < 0, 3N tel que f(z) < M Vx > N.
T—r+00
* Soit f définie sur un voisinage de —oo.
— Onditque lim f(z) = +oosi VM > 0, 3N tel que f(z) > M Vz < N.
T——00
— Onditque lim f(z) = —oosiVM <0, 3N tel que f(z) < M Vz < N.
T—r—00
Exemples 3.8. * Montrons que
lim z° = —o0.
T——00

Soit M < 0.Onaxz®> < M <= z < VM. On peut donc choisir par exemple
N := /M, qui satisfait 3 < M Vz < N.
* Montrons que

lim z? = 400.
T——00

Soit M > 0.0On a
2?>M — < —VMouzx > VM.

On peut donc choisir un N < —v/ M, il satisfait 22 > M Vo < N.

3.1.1 Calculs de limites

Pour chacun des types de limite introduit ci-dessus, foutes les propriétés énoncées pour li-
mites de suites restent valables. De plus, les méthodes introduites pour étudier les limites
combinées et indéterminations de suites, s’appliquent aussi aux limites de fonctions lorsque
T — Foo.

Exemple 3.9. Pour calculer

lim (62 — 4asin(72° + 1)) = lim z (6 — 4sin(72” + 1)) |

T—00 T—00

on sait que lim, -, # = oo et que pour tout z, 6 — 4sin(72z* + 1) > 6 — 4 = 2. On a donc que

lim (62 — 4asin(72” + 1)) = +oo

T—r00
o
Exemple 3.10. Pour calculer
li 2 .3
Jm, (=)
on remarque que le terme dominant est x*, et donc on peut écrire
1
2 _.3_ .3 [ _ :
- x ( I+ x) .
——00 \ v
——1
Comme —1 < 0, on peut conclure :
lim (1;2 — x3) = 400.
T——00
o
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3.1. Limites x — +o0

Ce dernier exemple montre qu’en général, dans une limite z — o0, le comportement d'un
polyndme est régi par le terme de plus grand degré.

Lorsqu’on étudie des quotients de polynémes, on pourra mettre les termes dominants en
évidence.

Exemples 3.11. .

z? — 23 o2t (E-1) lmpe(2—1) -1

a:lggo 43 4 5022 T - T4

zlﬁnolo 3 (4 + 5?) lim, 00 (4 + 51—0) 4

32 —22+1 . 2)B-Li+3)
li = lim R
z—oo  Hxd 4+ 2 z—oo  x5(5 + ;)
.1 3—-1+4%
3
—0-2=0
5
[ ]
i 8x° T 8
m ——=Ilm 2° ——— = —
x~>foo$3—|—4x2—|—3 T——00 1+§+5z%

* Méme lorsque les expressions apparaissant dans le quotient ne sont pas exactement
des polynomes,

Vat+2c 2]/ 1+ 5

].lm —_— = hm —_—
z—+00 3 + 3z T——+00 T /1 + %
4 1_|_ x%
= lim
T—+400 1_|_ $_32

Y tim, o %
\/ 14 Ty oo 2
—1.

On a utilisé le fait que |z| = x lorsque = > 0 (ce qui est le cas puisque z — +00).
o

Comme on sait, l"utilisation du conjugué s’avere utile lorsqu’on a des différences de racines :

41
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3.1. Limites + — +o0

Exemple 3.12.
lim (\/:1:2 -3z + :z:)
T—r—00
. (V2?2 =3z +z) (Va? — 3z — )
= lim
@——00 (V2% =3z — x)
I —3x
= lim
o (Va? =32 — 2)
. -3z
= lim
rmee <|x| 1-3_ [E)
-3
= lim ’
e <—x 1-3— a:)
= lim 5
z——00 ( 1— % I 1)
B 3
<\/1 —lim, o 2 + 1)
3
=5
On a utilisé le fait que |z| = —z lorsque = < 0 (ce qui est le cas puisque x — —o0). o

Exemple 3.13. Déterminons la valeur de p € R pour laquelle la limite

lim Va2 + ax + px

Tr——400
est finie.

