Chapitre 7

Intégrale

7.1 Construction de l'intégrale Riemann—-Darboux

On sait, depuis les cours de géométrie plane élémentaire, comment calculer des aires de
régions simples, telles que rectangles, triangles ou disques.

Comment faire pour calculer des aires de régions plus compliquées, comme par exemple
l'aire sous le graphe d"une fonction?

J

Le calcul intégral, que nous allons développer dans ce chapitre, permet dans certains cas de
répondre a cette question.

Mais avant de vouloir la calculer, il faut définir précisément l'aire sous le graphe d'une
fonction.

Définition 7.1. Soit n > 1 un entier. La subdivision (ou partition) réguliere (a n éléments)
de l'intervalle [a, b] est la division de [a, b] en n sous-intervalles de longueurs égales, I}, =
[Tr—1, 2], k=1,2,...,n, 00

b—a

n

T =a+k

=0,1,2,...,n.
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7.1. Construction de l'intégrale Riemann—Darboux

b—a
_ N
\ Z; | -[2 ! L ' ]:k I ! >| ! -Z; |
T T 1 1 l T \ | T U
oox x 5
=X, ' ” Xk_' Xk XM" =X,
X, = at+ k- Gy
Soient, pour k =1,2,...,n,
my, = min f(z
¢ = min f(z)
My, = .
b = max f(2)
Ces nombres sont bien définis puisque f est supposée continue.
> x

Sur .Z—k Sur fa/éj

On définit la somme de Darboux inférieure

D’un point de vue géométrique, pour une fonction prenant des valeurs positives sur [a, b],
la somme de Darboux inférieure (resp. supérieure) représente une somme d’aires de n rec-
tangles, tous de base égale a =%, dont les cOtés supérieurs sont tous situés au-dessous (resp.
au-dessus) du graphe de f. Pour une partition contenant beaucoup de points, on s’attend a
ce que s, et .S, soient proches l'une de l'autre et tendent vers une méme limite :
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7.1. Construction de l'intégrale Riemann—Darboux

Sy = 1.9467
s, = 1.4361

Darboux sup
Darboux inf
] Riemann

—_—0 n=28

ra
Ld

Animation disponible sur botafogo.saitis.net/analyse-B

On peut effectivement garantir que ceci a lieu lorsque la fonction est continue :

Théoreme 7.2. Si f : [a,b] — R est continue alors les suites (s,,) et (S,) sont convergentes, et
possedent la méme limite. Cette limite commune est appelée I'intégrale de f, on la note

b
/ f(z)dz := lim s, = lim S, .

n—oo n—oo

En fait, on peut montrer que lim,_, s, = lim,_, S, méme si f possede un nombre fini de
discontinuités; dans de tels cas 'intégrale f: f(z) dz est aussi bien définie.

L'intégrale définie ci-dessus est ce qu’on appelle 1'intégrale définie (on parlera d'intégrale
indéfinie plus tard).

Exemple 7.3. Soit f(x) = z. Calculons 'aire A de la région délimitée par 1’axe Ox et le graphe
de f, entre a = 0 et un point b > 0. (Puisque cette région est un triangle, on sait qu’on doit

trouver A=1.b-x.)
b
/a:dm.
0

Comme f(x) est continue, on peut calculer cette intégrale a partir de sa définition, avec
lim,,_,o S, OU lim,,_,o S,,.

Il s’agit donc de calculer

Fixons n > 1 et calculons la somme inférieure s,, de f sur l'intervalle [0, b].

_—N
n=2_§

[[J Darboux sup
Darboux inf s, = 0.4375
[[J Riemann

rA
Ld

Animation disponible sur botafogo.saitis.net/analyse-B

Comme f est croissante sur [0, b], elle est croissante sur chaque intervalle I}, = [x;_1, 2], et
donc

My = max f(z) = f(zx),

€}

my = min f(z) = f(24-1).
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7.1. Construction de l'intégrale Riemann—Darboux

Puisque 2y =0+ k- 22 = &

(M)

— % Z b(k—1) ( par définition de f)

ol on a fait le changement j := k — 1.

Or on sait (voir Analyse A) que

N
d j=14+243+--N=

j=1

N(N +1)
e

En appliquant cette formule avec N =n — 1,

On a donc

ce qui implique que

1
/ z dr = lim s,
0 n—o0
b2 _ 2
= lim —(n D :b—.
n—00 n

o
Exemple 7.4. Soit f(z) = 1 — 2% Calculons l'aire A de la région délimitée par I'axe Oz et le

graphe de f(z).
/1f(x) dx:2/0 flx)dx.

