
Chapitre 3

Limites de fonctions

3.1 Limites x → ±∞
On va d’abord parler des limites de fonctions lorsque x tend vers +∞ ou −∞, car cette
situation est en analogie avec les limites de suites. Pour pouvoir étudier le comportement de
f lorsque x → ±∞, il faut que f soit définie en tout point aribtrairement loin de l’origine.

Définition 3.1. • On dit que f est définie sur un voisinage de +∞ s’il existe u ∈ R tel
que [u,∞[⊂ Df .

• On dit que f est définie sur un voisinage de −∞ s’il existe v ∈ R tel que ]−∞, v] ⊂ Df .

Exemples 3.2. • 1
x

est définie sur R∗, et donc sur un voisinage de +∞, donné par ]0,+∞[,
ainsi que sur un voisinage de −∞, donné par ]−∞, 0[.

• tan(x) est définie sur R \ {π
2
+ kπ, k ∈ Z}, et donc sur aucun voisinage de l’infini.

⋄
Avant de définir formellement limx→+∞ f(x), parlons de l’idée intuitive derrière : f tend
vers une limite L lorsque x → +∞ si f(x) devient arbitrairement proche de L lorsque x est
suffisamment grand. Il faut donc que, pour ε > 0 arbitrairement petit, on puisse trouver une
valeur de x suffisamment grande à partir de laquelle f(x) est ε-proche de L.

Définitions 3.3. • Soit f une fonction définie sur un voisinage de +∞, et soit L ∈ R.

lim
x→+∞

f(x) = L si ∀ε > 0, ∃N > 0 tel que |f(x)− L| ⩽ ε ∀x ⩾ N .

• Soit f une fonction définie sur un voisinage de −∞, et soit L ∈ R.

lim
x→−∞

f(x) = L si ∀ε > 0, ∃N < 0 tel que |f(x)− L| ⩽ ε ∀x ⩽ N .
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3.1. Limites x → ±∞

Remarquons que la valeur de N va en général dépendre de ε.

Exemples 3.4. • Soit f(x) := x
3x−2

, Df = R\{2
3
}. Montrons que lim

x→+∞
f(x) =

1

3
.

Soit ε > 0. On a ∣∣∣∣f(x)− 1

3

∣∣∣∣ = ∣∣∣∣ x

3x− 2
− 1

3

∣∣∣∣ = ∣∣∣∣ 2

3(3x− 2)

∣∣∣∣ = 2

3|3x− 2|
.

Donc ∣∣∣∣f(x)− 1

3

∣∣∣∣ ⩽ ε ⇐⇒ 2

3|3x− 2|
⩽ ε ⇐⇒ |3x− 2| ⩾ 2

3ε
.

Puisque on s’intéresse à x → +∞, on peut poser x > 2
3

(en effet, on cherche à trouver
un voisinage de l’infini dans lequel f(x) est ε-proche de 1

3
. Imposer une condition

supplémentaire du type “x est assez grand” ne changera rien à l’existence d’un tel
voisinage de l’infini). On a donc∣∣∣∣f(x)− 1

3

∣∣∣∣ ⩽ ε ⇐⇒ 3x− 2 ⩾
2

3ε
⇐⇒ x >

2

9ε
+

2

3
.

et donc on peut choisir N := 2
9ε

+ 2
3
. En effet, ce N satisfait

x >
2

9ε
+

2

3
=⇒

∣∣∣∣f(x)− 1

3

∣∣∣∣ ⩽ ε.

On en conclut que lim
x→+∞

f(x) =
1

3
.

• Montrons que limx→−∞
1
x2 = 0.

Soit ε > 0. On a ∣∣∣∣ 1x2
− 0

∣∣∣∣ ⩽ ε ⇐⇒ 1

x2
⩽ ε

⇐⇒ x2 ⩾
1

ε
⇐⇒ x ∈]−∞, −1√

ε
] ∪ [ 1√

ε
,∞[,

donc si on choisit N ⩽ −1√
ε
, on aura que ∀x ⩽ N ,

∣∣ 1
x2 − 0

∣∣ ⩽ ε.
⋄

Etant donnée une suite (xn), en appliquant une fonction f à chaque terme, on obtient une
nouvelle suite (f(xn)). On remarque que si limx→∞ f(x) = L, alors pour n’importe quelle
suite de nombres (xn) avec xn → ∞, on a f(xn) → L. La réciproque est vraie aussi !

Théorème 3.5 (Caractérisation par les suites). • Soit f une fonction définie sur un voisi-
nage de +∞.

lim
x→+∞

f(x) = L ⇐⇒ pour toute suite (xn) telle que xn → ∞, on a lim
n→∞

f(xn) = L.

• Soit f une fonction définie sur un voisinage de −∞.

lim
x→−∞

f(x) = L ⇐⇒ pour toute suite (xn) telle que xn → −∞, on a lim
n→∞

f(xn) = L.
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3.1. Limites x → ±∞

Démonstration. Montrons la version x → +∞ (la version x → −∞ peut être montrée de
manière analogue).