Sip >0, lim, ;o V2% + ax + pxr = 400 pour tout a, donc on doit considérer p < 0. Dans ce
cas, la limite est une indétermination “oo — 00”, et on peut écrire

Va2 + ax +px) (\/:102 +ax — px)
lim Va2 +ax +pr= lim (
T—+00 p Tr—>+400 g/x2 + ar — px
. (1=p?)2? +ax
= lim
z—+00 \/x2 4+ ar — px
~ (1—pHa*+ax
z=rFoo ] /1+ £ — px
1 2
_ gy Aop)rta
z—~+00 1+ % —p

On voit que si 1 — p? # 0, cette limite n’existe pas. Comme on est dans le cas p < 0, I'unique
valeur possible est donc p = —1. Dans ce cas, la limite est égale a

a a
1 N _ — - - =
IETOO Etoaz—g IEELO I+2+1 2
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3.2. Limites x — xg

Enongons encore une version du Théoreme des deux gendarmes dans le cas des fonctions,
dans le cas  — oo (la version analogue avec x — —oo est semblable) :

Théoréme 3.14 (Théoreme des deux gendarmes). Soit f une fonction définie dans un voisinage
de +o0. S'il existe des fonctions g et h, également définies dans un voisinage de +oo, telles que

* g(x) < f(x) < h(z) Y suffisamment grand, et

® lim, , g(z) = lim, . h(z) = L,
alors lim, . f(z) = L.

Exemple 3.15. Soit f(z) = E<;@ ,ou E est la fonction “partie entiere”. Montrons que lim, ., f(x) =
0.

Onaﬁ—lgE(\/E)g\/EVx,etdonc@gMg‘/TEVx>O.Onaalors,pourx>O,

T

<<
— ——< f(x) < —.
N NG
On pose g(z) := o= — ; et h(z) == 7=.Ona
I —lim = lm L =0-0=0
el = T iy =0-0=0,

et lim, , A(x) = lim, \/%z = 0. Par le Théoreme des deux gendarmes, on a alors que
lim, o f(z) = 0. o

3.2 Limites r — x

Ayant étudié les limites de fonctions lorsque + — =00, on va maintenant s’intéresser au
comportement des fonctions lorsque x tend vers un point z, € R. L'idée intuitive est que
la limite de f lorsque x — z est égale a L € R si f(x) devient arbitrairement proche de L
lorsque x est suffisamment proche de .

Pour les exemples au-dessus, la valeur de la limite en z, est la méme! Ce qui se passe en
xr = xo ne joue aucun rdle dans la valeur de la limite. Ce qui compte est le comportement de
f(x) lorsque z s’approche de z, sur un “voisinage épointé”.

Définition 3.16. Un voisinage épointé de z, est un voisinage de z, privé de z,.
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3.2. Limites x — xg

Par exemple, pour 6 > 0, {x € R: 0 < |z — 2| < 0} est un voisinage épointé. On a

{reR:0<|z—ag| <0} ={x €R:|x— 0| <I}\ {x0}
:[JIO—(S,I()[U]ZL’(),IO—F(S].

Définition 3.17. Soit f une fonction définie sur un voisinage épointé de z, € R. On dit que
f tend vers la limite L lorsque x tend vers z si

Ve>0,30>0 telque 0 < |z —zo| <0 = |f(z) — L| <e.

On écrit lim, ., f(x) = L.

I

I I

| [

1 1

1 1

! 1

| [

U

| |

1 1 ~,
X,m8 Xy X8 2 X

Pour que lim,_,,, f(z) = L, il faut donc que pour tout ¢ > 0, on puisse trouver § > 0
suffisamment petit tel que le -voisinage épointé {x € R : 0 < |z — z¢| < {} est envoyé par f
dans I’e-voisinage de L.