Par la parité de f, on a
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7.1. Construction de l'intégrale Riemann—Darboux

. N Y 1 N :
Comme f est continue, on peut calculer cette deuxieme intégrale, [, f(x)dz, & partir de sa
définition, avec lim,,_,~ S, ou lim,,_, S,,.

Fixons n > 1 et calculons la somme supérieure S,, de f sur l'intervalle [0, 1].

n=3=8 S, = 0.7266

Darboux sup
(] Darboux inf
(] Riemann

Animation disponible sur botafogo.saitis.net/analyse-B

Comme f est décroissante sur [0, 1], elle est décroissante sur chaque intervalle [}, = [z;_1, 7],
et donc

My, = max f(x) = f(ap_1),

xely

my = min f(z) = f(zy).

Puisque z, =0+ k- =0 = &,

n

k=1

%if(l’kl)
()

k=1
n 2
— lz (1 — (k_ 1) ) ( par définition de f)
n n
k=1
1 1 < 5
i k=1

i n—1
1 1 9
~ n-= ) Z] ] )
L J=1
ou on a fait le changement j := k — 1.

Or on sait (voir Analyse A) que

N
Zj2:12+22+32+"'N2:

j=1

N(N +1)(2N +1)
- .
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7.2. Propriétés de l'intégrale

En appliquant cette formule avec N =n — 1,

P n—1n2n-1)+1 nn—1)2n -1
! ‘ 1 (n—1)(2n—1) (n—1)(2n—1)
Sn_ﬁ[n_ 6n3 ]_1_ 6n3 ’

ce qui implique que

Finalement,

7.2 Propriétés de l'intégrale

Dans cette section, on donne les principales propriétés de 1'intégrale. Notons que la défini-
tion d’intégrale, donnée dans la section précédente, est une version légérement simplifiée
en comparaison de celle trouvée généralement dans les textes d’analyse, et que certaines
des propriétés ci-dessous, pour pouvoir étre démontrées rigoureusement, requierent une
définition un peu plus générale.

Pour des raisons de commodité, commengons par définir

/ f(z)dz:=0.
Ci-dessous, nous supposerons partout que f est une fonction continue sur un intervalle

la, b].
e Relation de Chasles:sia < c < b,

/acf(x)dx+/cbf(a:)dx:/abf(x)dx.

Afin que la relation de Chasles reste valable pour un triplet quelconque a, b, ¢, on peut

définir . ,
dr := — d
| t@is == [ f@a

Lbf($)d$+/})af($)d$:/(;af(x)dx:().
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7.2. Propriétés de l'intégrale

e Linéarité : Si g est aussi continue sur [a, b], et si A, 1 sont deux constantes réelles, alors

/ab(Af(a:) + pg(x)) do = /\/abf(:v) dz + M/abg(x) dr .

e Inégalités : Si f(z) < g(z) pour tout = € [a, b], alors

b b
/ f(x)dr < / g(z)dz.

Démonstration. Notons S/ et S7 les sommes de Darboux supérieures associées a f et
g:

“b—a “b—a

Si = M g = g
ety sty

k=1 k=1
Puisque f(z) < g(x) pour tout = € [a,b], on a en particulier que pour chaque k =
1,2,...,n,

M = < = M.
i = max f(z) < maxg(z) = My

Ainsi, Sf < 59, et donc

b
/ f(z)dz = lim Sf

n—o0

< lim 57

n—o0

:/abg(:v)dx.

O
Une conséquence : . .
| t@as) < [ i) as.
Démonstration. Puisque a “
—|f@)] < flz) <|f(@)] Vo€ la,b],
l'inégalité du dessus implique que
b b b
- [l < [fwde< [l
R D S 1
On déduit que |A| < B. O

e Si f est paire sur [—a, a], alors
f(z)dx = 2/ f(z) dx.
—a 0

* Si f est impaire sur [—a, al, alors

/af(m)dxzo.

—a
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7.3. Théoreme fondamental de 1’analyse (1)

721 Le Théoreme de la moyenne

Théoreme 7.5. Si f : [a,b] — R est continue, alors il existe ¢ €|a, b| tel que

/ f(z) dz = f(¢) - (b—a).

Démonstration. Comme f est continue, elle atteint son minimum et son maximum sur |[a, b] :

m:= min f(x), M := max f(z).
z€la,b] z€a,b]

Ainsi, m < f(x) < M pour tout z € [a, b]

/mdm /f /de.

—m(b a) —M(b a)

En divisant par b — a, on obtiEnt m < f < M. Par le Théoreme des valeurs intermédiaires, il
existe ¢ €]a, b] tel que f(c) = f. O

Pour trouver la moyenne des nombres 1, 2, . . . ¥, on prend la somme y; + y» + - - - y,, et on
divise par n. Etant donné une fonction f, 'analogue serait de prendre 1'intégrale de f sur
la, ] et divise par la longueur de l'intervalle, b — a. Ainsi, la quantité

f::ﬁ/abf(x)dx

représente la moyenne de la fonction sur l'intervalle [a, b].
On a donc ff f(z) dv = f - (b — a), et le Théoreme de la moyenne affirme qu’il existe un

c €]a, b tel que f(c) = f.