Voici la direction “facile” : supposons d’abord que limx→+∞ f(x) = L. Par définition, ceci
veut dire que ∀ε > 0, ∃N = N(ε) > 0 tel que |f(x)− L| ⩽ ε ∀x ⩾ N . Soit (xn) une suite telle
que xn → ∞, et soit ε > 0. Il nous faut trouver un indice à partir duquel f(xn) est ε-proche
de L.

Puisque xn → ∞, il existe un indice N0 à partir duquel xn ⩾ N(ε). Pour n ⩾ N0, on a alors
xn > N(ε) et donc |f(xn)− L| ⩽ ε. N0 est donc l’indice qu’on voulait trouver.

Pour l’autre direction, on va montrer la contraposée : si limx→∞ f(x) ̸= L, alors il existe
une suite (xn) telle que xn → +∞, mais limn→∞ f(xn) ̸= L. D’abord, explicitons l’assertion
limx→∞ f(x) ̸= L.

limx→∞ f(x) ̸= L veut dire : ∃ε > 0 tel que ∀N > 0, ∃x ⩾ N tel que |f(x)− L| > ε.

Supposons donc que limx→∞ f(x) ̸= L. On aimerait construire une suite (xn) telle que xn →
∞ et limn→∞ f(xn) ̸= L. On sait qu’il existe ε > 0 tel que ∀N > 0, ∃x ⩾ N tel que |f(x)−L| >
ε.

1. En prenant N = 1 d’abord, on aura donc x1 ⩾ 1 tel que |f(x1)− L| > ε.

2. En prenant N = 2, on aura x2 ⩾ 2 tel que |f(x2)− L| > ε.

3. En prenant N = 3, on aura x3 ⩾ 3 tel que |f(x3)− L| > ε.

4. etc.

En continuant de cette manière, on a construit une suite (xn) telle que xn ⩾ n, et donc
xn → ∞, et |f(xn)−L| > ε ∀n. Ainsi, limn→∞ f(xn) ̸= L puisque f(xn) est toujours à distance
> ε de L, et on a donc prouvé la contraposée.

Ce théorème est surtout utile pour montrer qu’une fonction ne tend pas vers une certaine
limite L ∈ R lorsque x → ±∞ : il suffit de trouver une suite (xn) qui tend vers ±∞ mais telle
que f(xn) ne tend pas vers L.
Exemple 3.6. Montrons que limx→∞ sin(x) n’existe pas.

Soit (xn) la suite définie par xn = π
2
+πn. On a bien que xn+ → ∞. Or sin(xn) = (−1)n+1, qui

n’a pas de limite lorsque n → ∞. Le théorème ci-dessus implique que la limite limx→∞ sin(x)
n’existe pas. (Parce que si il existait L ∈ R tel que limx→∞ sin(x) = L, alors on devrait aussi
avoir limn→∞ sin(xn) = L.) ⋄
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3.1. Limites x → ±∞

Comme pour les suites, on peut définir la divergence à l’infini :

Définitions 3.7. • Soit f définie sur un voisinage de +∞.
— On dit que lim

x→+∞
f(x) = +∞ si ∀M > 0, ∃N tel que f(x) ⩾ M ∀x ⩾ N .

— On dit que lim
x→+∞

f(x) = −∞ si ∀M < 0, ∃N tel que f(x) ⩽ M ∀x ⩾ N .

• Soit f définie sur un voisinage de −∞.
— On dit que lim

x→−∞
f(x) = +∞ si ∀M > 0, ∃N tel que f(x) ⩾ M ∀x ⩽ N .

— On dit que lim
x→−∞

f(x) = −∞ si ∀M < 0, ∃N tel que f(x) ⩽ M ∀x ⩽ N .

Exemples 3.8. • Montrons que
lim

x→−∞
x3 = −∞ .

Soit M < 0. On a x3 ⩽ M ⇐⇒ x ⩽ 3
√
M . On peut donc choisir par exemple

N := 3
√
M , qui satisfait x3 ⩽ M ∀x ⩽ N .

• Montrons que
lim

x→−∞
x2 = +∞ .

Soit M > 0. On a
x2 ⩾ M ⇐⇒ x ⩽ −

√
M ou x ⩾

√
M.

On peut donc choisir un N ⩽ −
√
M , il satisfait x2 ⩾ M ∀x ⩽ N .

⋄

3.1.1 Calculs de limites

Pour chacun des types de limite introduit ci-dessus, toutes les propriétés énoncées pour li-
mites de suites restent valables. De plus, les méthodes introduites pour étudier les limites
combinées et indéterminations de suites, s’appliquent aussi aux limites de fonctions lorsque
x → ±∞.
Exemple 3.9. Pour calculer

lim
x→∞

(
6x− 4x sin(7x2 + 1)

)
= lim

x→∞
x
(
6− 4 sin(7x2 + 1)

)
,

on sait que limx→∞ x = ∞ et que pour tout x, 6− 4 sin(7x2 + 1) ⩾ 6− 4 = 2. On a donc que

lim
x→∞

(
6x− 4x sin(7x2 + 1)

)
= +∞

⋄
Exemple 3.10. Pour calculer

lim
x→−∞

(
x2 − x3

)
,

on remarque que le terme dominant est x3, et donc on peut écrire

x2 − x3 = x3︸︷︷︸
→−∞

(
−1 +

1

x

)
︸ ︷︷ ︸

→−1

.