Exemples 3.18. ¢ Soit f la fonction

fla) = {390 s%:p;éQ,

1 six = 2.
On a lim,_,» f(x) = 6. En effet, étant donné ¢ > 0, on a que pour tout = # 2,
|f(x) — 6| <e < |3z —6|<e
< 3re€[6—e,6+¢
€ £
<~ € 2—=,24—-.
. 3773
On peut donc prendre J = £. Eneffet,sid = 5, ona v — 2| <§ = [3r — 6] <
e Soit f(z) = +/z.Onalim, ,4 f(z) = 2. En effet étant donné ¢ > 0, on a

If(r)—2|<e &= |V2—-2|<ec &= Vr€2—¢,2+¢] <= xc[(2—¢) (2+¢)?]
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3.2. Limites x — xg

248 F--—-=-=-=----+
o A
T T T I
2-5 (2-£) 7 (2+8)*

4 X

(e, 2+])

Il nous faut alors 6 > 0 tel que |z — 4| < § garantit que = € [(2 — ¢)?, (2 + ¢)?]. Il suffit
donc de prendre 0 < 6 < 4 — (2 — ¢)?, car la distance entre 4 et (2 — ¢)* est plus petite
que celle entre 4 et (2 4 £)%.

e Si f(xz) = V& + 2, montrons que lim,_,; f(z) = V3. En effet, on peut d’abord remar-
quer que pour tout z > —2,

() = V3] = |[Va+2— V3
_‘ (x+2)—3
CWVrr2+V3

[z — 1]

T Vet2+3

1]

Dans la derniere ligne, on a utilisé le fait que vz +2 > 0.

Maintenant, fixons ¢ > 0. Par ce qui précede, on peut garantir |f(z) — v/3| < ¢ en

imposant
1] _
\/§ N )
qui est équivalente a |z — 1| < V/3e. Ceci montre que si on définit § := V3¢, alors
|z — 1
O<|x—1<9 = <e
2 -1 v

(On suppose partout que x > —2.)
* Si f(z) = 22, montrons que lim,_,» f(z) = 4. Commengons par écrire

[f@) =4 =" 4| =[x+ (@ -2 = |z +2|- |z - 2|.
Cette égalité suggere que |f(x) — 4| devient petit lorsque la distance |z — 2| devient

petite. Mais la présence du terme |z + 2|, qui dépend de x, complique un peu l'argu-
ment.
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3.2. Limites x — xg

Procédons comme suit : commengons par nous restreindre a des x dans un intervalle
centré en x, = 2, de taille fixée, par exemple [1, 3]. Remarquons alors que pour tout
e [l,3],

lz+2| < |z]+2<3+2=5,

et donc aussi
|f(x) —4] =]z +2| |z —2| <5z —2|.

Maintenant, fixons ¢ > 0. Par ce qui précede, on peut garantir |f(z) — 4| < ¢ en
imposant que = € [1, 3] et que
Slz —2| < e,

qui est équivalente a |z — 2| < ¢/5. Ceci montre que si on définit ¢ := ¢/5, alors

O0<|z—2|<4 = blr—2|<¢
= |f(z) -4/ <e.

(On suppose partout que z € [1, 3].)
e Soit f(x) = sin(z). On a lim,_,, f(x) = 0.

A\

St (X

On remarque que |sin(z)| < |z| Vz. Soit ¢ > 0. Il nous faut § > 0 pour que |z — 0| <
d = |sin(z) — 0| < . On voit que ¢ = ¢ suffit, et donc on a lim,_,( sin(z) = 0.
e Lalimite lim, o sin (1) n’existe pas. On va voir une fagon de montrer ce fait ci-dessous
(caractérisation par les suites).
o

Encore une fois, toutes les propriétés des limites vues précédemment possédent un analogue
dans le cas des limites en un point.

En particulier, les limites en un point se comportent bien par rapport aux sommes, produits,
quotients, etc.
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3.2. Limites x — xg

Exemples 3.19. e Soit f(x) = 3z° cos(2x) + 2. On a

lim f(z) = (hm 3:U5> (hm COS(2$)> + lim 2z

xi}% x"% IH@ x—)%
5
= (g) cos(m) —|—2%
5
()
e Soit f(z) = xsm( ) On a lim, ¢ f(z) = 0 car lim,_,oz = 0 et la fonction Sln( ) est

bornée.
* Dans l'exemple suivant, on enleve I'indétermination en sortant un facteur “caché” :

?=3r+2 . (z—-1)(z-2) . x-2 -1

lim 2 — T2 _ - =_.
ool 2% + 27 — 3 :cl—%(:p—l)(x—i—?)) iz +3 4

° SOit f(:l?) — \/I+3—($+1)

-~ Calculons lim,,; f(x).