— ot haddeur
]ﬁ o1 S dlean
= 0 : u
o wi ! o K.])(:S

o
>
/

7.3 Théoréme fondamental de I’analyse (1)

Définition 7.6. Soit f : [a,b] — R, continue ou possédant un nombre fini de discontinuités.
Pour tout x € [a, b], on définit la fonction “aire” par

:/;f(t) dt
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07

Gk

:
N

On remarque que

e A(a) =0,

e A(b) = ff f(x) dx (I'intégrale qu’on aimerait calculer).
Voyons deux exemples ot1 la fonction aire se calcule facilement :

Exemples 7.7. e Si f(z) = C Vx € [a, b] (une fonction constante), alors

A(x) :/xCdt:C’(:L‘—a).

* Si f(z) =mx + hVz € [a,bl], alors

Ax) = /z(mt + h) dt

= M -(xr —a) (aire de trapeze)
_ (ma—l—h)—;—(mx—i—h) (7 —a)

o 1 2 1 2
= (zmx +hx> <2ma +ha).

<

On a vu dans ces deux exemples que la fonction aire était dérivable et que de plus A'(z) =

f(z). Cette propriété est vraie en général :

Théoreme 7.8. (Théoreme Fondamental de I’Analyse, 1ére partie) Soit f : [a,b] — R continue, et

soit A : [a,b] — R la fonction aire associée. Alors A(x) est dérivable sur |a, b| et

Al(z) = f(z) Vz €la,b|.

Démonstration. On doit montrer que pour tout z €]a, b|,

. Az +h) — A(2)
lim = f(x).
h—0 h
Soit donc z €]a, b], et soit h > 0.
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Y

Par la relation de Chasles, on a

Al +h) = /wf(t) dt+/x+hf(t) .

—_—
=A(z)

Alors il découle que

A(l’ + hf)b — A(l’) — %/:3 f(lf) dt.

Par le Théoreme de la moyenne, il existe ¢, €]z, x + h[ tel que

/m F(t) dt = Fen) - [z + h) — 2] = hf(cn).

L’expression du dessus devient donc

Alw+h) — Alz)
- = f(cn).

Lorsque h — 07, ona ¢, — z*, et donc

o Ale+h) — A@)
h—0t h

— lim (o) = lim f(c) = f(a).

c—T

La derniere égalité découle du fait que f est une fonction continue. L'affirmation dans le cas

h — 0~ se montre de maniere analogue, et on a donc lim;_, w = f(z), pour tout

x €la, bl. O

7.4 Primitives

Les résultats de la section ont montré que la fonction aire est une fonction dont la dérivée est
égale a f. La nouvelle définition suivante est donc naturelle :

Définition 7.9. Une fonction dérivable F' telle que F’ = f est appelée une primitive de f.
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Remarque 7.10. La terminologie anglophone pour “primitive” est “antiderivative”. o

Par le Théoreme Fondamental de 1’Analyse (1ere partie), toute fonction continue posséde au
moins une primitive, sa fonction aire associée A(x). (Ceci ne veut pas dire que la fonction
A(x) est facile a exprimer!)

De plus, la primitive d’une fonction n’est pas unique. En effet, puisque la dérivée d'une
constante C' € R est nulle, si F'(x) est une primitive de f, alors F'(z) 4+ C 'est aussi.

Exemple 7.11. Fy(z) = %2 et Fy(z) = %2 + 42 sont toutes les deux primitives de f(z) =z. ©

Donc une fonction qui possede une primitive en posséde une infinité.

Le lemme suivant assure que sur un intervalle, toutes les primitives d’une fonction sont de
la méme forme :

Lemme Soit f définie sur [a,b]. Si Fy, I, sont deux primitives de f sur cet intervalle,
alors il existe une constante C' € R telle que Fy(x) = Fi(x) + C pour tout = €]a, b|.

Ce lemme n’est plus vrai si le domaine n’est pas un intervalle mais une union d’intervalles
disjoints.

Définition 7.12. L'intégrale indéfinie de f est ’ensemble de toutes les primitives de f. On
note cet ensemble comme suit :
/ f(z) dz.

Par le lemme et les remarques ci-dessus, étant donnée une primitive F' de f sur un intervalle,
ona

/f(:v)dx:{F(a:)—l—C:CER}.