Comme −1 < 0, on peut conclure :

lim
x→−∞

(
x2 − x3

)
= +∞ .

⋄
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3.1. Limites x → ±∞

Ce dernier exemple montre qu’en général, dans une limite x → ±∞, le comportement d’un
polynôme est régi par le terme de plus grand degré.

Lorsqu’on étudie des quotients de polynômes, on pourra mettre les termes dominants en
évidence.

Exemples 3.11. •

lim
x→∞

x2 − x3

4x3 + 50x2
= lim

x→∞

x3
(
1
x
− 1
)

x3
(
4 + 50

x

) =
limx→∞

(
1
x
− 1
)

limx→∞
(
4 + 50

x

) =
−1

4

•

lim
x→∞

3x2 − 2x+ 1

5x5 + 2
= lim

x→∞

x2(3− 1
x
+ 1

x2 )

x5(5 + 2
x5 )

= lim
x→∞

1

x3
·
3− 1

x
+ 1

x2

5 + 2
x5

= 0 · 3
5
= 0

•

lim
x→−∞

8x6

x3 + 4x2 + 3
= lim

x→−∞
x3 · 8

1 + 4
x
+ 3

x3

= −∞

• Même lorsque les expressions apparaissant dans le quotient ne sont pas exactement
des polynômes,

lim
x→+∞

4
√
x4 + 2x

3
√
x3 + 3x

= lim
x→+∞

|x| 4

√
1 + 2

x3

x
√

1 + 3
x2

= lim
x→+∞

4

√
1 + 2

x3√
1 + 3

x2

=

4

√
1 + limx→+∞

2
x3√

1 + limx→+∞
3
x2

= 1.

On a utilisé le fait que |x| = x lorsque x > 0 (ce qui est le cas puisque x → +∞).
⋄

Comme on sait, l’utilisation du conjugué s’avère utile lorsqu’on a des différences de racines :
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3.1. Limites x → ±∞

Exemple 3.12.

lim
x→−∞

(√
x2 − 3x+ x

)
= lim

x→−∞

(√
x2 − 3x+ x

) (√
x2 − 3x− x

)(√
x2 − 3x− x

)
= lim

x→−∞

−3x(√
x2 − 3x− x

)
= lim

x→−∞

−3x(
|x|
√
1− 3

x
− x
)

= lim
x→−∞

−3x(
−x
√
1− 3

x
− x
)

= lim
x→−∞

3(√
1− 3

x
+ 1
)

=
3(√

1− limx→−∞
3
x
+ 1
)

=
3

2
.

On a utilisé le fait que |x| = −x lorsque x < 0 (ce qui est le cas puisque x → −∞). ⋄
Exemple 3.13. Déterminons la valeur de p ∈ R pour laquelle la limite

lim
x→+∞

√
x2 + ax+ px

est finie.

Si p ⩾ 0, limx→+∞
√
x2 + ax + px = +∞ pour tout a, donc on doit considérer p < 0. Dans ce

cas, la limite est une indétermination “∞−∞”, et on peut écrire

lim
x→+∞

√
x2 + ax+ px = lim

x→+∞

(√
x2 + ax+ px

) (√
x2 + ax− px

)
√
x2 + ax− px

= lim
x→+∞

(1− p2)x2 + ax√
x2 + ax− px

= lim
x→+∞

(1− p2)x2 + ax

|x|
√
1 + a

x
− px

= lim
x→+∞

(1− p2)x+ a√
1 + a

x
− p

.

On voit que si 1− p2 ̸= 0, cette limite n’existe pas. Comme on est dans le cas p < 0, l’unique
valeur possible est donc p = −1. Dans ce cas, la limite est égale à

lim
x→+∞

√
x2 + ax− x = lim

x→+∞

a√
1 + a

x
+ 1

=
a

2
.

⋄
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3.2. Limites x → x0

Enonçons encore une version du Théorème des deux gendarmes dans le cas des fonctions,
dans le cas x → ∞ (la version analogue avec x → −∞ est semblable) :

Théorème 3.14 (Théorème des deux gendarmes). Soit f une fonction définie dans un voisinage
de +∞. S’il existe des fonctions g et h, également définies dans un voisinage de +∞, telles que

• g(x) ⩽ f(x) ⩽ h(x) ∀x suffisamment grand, et
• limx→∞ g(x) = limx→∞ h(x) = L,

alors limx→∞ f(x) = L.

Exemple 3.15. Soit f(x) =
E(

√
x)

x
, où E est la fonction “partie entière”. Montrons que limx→∞ f(x) =

0.

On a
√
x− 1 ⩽ E (

√
x) ⩽

√
x ∀x, et donc

√
x−1
x

⩽
E(

√
x)

x
⩽

√
x
x

∀x > 0. On a alors, pour x > 0,

1√
x
− 1

x
⩽ f(x) ⩽

1√
x
.