Puisque z — 1,v/z + 3 — (z + 1) — 0 lorsque = — 1, on a une indétermination du type
wQr On a
o -

ve+3—(z+1) Ve+3-(@+1) va+3+(+1)

r—1 B r—1 V+3+(z+1)

B r+3—(x+1)?
(x—l)(\/FﬂL(x—i- 1))

_ —x—z+2
(x—l)(\/x—i- + (z+1))

- —(z—1)(x+2)
(x—l)(\/x—l— + (z+1))

B —(z +2)

Vot 3+ (z+1)

ol la derniere égalité est valide car on étudie cette fonction sur un voisinage épointé
de 1, et donc x # 1. On a donc

2 3
lim f(x) = lim —(z+2) —.
z—1 a=1y/x 4+ 3+ (x+1) 4
Remarque : ce qui nous a permis de calculer la limite était de faire apparaitre un
facteur (z — 1) “caché” au numérateur et au dénominateur.

* Si f(z) = ijfii;g, pour quelle(s) valeur(s) du parametre p est-ce que f admet une

limite finie en xy = 1? Et lorsque cette limite existe, que vaut-elle?

On remarque que la limite du dénominateur est
lim(z® — 42+ 3) = 0.
rx—1

Dongc, pour que f admette une limite en 1, il est nécessaire que la limite du numéra-
teur soit également nulle. Comme cette derniere est égale a

. 3 B _ .
lim(2* + pr —3) =p—2,

NumChap: chap-limitesfonctions, Derniére compilation: 2025-03-19 15:19:20+01:00. (Version Web: botafogo.saitis.net/analyse-B) 47


botafogo.saitis.net/analyse-B

3.2. Limites x — xg

il faut donc que p = 2. Pour cette valeur de p, le numérateur devient le polynéome
P(x) =2+ 22 -3,

qui possede zy = 1 comme racine. Or ceci implique (voir cours d’Analyse A) que P

peut se factoriser :
P(z) = (z —1)(2® + 2z +3).

Ainsi, la fonction devient

)= @ _@-Dette+d) sto+3
fx)_x2_4x+3_ e—D@—-3  2-3

et donc ,
lim f(z) = lim v —§.

x—1 rx—1 €T — 3 2

On a aussi une version du Théoreme des deux gendarmes pour les limites en un point.

Théoreme 3.20 (Théoreme des deux gendarmes, © — ). Soient f, g et h des fonctions définies
sur un voisinage épointé de x, € R telles que

* g(z) < f(x) < h(zx) sur un voisinage épointé de x,, et

e lim, .., g(z) = lim, ,,, h(x) = L,
alors lim, ., f(x) = L.

Exemple 3.21. Soit f(z) = (2% — 1) cos (15) (z # 1). Onalim,_,; f(z) = 0. En effet,
—(2* = 1) < f(z) <2® — 1,

puisque —1 < cos (-27) < 1, et lim,,; —(2? — 1) = lim,,; (2 — 1) = 0. Donc par le théoreme
des deux gendarmes, on a lim,_,; f(z) = 0. o

On a également une caractérisation par les suites dans le cas de x — .

Théoréme 3.22 (Caractérisation par les suites). Soit f définie sur un voisinage épointé de x, € R.

lim, ., f(z) = L <= pour toute suite x,, # x telle que x,, — o, on a lim,_,, f(x,) = L.

Ce théoréme sert principalement a montrer qu’'une limite n’existe pas.

Exemple 3.23. e La limite lim,_,o sin (2) n’existe pas. En effet, en prenant la suite z,, :=
m, ona z,, — 0, mais

lim,, o0 f(2,) = lim,,_,o sin ( L ) = lim,, o0 sin(7/2 +n7) = lim,,,o.(—1)" n’existe pas.