Par abus de notation , on écrira aussi

/f(x)dx:F(x)—i-C,

ou C désigne une constante arbitraire.

Quelques exemples de primitives de fonctions élémentaires :

Exemples 7.13. o [a"dx= fl: +C,
o [Tdz=1Inlz|+C, (x#0),
o [cos(z)dx =sin(z) + C,
e [sin(z) dx = —cos(z) + C,
o [e"dr=¢"+C,

7.4.1 Sur larecherche des primitives

On a
o (f fx)dz) = f(x),
o [f(x)dr = f(z)+C,
o (linéarité) [(\f(z) 4+ pg(z)) de =X [ f(x) de+p [ g(z) dx
o [(f(z) g(z))dz# [ f(z)dzx- [g(x)da.
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On peut obtenir beaucoup de primitives de fonctions en utilisant les propriétés ci-dessus, et
en remarquant que si on peut mettre une fonction sous la forme

f'g(x)) - g'(z),
alors la regle de dérivation de la composée permet de conclure que
[ Fo@)-g@ s [(Hg) de = fg(o) +C
Exemples 7.14. o
/ cos(3x) dr — % / 3 cos(3z) dx
- é / (sin(32)) dz
_ % (sin(3z) + C)

1
=3 sin(3z) + ',

ot (" est la constante . Puisque C' peut étre une constante quelconque, C’ peut aussi
prendre toutes les valeurs réelles. Ainsi, on peut simplement écrire

/cos(3x) dr = %sin(?)a:) +C.

On fera souvent ce genre de simplification par la suite.

/cos2(x) dx = / H#s@x) dx

1 11
:5/1dx+§-§/2(:os(2x)dx

— 1(3; +Cy) + i[sin(?x) + Oy

2
1 1
=52 + 1 sin(2zx) + C.

/ sin?(z) dz = / 1 cos?(z)] da

1 1.
=z — [ﬁx—l—zsm@x)] +C

1 1 .
zém—zsm@x)—ka
[ ]
T x 1/
/ ‘ dx—/wdx—ln(ex—l—l)—i-C.
e’ +1 er +1
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7.5 Théoréme fondamental de I’analyse (2)

Théoreme 7.15. (Théoreme Fondamental de I’ Analyse, 2éme partie) Soit f : [a,b] — R continue. Si
F est une primitive de f, alors

b
/ f(z) dz = F(b) — F(a).
Démonstration. On sait que la fonction “aire” A(x) = [ f(t) dt est une primitive de f. Par le
lemme sur les primitives précédent, il existe une constante C' € R telle que
Alx) =F(z) + C.

Mais A(a) =0, donc 0 = F(a) + C,d’ou C = —F(a). Ceci implique que A(x) = F(z) — F(a),
et donc

/ F@) dz = A(b) = F(b) — F(a).

O
Exemples 7.16. e Reprenons I'exemple f(z) = 1 — 2. On a la primitive F'(z) = z — %3,
et donc le Théoreme Fondamental ci-dessus implique que
1
/ (1—2?)dz = F(1) — F(=1)
-1
13 _1)\3
(B (D
3 3
B 2 4
T3 3]
comme nous avions trouvé au début du chapitre.
[ ]
"
/ cos(x) dxr = sin (—) —sin(0) =1,
0 2
comme calculé aux exercices.
o

Exemple 7.17. Supposons que f est une fonction continue. Si on définit

sin(x)
Gla)= [ seyar

comment calculer sa dérivée G'(z)?

Puisque f est continue, elle possede une primitive F': I/ = f. Le Théoreme Fondamental
permet donc d’affirmer que
G(z) = F(sin(x)) — F(z) .

Ainsi,
G'(x) = [F(sin(z)) — F(z)]
= (sin(z))" - F'(sin(z)) — F'(x)
— cos(x) f(sin(x)) — ().
Donc on n’a pas besoin de connaitre £’ pour connaitre G'. o
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7.6 Intégration par parties

Soient f, g deux fonctions dérivables. La régle de dérivation pour leur produit,

(f(2)g(x))" = ['(x)g(z) + f(2)g'(x)
peut s’écrire

f'(@)g(x) = (f(x)g(x)) = f(x)g'(x).
Si on suppose que f’ et ¢’ sont continues, le théoreme fondamental garantit que la fonction
f'(z)g(z) possede une intégrale indéfinie, et

JECRCES / (f(z) - g(x)) do— / e

C’est la formule d’intégration par parties :

[ F@-gwrdo= s /f

On utilise cette formule lorsqu’on cherche la primitive d'un produit dans lequel on a pu
identifier une partie que 1’on va intégrer, f'(z), et une partie que l'on va dériver, g(x).

Exemples 7.18. .