On pose g(x) := 1√
x
− 1

x
et h(x) := 1√

x
. On a

lim
x→∞

g(x) = lim
x→∞

1√
x
− lim

x→∞

1

x
= 0− 0 = 0 ,

et limx→∞ h(x) = limx→∞
1√
x

= 0. Par le Théorème des deux gendarmes, on a alors que
limx→∞ f(x) = 0. ⋄

3.2 Limites x → x0

Ayant étudié les limites de fonctions lorsque x → ±∞, on va maintenant s’intéresser au
comportement des fonctions lorsque x tend vers un point x0 ∈ R. L’idée intuitive est que
la limite de f lorsque x → x0 est égale à L ∈ R si f(x) devient arbitrairement proche de L
lorsque x est suffisamment proche de x0.

Pour les exemples au-dessus, la valeur de la limite en x0 est la même! Ce qui se passe en
x = x0 ne joue aucun rôle dans la valeur de la limite. Ce qui compte est le comportement de
f(x) lorsque x s’approche de x0 sur un “voisinage épointé”.

Définition 3.16. Un voisinage épointé de x0 est un voisinage de x0 privé de x0.
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3.2. Limites x → x0

Par exemple, pour δ > 0, {x ∈ R : 0 < |x− x0| ⩽ δ} est un voisinage épointé. On a

{x ∈ R : 0 < |x− x0| ⩽ δ} = {x ∈ R : |x− x0| ⩽ δ} \ {x0}
= [x0 − δ, x0[ ∪ ]x0, x0 + δ] .

Définition 3.17. Soit f une fonction définie sur un voisinage épointé de x0 ∈ R. On dit que
f tend vers la limite L lorsque x tend vers x0 si

∀ε > 0, ∃δ > 0 tel que 0 < |x− x0| ⩽ δ =⇒ |f(x)− L| ⩽ ε.

On écrit limx→x0 f(x) = L.

Pour que limx→x0 f(x) = L, il faut donc que pour tout ε > 0, on puisse trouver δ > 0
suffisamment petit tel que le δ-voisinage épointé {x ∈ R : 0 < |x− x0| ⩽ δ} est envoyé par f
dans l’ε-voisinage de L.
Exemples 3.18. • Soit f la fonction

f(x) =

{
3x si x ̸= 2,

1 si x = 2.

On a limx→2 f(x) = 6. En effet, étant donné ε > 0, on a que pour tout x ̸= 2,

|f(x)− 6| ⩽ ε ⇐⇒ |3x− 6| ⩽ ε

⇐⇒ 3x ∈ [6− ε, 6 + ε]

⇐⇒ x ∈
[
2− ε

3
, 2 +

ε

3
.
]

On peut donc prendre δ = ε
3
. En effet, si δ = ε

3
, on a |x− 2| ⩽ δ =⇒ |3x− 6| ⩽ ε.

• Soit f(x) =
√
x. On a limx→4 f(x) = 2. En effet, étant donné ε > 0, on a

|f(x)− 2| ⩽ ε ⇐⇒ |
√
x− 2| ⩽ ε ⇐⇒

√
x ∈ [2− ε, 2+ ε] ⇐⇒ x ∈ [(2− ε)2, (2 + ε)2].
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3.2. Limites x → x0

Il nous faut alors δ > 0 tel que |x− 4| < δ garantit que x ∈ [(2− ε)2, (2 + ε)2]. Il suffit
donc de prendre 0 < δ < 4− (2− ε)2, car la distance entre 4 et (2− ε)2 est plus petite
que celle entre 4 et (2 + ε)2.

• Si f(x) =
√
x+ 2, montrons que limx→1 f(x) =

√
3. En effet, on peut d’abord remar-

quer que pour tout x ⩾ −2,

|f(x)−
√
3| = |

√
x+ 2−

√
3|

=

∣∣∣∣ (x+ 2)− 3
√
x+ 2 +

√
3

∣∣∣∣
=

|x− 1|
√
x+ 2 +

√
3

⩽
|x− 1|√

3
.

Dans la dernière ligne, on a utilisé le fait que
√
x+ 2 ⩾ 0.

Maintenant, fixons ε > 0. Par ce qui précède, on peut garantir |f(x) −
√
3| ⩽ ε en

imposant
|x− 1|√

3
⩽ ε ,

qui est équivalente à |x− 1| ⩽
√
3ε. Ceci montre que si on définit δ :=

√
3ε, alors

0 < |x− 1| ⩽ δ ⇒ |x− 1|√
3

⩽ ε

⇒ |f(x)−
√
3| ⩽ ε .

(On suppose partout que x ⩾ −2.)
• Si f(x) = x2, montrons que limx→2 f(x) = 4. Commençons par écrire

|f(x)− 4| = |x2 − 4| = |(x+ 2)(x− 2)| = |x+ 2| · |x− 2| .

Cette égalité suggère que |f(x) − 4| devient petit lorsque la distance |x − 2| devient
petite. Mais la présence du terme |x + 2|, qui dépend de x, complique un peu l’argu-
ment.
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3.2. Limites x → x0

Procédons comme suit : commençons par nous restreindre à des x dans un intervalle
centré en x0 = 2, de taille fixée, par exemple [1, 3]. Remarquons alors que pour tout
x ∈ [1, 3],

|x+ 2| ⩽ |x|+ 2 ⩽ 3 + 2 = 5 ,

et donc aussi
|f(x)− 4| = |x+ 2| · |x− 2| ⩽ 5|x− 2| .