Tn

* Soit f(x) = § + 57 Cette fonction est définie sur R \ {0}. On a

5 _o 1 :
5t o =313 siz >0,

z r _z _ 1 :
§+2(7$)_§ 3 sixz < 0.
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<

On montre que lim,_,, f(z) n’existe pas. En effet,

— 1 _ 1 1 11
pour a, = n’ hmn—>oo f(an) — hmn—>oo o + 5 = 3 et

pour by = %1’ limy, 00 f(bn> = lim, 0 5_5 - % -

[

Pourtant, lim,,_, @,, = lim,,_, b, = 0. La limite lim,_,, f(x) n’existe donc pas par la
caractérisation par les suites.
o

Remarque 3.24. e Pour montrer que lim,_,,, f(z) # L, il suffit de trouver une suite
x, — x¢ telle que lim,,_, f(x,) # L.

e Pour montrer que lim,_,,, f(x) n’existe pas, il suffit de trouver une suite x,, — z telle

que lim,,_, f(x,) n’existe pas. On peut aussi exhiber deux suites (a,) et (b,) telles que

lim,, o0 @, = o = lim,, 0 by, Mais lim,, o f(a,) # lim, o f(b,).
o

3.3 Limites latérales

L’exemple précédent suggere la définition suivante.

Définition 3.25. * Lalimite a droite de f lorsque v — x, est égale a L si
Ve > 0,30 >0telquezy <z < xg+6 = |f(x) — L| <e.

On écrit lim,_, .+ f(z) = L.
¢ Lalimite a gauche de f lorsque z — z, est égale a L si

Ve > 0,30 >0telque g — 0 <z < zp = |f(x) — L| < e.

On écrit lim,,_, - f (z) = L.

Théoréme 3.26. lim, ., f(z) = L <= lim,_ .+ f(z) =lim,_, - f(z) = L.
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Exemples 3.27. * Soit
r  sixz <3,
o=,

T siz > 3.
Onalim, ,3- f(z) =3 # 9 = lim, 3+ f(z), et donc lim,_,5 f(x) n’existe pas.
e Soit
T six < 2,
fl@) =4, .
5+1 siz>2

On alim, ,o- f(x) =2 = lim, o+ f(x), et donc lim, 5 f(x) = 2.

e Soit f(ZL') = \/#W etry = 0.Ona
1m r)= 111m ——
z—0~ z—0~ ’x‘\/an +3
xr
= lim ———
=0~ —xv/2? + 3
! —1 —1
oy 11m — = —’
z—0~ :L‘2 + 3 \/g
et

11m Xr) = 111l ——
z—0+ z—0+ ‘3;"\/ 2+ 3
A

La limite lim,_,o f(z) n’existe donc pas.
* La fonction signe est définie comme suit :

sgn(:v):{l siz > 1,

-1 siz<l1.
—2
o
4 -2 0 2 4
o)
2
Elle n’admet pas de limite en 0 puisque lim,_,o- sgn(z) = —1 et lim, ¢+ sgn(z) = 1.

La caractérisation par les suites et le théoréme sur les limites latérales sont deux fagons
de montrer qu’une limite n’existe pas. Il faut choisir la méthode la plus adaptée selon la

situation.
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3.4 Infiniment petits équivalents (IPE)

Les infiniment petits équivalents nous permettront de calculer les limites en comparant des
fonctions qui tendent vers zéro “a la méme vitesse”.

Définition 3.28. Soient f et g définies sur un voisinage épointé de z, € R, telles que g(z) # 0
sur un voisinage épointé de xz,. Les fonctions f et g sont des infiniment petits équivalents
(IPE) au voisinage de z si

e lim, ,,, f(z) = lim,_,,, g(z) = 0 (infiniment petits), et

e lim, .., % = 1 (équivalents).

On écrit f ~ g au voisinage de z.

Remarque 3.29. On peut définir de maniére équivalente les IPE dans un voisinage a gauche
ou a droite d"un point z,, ou dans un voisinage de l'infini. o

Proposition 3. Au voisinage de xo = 0,
* sin(z) ~ z,
* tan(x) ~ z,
® 1 —cos(z) ~ %

Démonstration. On l'a déja dit, lim,_,¢ sin(x) = lim, oz = 0.

sin(x) sin(x)

Pour montrer que lim,_,o —~ = 1, il suffit de montrer que lim,_,o+ =~ = 1, puisque la

sin(x)

fonction == est paire. Soit 0 < z < 7. On compare des aires dans le dessin suivant d’un
quart de cercle trigonométrique.