\x’/-sin(x) dx = —cos(x) - x — /(— cos(z) - 1) dx

——r
9(@) 1 (z)
= —zcos(x) + /cos(x) dx
= —x cos(z) + sin(z) + C.
[ ]
22
/ r -In(z) de=—"-1 /— —dx
el 2
@) g
22
:g-ln(x)—§/:cdx
2 1
=—-1 — —z? :
5 n(x) 2% +C
[ ]
/ln(x) dx :/ 1 -In(x) dx
F@ g
In(x) / 1d
= - In — . —
x - In(x - —dz

=z-In(z) —x+C.
o

Avec la notation F(z)|% := F(b) — F(a), on peut aussi donner une version de I'intégration
par parties pour les intégrales définies :

/ F(@) - gla) dz = f(@)g(@): — / f(2)-d(x) do
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7.7 Intégration par changement de variable

Dans cette section, on suppose que f est continue, et g est dérivable avec ¢’ continue.

On a déja vu l'expression

/ f(o(@)) - ¢/ () dz = Flg(x)) + C,

ou F est une primitive de f. Pour rendre plus clair 1'étape qui consiste a chercher la primitive
de f, récrivons cette expression a I'aide d'une étape intermédiaire, en voyant g(z) comme
une nouvelle variable :

9(x) = u.
On a donc
u = d_u = ¢ ()
- (13: - g 9

ce qui mene a l’association “du = ¢'(z)dz”. On peut ainsi écrire notre intégrale indéfinie en
termes de u seulement :
[ ) g@ s = [ rwyau,
~—~ T

On a ainsi isolé la difficulté, qui est de calculer

:/f(u)du:F(u)—l—C.
Ensuite, on revient a la variable z,
Fu)+C=F(g(z))+C.

Exemples 7.19. e Calculons [ cos(3z) dzx, en posant u = 3z, du = 3dz :

/ cos(3z) dx = / cos(u) i—“

= %/cos(u) du

= % sin(u) + C

1
=3 sin(3z) + C

e Calculons [z -e”*+! dz En posant u = 2% + 1, du = 2xdx :

fx~e’”2+1dx:fe“d7“:%fe“du:%e“+C:%6$2+l+C.
® Enposantu=x+1,du=1-dx:

S+ 1) de = [l du =4 + C = Eg—

1001

+C.
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. Enposantu:\/}—l—l,du:ﬁdm((:) Vr=u—1,dx=2(u—1)du):

/ﬁ\/ildx—/“;l-z(u—mdu
:2/(u—1)2 du

:zf(u—2+%) du

=u® —4u+2In|u| + C
=(Vr+1) =4z +1)+2In(vz+ 1)+ C
=2 +2Vr+1—4yr —4+2In(vz +1)+C
=z —2yz+2In(vx + 1)+ C.

Voici la version de I'intégration par changement de variable pour les intégrales définies :

g(b)

b
/ Flo)) o) de = | - J'(u)du = F)l%) = f(g()) — f(g(a)).

g(a

7.8 Changement de variable : fonctions trigonométriques

Dans la sous-section précédente, on a défini une nouvelle variable en fonction de I’ancienne :
u=g(x).

On peut aussi exprimer 1’ancienne variable en fonction d’une nouvelle : x = ¢(t). Si ¢ est
bijective (et donc inversible), alors ¢ = ¢~ '(z), et donc si on trouve que

/ f(z) di = / S0 (1) di = H(t) +C,

pour une certaine fonction H, on a alors

[ t@)ds=n(e e 4 C.
Exemple 7.20. Considérons

/\/1—7$2d:v, x e [—1,1].

Si 1 — 22 était un carré, y?, ce serait plus facile d’intégrer. Mais
l—a2?=9® <= 22+ =1,

c’est-a-dire si (z,y) est sur le cercle unité. Ceci suggere d’introduire une variable d’angle ¢,
et de faire la substitution
x=p(t) =cos(t) tel0n.
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Remarquons que ¢ : [0,¢] — [—1,1] est bijective, et que sa réciproque est t = ¢ '(z) =
arccos(x). Puisque ¢'(t) = —sin(t),

/mczx:/\/m(—sm(t)) dt
_ / sin(t)(— sin(t)) dt

= —/Sinz(t) dt .

Dans la derniere égalité, on a utilisé le fait que sin(¢) > 0 puisque ¢t € [0, 7]).

Ensuite, on a vu plus haut que

1 1
_ / sin?(r)dt = — 1 +  sin(20) +C

H(t)

J/

1 1
= _it +3 sin(t) cos(t) + C'.

On adonc:

1 1
/\/1 —22dr = ) arccos(x) + §x\/1 —224C.