Maintenant, fixons ε > 0. Par ce qui précède, on peut garantir |f(x) − 4| ⩽ ε en
imposant que x ∈ [1, 3] et que

5|x− 2| ⩽ ε ,

qui est équivalente à |x− 2| ⩽ ε/5. Ceci montre que si on définit δ := ε/5, alors

0 < |x− 2| ⩽ δ ⇒ 5|x− 2| ⩽ ε

⇒ |f(x)− 4| ⩽ ε .

(On suppose partout que x ∈ [1, 3].)
• Soit f(x) = sin(x). On a limx→0 f(x) = 0.

On remarque que | sin(x)| ⩽ |x| ∀x. Soit ε > 0. Il nous faut δ > 0 pour que |x − 0| ⩽
δ =⇒ | sin(x)− 0| ⩽ ε. On voit que δ = ε suffit, et donc on a limx→0 sin(x) = 0.

• La limite limx→0 sin
(
1
x

)
n’existe pas. On va voir une façon de montrer ce fait ci-dessous

(caractérisation par les suites).
⋄

Encore une fois, toutes les propriétés des limites vues précédemment possèdent un analogue
dans le cas des limites en un point.

En particulier, les limites en un point se comportent bien par rapport aux sommes, produits,
quotients, etc.
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3.2. Limites x → x0

Exemples 3.19. • Soit f(x) = 3x5 cos(2x) + 2x. On a

lim
x→π

2

f(x) =

(
lim
x→π

2

3x5

)
·
(
lim
x→π

2

cos(2x)

)
+ lim

x→π
2

2x

= 3
(π
2

)5
cos(π) + 2

π

2

= −3
(π
2

)5
+ π .

• Soit f(x) = x sin
(
1
x

)
. On a limx→0 f(x) = 0 car limx→0 x = 0 et la fonction sin

(
1
x

)
est

bornée.
• Dans l’exemple suivant, on enlève l’indétermination en sortant un facteur “caché” :

lim
x→1

x2 − 3x+ 2

x2 + 2x− 3
= lim

x→1

(x− 1)(x− 2)

(x− 1)(x+ 3)
= lim

x→1

x− 2

x+ 3
=

−1

4
.

• Soit f(x) =
√
x+3−(x+1)

x−1
. Calculons limx→1 f(x).

Puisque x− 1,
√
x+ 3− (x+1) → 0 lorsque x → 1, on a une indétermination du type

“0
0
”. On a

√
x+ 3− (x+ 1)

x− 1
=

√
x+ 3− (x+ 1)

x− 1
·
√
x+ 3 + (x+ 1)√
x+ 3 + (x+ 1)

=
x+ 3− (x+ 1)2

(x− 1)
(√

x+ 3 + (x+ 1)
)

=
−x2 − x+ 2

(x− 1)
(√

x+ 3 + (x+ 1)
)

=
−(x− 1)(x+ 2)

(x− 1)
(√

x+ 3 + (x+ 1)
)

=
−(x+ 2)√

x+ 3 + (x+ 1)
,

où la dernière égalité est valide car on étudie cette fonction sur un voisinage épointé
de 1, et donc x ̸= 1. On a donc

lim
x→1

f(x) = lim
x→1

−(x+ 2)√
x+ 3 + (x+ 1)

=
3

4
.

Remarque : ce qui nous a permis de calculer la limite était de faire apparaître un
facteur (x− 1) “caché” au numérateur et au dénominateur.

• Si f(x) = x3+px−3
x2−4x+3

, pour quelle(s) valeur(s) du paramètre p est-ce que f admet une
limite finie en x0 = 1? Et lorsque cette limite existe, que vaut-elle?

On remarque que la limite du dénominateur est

lim
x→1

(x2 − 4x+ 3) = 0 .

Donc, pour que f admette une limite en 1, il est nécessaire que la limite du numéra-
teur soit également nulle. Comme cette dernière est égale à

lim
x→1

(x3 + px− 3) = p− 2 ,
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3.2. Limites x → x0

il faut donc que p = 2. Pour cette valeur de p, le numérateur devient le polynôme

P (x) = x3 + 2x− 3 ,

qui possède x0 = 1 comme racine. Or ceci implique (voir cours d’Analyse A) que P
peut se factoriser :

P (x) = (x− 1)(x2 + x+ 3) .

Ainsi, la fonction devient

f(x) =
P (x)

x2 − 4x+ 3
=

(x− 1)(x2 + x+ 3)

(x− 1)(x− 3)
=

x2 + x+ 3

x− 3
,

et donc

lim
x→1

f(x) = lim
x→1

x2 + x+ 3

x− 3
= −5

2
.

⋄
On a aussi une version du Théorème des deux gendarmes pour les limites en un point.

Théorème 3.20 (Théorème des deux gendarmes, x → x0). Soient f, g et h des fonctions définies
sur un voisinage épointé de x0 ∈ R telles que

• g(x) ⩽ f(x) ⩽ h(x) sur un voisinage épointé de x0, et
• limx→x0 g(x) = limx→x0 h(x) = L,

alors limx→x0 f(x) = L.