Tan(k)

B :
tel A ) ¢ ae(D)) < wel )
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On a donc

1
< 3 1 - tan(z)
tan(z)

2
tan(z)

1
— 1< —
sin(xz) = cos(x

sin(z)

1
5-1-8111(1‘) <717

S

sin(z)
2

< sin(z) <z
T

N

—

i
S35

N

N

<1.

<= cos(z) <

(Ces manipulations sont justifiées par le fait que sin(x), cos(z), z > 0). Puisque lim,_,q cos(x) =

1, le Théoréme des deux gendarmes implique que lim,_,o Smﬂgﬂ = 1. Ceci montre que sin(x) ~
x au voisinage de 0.
On a lim, ¢ tan(z) = lim, .oz = 0, et
tan(z sin(x 1
lim () = lim (z) . =1
20 T s=0  x  cos(x)
puisque lim,_,o % = 1 par le raisonnement au-dessus, et lim,_, Fl(m) =1.

Remarquons pour commencer que lim,_,o(1 — cos(z)) = 0, et lim, g %2 = 0. Ensuite, on peut
écrire
1 —cos(z) 1—cos(x) 1+ cos(x)

22/2  22/2 1+ cos(z)
1 —cos*(x) 2
B 2 1 + cos(x)

- (Sin;c(%))z' 1 —l—czos(x) !

1— i 2 2
lim —COS(:E) = ([ lim sin(z) - lim —m——
z—0 x2/2 =0 T z—0 1+ cos(x)

et donc

=1%2.1=
]
Xq_
(y X (7 =2 ﬁ o (x) X
sin () 1- 08 (x)
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Dans un calcul de limite, on peut remplacer une fonction par son IPE dans une expression
factorisée. En effet, si f ~ f au voisinage de x,

: | flx) #
lim z)-h(z)] = lim | =% f(x) - h(x
T [f(x) - h(@)] = im [ AR <>]

~ gim L) i [f(x)~h(m)]

T—x0 f(.’L') T—T0

— lim [}*(x)-h(x)} .

T—rT0

Et dans un quotient, si f ~ fet g ~ g au voisinage de z, alors

f@) o f@) e )

lim —% = lim =

o g(@) e [(2) 9(2)

g
g(@) ~ e ()

Exemple 3.30. Considérons
lim sin?(z)
=0 4 — 4 cos(z)

Puisque sin(x) ~ z et 1 — cos(z) ~ 2?/2 au voisinage de z = 0,

, sin?(z) . sin(z) -sin(z) . z-x 1
im —m—m—m——— =lm ———F+ < =1lim— = —.
=04 —4cos(z) 2=04(1 —cos(z)) 2=04(22/2) 2

o
On peut faire des changements de variable pour se ramener aux IPE connus.
Exemple 3.31. Considérons
x+7Z
lim —2.
e——m/2 cos(T)
Sionposey =z + 7,
T+ 5
lim 2 = lim Y
w——m/2 cos(x) w0 cos (y — Z)
= lim
y—0 sin (y)
=1
o

Notons aussi que, par exemple, on a sin(5z*) ~ 5z* au voisinage de 0, puisque lim,_,o 52* =
0.

Attention : on ne peut pas remplacer une fonction par son IPE dans un calcul de limite d"une
somme, comme montre ’exemple suivant.
Exemple 3.32. Considérons
(20 — 9
lim sin(2z) — 2sin(z) .
z—0 3
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Une fagon correcte de calculer cette limite, est de commencer par factoriser :

lim sin(2z) — 2sin(x) _ lim 2sin(x) cos(z) — 2sin(x)

z—0 x3 x—0 333
~ tim —2sin(x)(1 — cos(z))
x—0 J}?’
— 22 (x?
G
x—0 ,CL‘3

On remarque que si on avait voulu utiliser des le début le fait que sin(z) ~ = et sin(2z) ~ 2z
au voisinage de z(, = 0, en remplagant par les équivalents on aurait trouvé un résultat faux :
2r — 2w 0

lim =lim— =0.
z—0 €T z—0 3

3.5 Limites infinies en un point

On définit maintenant la divergence vers l'infini en un point.