Plus généralement, si la fonction a intégrer contient
Va2 — b2 .I'2,

a,b € R constantes, on peut essayer un changement de variable de la forme

P cos(t) ou z= a sin(t).
b b

Notons que pour la substitution z = ¢sin(¢), il faut que ¢t € [=F, 2] pour que ¢(t) := sin(t)
soit bijective.
Exemples 7.21.  Pour calculer [ /4 — 322 dz, on pose x = % cos(t).

e Pour calculer [ v/2x — z? dz, on complete le carré 2z — 2® = 1 — (z — 1)?, et on pose

x — 1= cos(t).
3

Les prochains exemples utilisent les fonctions hyperboliques cosh(t) et sinh(¢). De maniere
analogue aux fonctions trigonométriques cos(t) et sin(¢) qui paramétrisent le cercle unité
z?+1y? = 1, les fonctions hyperboliques donnent une paramétrisation x = cosh(t), y = sinh(t)
de I'hyperbole unité 22 — y* = 1.
Exemple 7.22. [ /14 2% dz, x € R.

De nouveau, si 1 + 22 était un carré, 32, ce serait plus facile a intégrer. On a l'identité

cosh?(z) — sinh?(z) = 1,

et donc on peut poser x = sinh(t), t € R. Ainsi, /1 + 2% = /1 +sinh®*(t) = {/cosh?(t) =

cosh(t), dx = cosh(t) dt et t = argsinh(x).
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X sinh(4)

CR— R
t = wnh(t) Y
)ﬂ éﬁci?&

/ V1422 de = / cosh(t) - cosh(t) dt
= / cosh?(t) dt

et +et]?
_/{ - } it

1
= —/(62t+2—|—6_2t) dt

4
1.1 1
= 1_1(56% + 2t — 567225) + C
1 2t -2t
:Z(2t+—€ 26 )+C

= E[Qt + sinh(2t)] + C
= %1[275 + 2sinh(¢) - cosh(t)] + C

1
=1 [2 argsinh(z) + 22V 1 + .:E2] +C.

Plus généralement, si la fonction a intégrer contient
va? + b2x?,
a,b € R constantes, on peut essayer un changement de variable de la forme

r = %sinh(t).

Ce changement donnerait

Va2 + 222 = \/&2 + b2 (% S,irlh(t))2 = \/@2(1 + sinh?(t)) = |a] - cosh(t).

Exemple 7.23. [ /22 — 1 dz.

Ici, I'intégrande est définie pour x €| — oo, —1] U [1, +o0[. Comme dans I'exemple précédent,
on peut utiliser 1'identité
cosh?(z) — sinh?(z) = 1.
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Siz>1

On peut poser x = cosh(t),t > 0. Ainsi, vVa? — 1 = \/cosh2(t) —-1= \/sinhQ(t) = |sinh(t)| =
sinh(¢) (car t > 0), dx = sinh(t) dt et t = argcosh(x).

. x (wsh &)
\
\
g Lol = [t,=( T
t — cosh (£) ¢
/ L[ycct}c
Ona
/\/ 22— 1ldx = /sinh2(t) dt
1 1
=-3 argcosh(x) + 53:\/ 2 —-1+4+C.
Siz < —
On peut poser x = —cosh(t),t > 0. Ainsi, V22 —1 = /(—cosh(t))2 — 1 = 4/sinh’(t) =
| sinh(t)| = sinh(t) (car t > 0), dv = —sinh(¢) dt et t = argcosh( x).
x
g [0/"4[_»]—”0/’17 4 ¢
t ——cosh (£) -]
/
}ﬂ éﬁc(z;’c /

/

/ - CaSA(f)
Ona

/\/ﬁdx:/—smh?(t) dt

1 1
=3 argcosh(—x) + 53:\/ 2 -1+ C.
En résumé,

targeosh(—z) + o/ -1+ C; siz < -1
Jo- -
—sargeosh(z) + ov/a2 —1+Cy  siz > 1.

Attention : les constantes C; et C; peuvent étre différentes. o
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Plus généralement, si la fonction a intégrer contient
V22 — CL2,

a,b € R constantes, I'intégrande est définie sur | —oo, — |#|] U [| |, +00[. On peut essayer un
changement de variable de la forme

r=4 )2‘ cosh(t),

en choisissant le signe selon les cas = > || ou z < — |¢|. Ce changement donnerait

Vi2a? —a? = \/b2 (% cosh(t))2 —a? = \/a2(cosh2(t) — 1) = |a] - sinh().

7.9 Intégration de fonctions rationnelles

Dans cette section, on considere des intégrales de la forme

P(z) . R
/ Q) dz, ou P(z),Q(x) sont des polyndmes.