Exemple 3.21. Soit f(x) = (x2 − 1) cos
(

1
x−1

)
(x ̸= 1). On a limx→1 f(x) = 0. En effet,

−(x2 − 1) ⩽ f(x) ⩽ x2 − 1,

puisque −1 ⩽ cos
(

1
x−1

)
⩽ 1, et limx→1−(x2 − 1) = limx→1(x

2 − 1) = 0. Donc par le théorème
des deux gendarmes, on a limx→1 f(x) = 0. ⋄
On a également une caractérisation par les suites dans le cas de x → x0.

Théorème 3.22 (Caractérisation par les suites). Soit f définie sur un voisinage épointé de x0 ∈ R.

limx→x0 f(x) = L ⇐⇒ pour toute suite xn ̸= x0 telle que xn → x0, on a limn→∞ f(xn) = L.

Ce théorème sert principalement à montrer qu’une limite n’existe pas.
Exemple 3.23. • La limite limx→0 sin

(
1
x

)
n’existe pas. En effet, en prenant la suite xn :=

1
π/2+nπ

, on a xn → 0, mais

limn→∞ f(xn) = limn→∞ sin
(

1
xn

)
= limn→∞ sin(π/2+nπ) = limn→∞(−1)n n’existe pas.

• Soit f(x) = x
2
+ x

2|x| . Cette fonction est définie sur R \ {0}. On a

f(x) =


x
2
+ x

2x
= x

2
+ 1

2
si x > 0,

x
2
+ x

2(−x)
= x

2
− 1

2
si x < 0.
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3.3. Limites latérales

On montre que limx→0 f(x) n’existe pas. En effet,

pour an := 1
n

, limn→∞ f(an) = limn→∞
1
2n

+ 1
2
= 1

2
, et

pour bn := −1
n

, limn→∞ f(bn) = limn→∞
−1
2n

− 1
2
= −1

2
.

Pourtant, limn→∞ an = limn→∞ bn = 0. La limite limx→0 f(x) n’existe donc pas par la
caractérisation par les suites.

⋄
Remarque 3.24. • Pour montrer que limx→x0 f(x) ̸= L, il suffit de trouver une suite

xn → x0 telle que limn→∞ f(xn) ̸= L.
• Pour montrer que limx→x0 f(x) n’existe pas, il suffit de trouver une suite xn → x0 telle

que limn→∞ f(xn) n’existe pas. On peut aussi exhiber deux suites (an) et (bn) telles que
limn→∞ an = x0 = limn→∞ bn, mais limn→∞ f(an) ̸= limn→∞ f(bn).

⋄

3.3 Limites latérales

L’exemple précédent suggère la définition suivante.

Définition 3.25. • La limite à droite de f lorsque x → x0 est égale à L si

∀ε > 0,∃δ > 0 tel que x0 < x ⩽ x0 + δ =⇒ |f(x)− L| ⩽ ε.

On écrit limx→x+
0
f(x) = L.

• La limite à gauche de f lorsque x → x0 est égale à L si

∀ε > 0,∃δ > 0 tel que x0 − δ ⩽ x < x0 =⇒ |f(x)− L| ⩽ ε.

On écrit limx→x−
0
f(x) = L.

Théorème 3.26. limx→x0 f(x) = L ⇐⇒ limx→x+
0
f(x) = limx→x−

0
f(x) = L.
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3.3. Limites latérales

Exemples 3.27. • Soit

f(x) =

{
x si x < 3,

x2 si x ⩾ 3.

On a limx→3− f(x) = 3 ̸= 9 = limx→3+ f(x), et donc limx→3 f(x) n’existe pas.
• Soit

f(x) =

{
x si x ⩽ 2,
x
2
+ 1 si x > 2.

On a limx→2− f(x) = 2 = limx→2+ f(x), et donc limx→2 f(x) = 2.
• Soit f(x) = x√

x4+3x2 et x0 = 0. On a

lim
x→0−

f(x) = lim
x→0−

x

|x|
√
x2 + 3

= lim
x→0−

x

−x
√
x2 + 3

= lim
x→0−

−1√
x2 + 3

=
−1√
3
,

et

lim
x→0+

f(x) = lim
x→0+

x

|x|
√
x2 + 3

= lim
x→0+

x

x
√
x2 + 3

= lim
x→0+

1√
x2 + 3

=
1√
3
.

La limite limx→0 f(x) n’existe donc pas.
• La fonction signe est définie comme suit :

sgn(x) =

{
1 si x > 1,

−1 si x < 1.

Elle n’admet pas de limite en 0 puisque limx→0− sgn(x) = −1 et limx→0+ sgn(x) = 1.
⋄

La caractérisation par les suites et le théorème sur les limites latérales sont deux façons
de montrer qu’une limite n’existe pas. Il faut choisir la méthode la plus adaptée selon la
situation.
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3.4. Infiniment petits équivalents (IPE)

3.4 Infiniment petits équivalents (IPE)

Les infiniment petits équivalents nous permettront de calculer les limites en comparant des
fonctions qui tendent vers zéro “à la même vitesse”.

Définition 3.28. Soient f et g définies sur un voisinage épointé de x0 ∈ R, telles que g(x) ̸= 0
sur un voisinage épointé de x0. Les fonctions f et g sont des infiniment petits équivalents
(IPE) au voisinage de x0 si

• limx→x0 f(x) = limx→x0 g(x) = 0 (infiniment petits), et
• limx→x0

f(x)
g(x)

= 1 (équivalents).
On écrit f ∼ g au voisinage de x0.