Définitions 3.33. Soit 2y € R et f une fonction définie sur un voisinage épointé de x.
e ftend vers +oo lorsque x — z si VM > 0,36 > 0 tel que

O<|z—z9| <0 = f(z)=>2M.

On écrit lim,_,,, f(z) = +o0.
f tend vers —oo lorsque z — x si VM < 0, 39 > 0 tel que

O<|z—x0|<d = flx)<M.

On écrit lim,_,,, f(x) = +oo.
f tend vers +oo lorsque & — 2§ si VM > 0,36 > 0 tel que

ro<zr<z0+d = f(z)=M

On écrit lim,,_, .+ f() = +oo.

f tend vers —co lorsque = — zg si VM < 0, 3§ > 0 tel que
ro<x<x9+0 = f(z)<M.

On écrit lim,_, + f(z) = —oc.
f tend vers 400 lorsque z — z si VM > 0, 30 > 0 tel que

rg—0<r<zy = f(z)=M.

On écrit lim,_, - f(z) = +o0.

f tend vers —oo lorsque z — z; si VM < 0,30 > 0 tel que
rg—o0<x<zg — f(z)< M.

On écrit lim,,_, - f(z) = —oc.

54 NumChap: chap-limitesfonctions, Derniére compilation: 2025-03-19 15:19:20+01:00. (Version Web: botafogo.saitis.net/analyse-B)


botafogo.saitis.net/analyse-B

3.5. Limites infinies en un point

On définit les limites latérales infinies de maniére analogue. Par exemple, lim,_, .+ f(z) =
+o0 <= VM >0,36 >0telque 2o < =z < xp + I = f(z) > M.

Comme avant, une limite infinie en un point z, ne dit rien sur la valeur de f en x.

Exemples 3.34. e Onalim, o+ £ = 400 et lim, ,o- 1 = —o0, mais lim,_, = ne tend pas
vers +oo.
J

-

A
X

v

Montrons que lim,_,o- 1 = —oo0.
Soit M < 0. Pour z < 0,

<M s x> —.

SR

On pose 6 = 71;0onad > 0et - < M pour tout z € [—§,0[. On a donc bien que
lim,_,o- % = —o0.
e Onalim,_, % = +4o00.

v

X
e Montrons que lim,_,; ﬁ = +o00.
Soit M > 0. Pour =z # 1,
1 1 1
— —>M & (2-1P< = & [z -1 < —.
@1 (-1 < 57 |z — 1 7
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On prend ¢ = = (ou n'importe quelle valeur dans |0, —=]). On a alors

1 1
O<|lzr—1]<d = |z —1| < = > M.

VM T (z—1)2 7

Donc lim,_,; ﬁ = +o00.

Les propriétés habituelles sont vérifiées pour les limites infinies en un point.
Exemples 3.35. ¢ Considérons

. 2?2 +3rx+1
lim —— .
e——2+ 2 — 3z — 10

Dans la limite z — —27, le numérateur tend vers —1 et le dénominateur vers zéro 0.
Donc le quotient ne peut pas avoir de limite finie, et pour comprendre son comporte-
ment il faut regarder de plus pres le signe du dénominateur a son approche de zéro.

En écrivant
2?2 +3r+1 ?+3x+1 2?4 3z+1 1

22— 32 —10 (z—5)(z +2) x—5  x+2’

on a extrait le terme qui pose probleme : en posant y = = + 2, + — —2* implique
y — 0T, et donc

. 1 o1
lim = lim - = 4+00.
z——2+x + 2 y—0t Yy

D’autre part,

Puisque 1 > 0, on peut conclure :

. 2?4+ 3x+1 . 2?2+ 3r+1 1
lim —————— = lim . = +o0
zo—o+ 32 —3x — 10 z—_o+ z—5 T+ 2
e Considérons
_9—2wsin (7)
lim

z——1 (x4 1)2
Puisque
A e T T

et puisque 9 — 2z sin (ILH) > 7 > 0 sur un voisinage épointé de —1, on conclut que

lim 9 — 2xsin (%H)

Jim, (x n 1)2 = +00.
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