Pour trouver ces primitives, on va décomposer la fonction rationnelle en éléments simples
qu’on sait intégrer. On sait intégrer les cas simples suivants.
e [Ldz=In|z|+C
—n+1
fz"dx +C (n#1)

n+1
o [ QH dm—arctan( )+ C
o [Fade=3[Frde=} 50 dv =@+ 1)+C
Exemples 7.24. * En posant u = \/%, du = fl/—“%, on a

* Enposantu = 212, du= 9%, ona
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e Onremarque que (z2 + x4+ 1) =2z +1,et3z+ 1= 3(2z + 1) — 1, et donc

3z +1 d 3 2¢+ 1 d 1 1 d
——dr == | ——dr— | — dx
24+r+1 2 2+x+1 2 24+x+1

—_——

u=x2+2+1
3 1 1
(z+3) +1
3 1 4 1
——ln(x2+x+1)——'—/—2 dx
2 2 3 z+1/2 11
V3/2
—_———
—ztl
V3/2
3 2 V3 T+ 1/2
= —In(z*+z+1 ——-—arctan( )
2 ( ) 302 V3/2
3 V3 x+1/2
= —In(z*+x+1 ——arctan(—)+0
2 ( ) 3 V3/2

Les exemples ci-dessus sont du type

/:x——i_fda:, A = b* —dac < 0.
azr? +bxr +c

Pour un discriminant < 0, on peut exprimer le dénominateur sous la forme (az + (3)* + 7,
~v > 0, et on sait donc comment traiter ces cas en utilisant In et arctan, comme ci-dessus. Le
cas A < 0 correspond a un polyndéme irréductible qui n’a pas de racines réelles, et donc ne
se factorise pas (sur R).

Que peut-on faire si A > 0? Si A > 0 pour le dénominateur, alors il a des racines réelles et
on peut le factoriser. On utilise cette factorisation pour le décomposer en éléments simples.

Exemple 7.25. Pour calculer f ﬁ dx, ou A > 0, on essaie d’abord de trouver des constantes
A, B € R telles que

1 1 A B
332—1:(3:—1)(3:+1):x—1+:1:+1’ (ve 7 £1).
Ona
A N B :A(x+1)+B(m—1):(A+B)x+(A—B)
r—1 x+1 (x —1)(z+1) (x—1)(z+1)
et donc

(A+B)x+(A—-B)=1,
ce qui implique A + B = 0 et A — B = 1. On résout ce systeme pour trouver
A= B=-1.

1
27 2

1 1/2 —-1/2
/2 dx:/ / dx—l—/ / dx
x? —1 r—1 z+1

On a donc

1 1
:§1n|:17—1|—§1n|:1:—|—1|+(]
1. Jz—-1
= — C.
2 x+1‘+
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A la fin de la section, on discute encore de comment trouver les coefficients A, B, . . ..

7.9.1 Méthode générale

On décrit maintenant la procédure a suivre dans le cas général. Soit

P(x)
Q(x)

une fonction rationnelle (P(z), Q(z) polyndémes).

fz) =

1. Sideg(P) > deg(Q), effectuer la division polynomiale pour trouver

ou S(z), R(x) sont des polyndmes, et deg(R) < deg(Q)).

Exemple 7.26.
43 — 222% — 4o + 4 10z — 8

=2r—-124+ — .
202+ —1 v +2x2—|—x—1

2. Factoriser le plus possible le dénominateur Q)(z) (en facteurs irréductibles).
Exemple 7.27. 2% — 1 = (v — 1) (2% + x + 1). o
—_—
A<O0
3. Maintenant on a les possibilités suivantes.
e CasI:SiQ(x) peut étre factorisé en un produit de & facteurs de degré 1 distincts,

Q(l’) = (alx + bl)((lzx -+ b2> ce (CLkl’ + bk);
alors on cherche des constantes Ay, As, . .. Ay, telles que

R(x) A N Ao N Ay,
Q) ax+b  asx+ by apr + by

Exemple 7.28.

z+6 <_A+ B N C
v(r—4)Bx+2) 2 x—4 3x+2°

&

e Cas II: Si un des facteurs de degré 1 de Q(x) est de multiplicité r, (ax + b)", alors
on ajoute a la décomposition en éléments simples les termes

A + A + + L
ar+b  (ax+b)? (ax + D)
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Exemple 7.29.

m3—x+1_A+§+ C N D N E
2?2(x =53 x 22 x-5 (r—5)2 (r—5)>

o
Cas III : Si un des facteurs de Q(z) est un facteur irréductible du type ax? + bx + ¢
ou A = b* — 4ac < 0, alors on ajoute a la décomposition en éléments simples le

terme
Az + B

ar? +bxr +c’