Remarque 3.29. On peut définir de manière équivalente les IPE dans un voisinage à gauche
ou à droite d’un point x0, ou dans un voisinage de l’infini. ⋄

Proposition 3. Au voisinage de x0 = 0,
• sin(x) ∼ x,
• tan(x) ∼ x,
• 1− cos(x) ∼ x2

2
.

Démonstration. On l’a déjà dit, limx→0 sin(x) = limx→0 x = 0.

Pour montrer que limx→0
sin(x)

x
= 1, il suffit de montrer que limx→0+

sin(x)
x

= 1, puisque la
fonction sin(x)

x
est paire. Soit 0 < x < π

2
. On compare des aires dans le dessin suivant d’un

quart de cercle trigonométrique.
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3.4. Infiniment petits équivalents (IPE)

On a donc
1

2
· 1· sin(x) ⩽ π · 12 · x

2π
⩽

1

2
· 1 · tan(x)

⇐⇒ sin(x)

2
⩽

x

2
⩽

tan(x)

2
⇐⇒ sin(x) ⩽ x ⩽ tan(x)

⇐⇒ 1 ⩽
x

sin(x)
⩽

1

cos(x)

⇐⇒ cos(x) ⩽
sin(x)

x
⩽ 1 .

(Ces manipulations sont justifiées par le fait que sin(x), cos(x), x > 0). Puisque limx→0 cos(x) =

1, le Théorème des deux gendarmes implique que limx→0
sin(x)

x
= 1. Ceci montre que sin(x) ∼

x au voisinage de 0.

On a limx→0 tan(x) = limx→0 x = 0, et

lim
x→0

tan(x)

x
= lim

x→0

sin(x)

x
· 1

cos(x)
= 1

puisque limx→0
sin(x)

x
= 1 par le raisonnement au-dessus, et limx→0

1
cos(x)

= 1.

Remarquons pour commencer que limx→0(1− cos(x)) = 0, et limx→0
x2

2
= 0. Ensuite, on peut

écrire

1− cos(x)

x2/2
=

1− cos(x)

x2/2
· 1 + cos(x)

1 + cos(x)

=
1− cos2(x)

x2
· 2

1 + cos(x)

=

(
sin(x)

x

)2

· 2

1 + cos(x)
,

et donc

lim
x→0

1− cos(x)

x2/2
=

(
lim
x→0

sin(x)

x

)2

·
(
lim
x→0

2

1 + cos(x)

)
= 12 · 1 = 1 .
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3.4. Infiniment petits équivalents (IPE)

Dans un calcul de limite, on peut remplacer une fonction par son IPE dans une expression
factorisée. En effet, si f ∼ f̃ au voisinage de x0,

lim
x→x0

[f(x) · h(x)] = lim
x→x0

[
f(x)

f̃(x)
· f̃(x) · h(x)

]

= lim
x→x0

f(x)

f̃(x)
· lim
x→x0

[
f̃(x) · h(x)

]
= lim

x→x0

[
f̃(x) · h(x)

]
.

Et dans un quotient, si f ∼ f̃ et g ∼ g̃ au voisinage de x0, alors

lim
x→x0

f(x)

g(x)
= lim

x→x0

f(x)

f̃(x)

f̃(x)

g̃(x)

g̃(x)

g(x)
= lim

x→x0

f̃(x)

g̃(x)

Exemple 3.30. Considérons

lim
x→0

sin2(x)

4− 4 cos(x)
.

Puisque sin(x) ∼ x et 1− cos(x) ∼ x2/2 au voisinage de x0 = 0,

lim
x→0

sin2(x)

4− 4 cos(x)
= lim

x→0

sin(x) · sin(x)
4(1− cos(x))

= lim
x→0

x · x
4(x2/2)

=
1

2
.

⋄
On peut faire des changements de variable pour se ramener aux IPE connus.
Exemple 3.31. Considérons

lim
x→−π/2

x+ π
2

cos(x)
.

Si on pose y = x+ π
2
,

lim
x→−π/2

x+ π
2

cos(x)
= lim

y→0

y

cos
(
y − π

2

)
= lim

y→0

y

sin (y)

= 1.

⋄
Notons aussi que, par exemple, on a sin(5x3) ∼ 5x3 au voisinage de 0, puisque limx→0 5x

3 =
0.

Attention : on ne peut pas remplacer une fonction par son IPE dans un calcul de limite d’une
somme, comme montre l’exemple suivant.
Exemple 3.32. Considérons

lim
x→0

sin(2x)− 2 sin(x)

x3
.
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3.5. Limites infinies en un point

Une façon correcte de calculer cette limite, est de commencer par factoriser :

lim
x→0

sin(2x)− 2 sin(x)

x3
= lim

x→0

2 sin(x) cos(x)− 2 sin(x)

x3

= lim
x→0

−2 sin(x)(1− cos(x))

x3

= lim
x→0

−2x(x2/2)

x3
= −1.

On remarque que si on avait voulu utiliser dès le début le fait que sin(x) ∼ x et sin(2x) ∼ 2x
au voisinage de x0 = 0, en remplaçant par les équivalents on aurait trouvé un résultat faux :

lim
x→0

2x− 2x

x3
= lim

x→0

0

x3
= 0 .

⋄

3.5 Limites infinies en un point

On définit maintenant la divergence vers l’infini en un point.

Définitions 3.33. Soit x0 ∈ R et f une fonction définie sur un voisinage épointé de x0.
• f tend vers +∞ lorsque x → x0 si ∀M > 0, ∃δ > 0 tel que

0 < |x− x0| ⩽ δ =⇒ f(x) ⩾ M .

On écrit limx→x0 f(x) = +∞.
• f tend vers −∞ lorsque x → x0 si ∀M < 0, ∃δ > 0 tel que

0 < |x− x0| ⩽ δ =⇒ f(x) ⩽ M .

On écrit limx→x0 f(x) = +∞.
• f tend vers +∞ lorsque x → x+

0 si ∀M > 0, ∃δ > 0 tel que

x0 < x ⩽ x0 + δ =⇒ f(x) ⩾ M.

On écrit limx→x+
0
f(x) = +∞.

• f tend vers −∞ lorsque x → x+
0 si ∀M < 0, ∃δ > 0 tel que

x0 < x ⩽ x0 + δ =⇒ f(x) ⩽ M.

On écrit limx→x+
0
f(x) = −∞.

• f tend vers +∞ lorsque x → x−
0 si ∀M > 0, ∃δ > 0 tel que

x0 − δ ⩽ x < x0 =⇒ f(x) ⩾ M.

On écrit limx→x−
0
f(x) = +∞.

• f tend vers −∞ lorsque x → x−
0 si ∀M < 0, ∃δ > 0 tel que

x0 − δ ⩽ x < x0 =⇒ f(x) ⩽ M.

On écrit limx→x−
0
f(x) = −∞.
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3.5. Limites infinies en un point

On définit les limites latérales infinies de manière analogue. Par exemple, limx→x+
0
f(x) =

+∞ ⇐⇒ ∀M > 0, ∃δ > 0 tel que x0 < x ⩽ x0 + δ =⇒ f(x) ⩾ M.

Comme avant, une limite infinie en un point x0 ne dit rien sur la valeur de f en x0.

Exemples 3.34. • On a limx→0+
1
x
= +∞ et limx→0−

1
x
= −∞, mais limx→0

1
x

ne tend pas
vers ±∞.

Montrons que limx→0−
1
x
= −∞.

Soit M < 0. Pour x < 0,
1

x
⩽ M ⇔ x ⩾

1

M
.

On pose δ = −1
M

; on a δ > 0 et 1
x
⩽ M pour tout x ∈ [−δ, 0[. On a donc bien que

limx→0−
1
x
= −∞.

• On a limx→0
1
x2 = +∞.

• Montrons que limx→1
1

(x−1)2
= +∞.

Soit M > 0. Pour x ̸= 1,

1

(x− 1)2
⩾ M ⇔ (x− 1)2 ⩽

1

M
⇔ |x− 1| ⩽ 1√

M
.
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3.5. Limites infinies en un point

On prend δ = 1√
M

(ou n’importe quelle valeur dans ]0, 1√
M
]). On a alors

0 < |x− 1| ⩽ δ ⇒ |x− 1| ⩽ 1√
M

⇒ 1

(x− 1)2
⩾ M.

Donc limx→1
1

(x−1)2
= +∞.

⋄
Les propriétés habituelles sont vérifiées pour les limites infinies en un point.
Exemples 3.35. • Considérons

lim
x→−2+

x2 + 3x+ 1

x2 − 3x− 10
.

Dans la limite x → −2+, le numérateur tend vers −1 et le dénominateur vers zéro 0.
Donc le quotient ne peut pas avoir de limite finie, et pour comprendre son comporte-
ment il faut regarder de plus près le signe du dénominateur à son approche de zéro.
En écrivant

x2 + 3x+ 1

x2 − 3x− 10
=

x2 + 3x+ 1

(x− 5)(x+ 2)
=

x2 + 3x+ 1

x− 5
· 1

x+ 2
,

on a extrait le terme qui pose problème : en posant y = x + 2, x → −2+ implique
y → 0+, et donc

lim
x→−2+

1

x+ 2
= lim

y→0+

1

y
= +∞ .

D’autre part,

lim
x→−2+

x2 + 3x+ 1

x− 5
=

−1

−7
=

1

7
.

Puisque 1
7
> 0, on peut conclure :

lim
x→−2+

x2 + 3x+ 1

x2 − 3x− 10
= lim

x→−2+

x2 + 3x+ 1

x− 5
· 1

x+ 2
= +∞

• Considérons

lim
x→−1

9− 2x sin
(

1
x+1

)
(x+ 1)2

.

Puisque

lim
x→−1

1

(x+ 1)2
= +∞ ,

et puisque 9− 2x sin
(

1
x+1

)
⩾ 7 > 0 sur un voisinage épointé de −1, on conclut que

lim
x→−1

9− 2x sin
(

1
x+1

)
(x+ 1)2

= +∞ .

⋄
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