Exemple 7.30.
x A Bx+C Dx+FE

(x —T7)(22+1)(2% +4) :16—7jL 2 +1 * 2?2 +4

o
Cas IV : Si un des facteurs de Q(z) est un facteur irréductible de degré 2 de multi-
plicité 7, (az? + bz + ¢)" avec A = b* — 4ac < 0, alors on ajoute a la décomposition
en éléments simples les termes

All’ + Bl AQI + BQ 4 i A,«JI + Br
ar? +br+c  (ax?+br+c)? (ax? +bx + )"’
Exemple 7.31.
24?1
(x+7)(22+2+1)(a?+1)3
A Bx +C Dx+FE Fzr+G Hx+1

x+7+x2—|—m—|—1 224+1 (22412 (2241)3

Exemple 7.32. Calculons

212 — 2 12
/&dm

3+ 3x

On factorise le dénominateur. On a 2 + 3z = z(2? 4+ 3). La décomposition en éléments
simples est donc

A Bx+C  A@@*+3) +a(Br+C)

x+ 243 x(z? 4 3)
_ (A+B)2*+Cx+3A
z(z? + 3)
2?2412
 x(22+3)

On obtient donc le systeme d’équations

A+B =2
C = -2
3A =12
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dont la solutionest A =4, B = —2et C = —2. Ainsi
/2x2—2m+12d / 4+—2x—2 p
——dr = -4 ——| dx
3 + 3x x 2+ 3
4
:/—d:v—/ 2z d:}:—/ 2 dx
T 2+ 3 2+ 3

2 T
=4Inl|z| —In(z®> +3 ——arctan(—)—i—C.
ol = In(a + 3) — -z anctan (-

7.9.2 Sur la recherche des coefficients

Lorsqu’on décompose une fraction en éléments simples, on peut toujours trouver les coef-
ticients par identification comme on 1a fait jusqu’ici. Mais on peut aussi utiliser la méthode
dite d’évaluation pour rendre les calculs plus rapides.

Exemple 7.33. Décomposons % en éléments simples. On pose
S5r — 3 A B

(:c+1)(x—3)7x+1+:c—3'

Pour calculer les coefficients A et B, on peut mettre les fractions au méme dénominateur et
identifier les coefficients des polyndmes au numérateur de part et d’autre de 1'égalité :

Sr — 3 _ Alx=3)+B(x+1) (A+B)x+ (B-—-34)
(z+D(x-3)  (z+1)(xz-3) (x+1)(x—-3)

ce qui nous amene a résoudre le systéme

A+B =5

B—-3A =-3
pour obtenir A = 2, B = 3.
Mais on peut aussi partir de I’'équation

S5r — 3 A B

(x+1)(x—3):3:+1+x—3’

qui doit étre valide pour tout « ¢ {—1, 3}, multiplier les deux cotés par (z+ 1), et faire tendre

x vers —1 (ce qui revient ici a I’évaluer simplement en + = —1) pour obtenir le coefficient A :
Sz — 3 B(x +1) —5-—3
=A+ ——= =A=2
r—3 * r—3 - -1-3

De méme en multipliant les deux cotés par (x — 3) et en faisant tendre x vers 3, on obtient la
valeur du coefficient B :
5r—3 Az —3) 15— 3

= B =
z+1 z+1 + 3+1
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Exemple 7.34. Décomposons % en éléments simples. On pose

x? 42 A B C

t@H1? 7 o+l @riE

* On multiplie les deux c6tés de I'identité par x et on fait tendre = vers 0 :

x? + 2 Bx Cx

e | = A=2.

(x +1)2 +x+1+(x—|—1)2

e On multiplie les deux cotés de I'identité par (z + 1)? et on fait tendre x vers —1:
2
2
T =Ax+1)*+Bz+1)+C = C=-3
T

e Pour trouver le dernier coefficient B, on peut évaluer 1'identité en une valeur quel-
conque, par exempleenz = 1:

3 2 B 3
=4 == B=-1.
iT17271 7
Alternativement, on peut aussi multiplier 1'identité
%+ 2 A B C

x(r+1)2 _;+x—|—1+(x+1)2

par x, pour obtenir

x? 42 A4 Bz n Cx
(z+1)2 r+1  (r+1)2

et prendre la limite + — +o0 pour trouver

1=A+2B = B=-1.

L’'idée est de multiplier 1'égalité par une puissance de z assez grande pour que la
fraction de gauche admette une limite, et assez petite pour que le terme contenant le
coefficient qu’on cherche (ici, B) survive le passage a la limite.

o

)
z(z?+1)

Exemple 7.35. Décomposons en éléments simples. On pose

>’+x+2 A Bx+C
r(z24+1) o a2+1°
* On multiplie les deux c6tés de I'identité par x et on fait tendre x vers 0 :

* On multiplie les deux cotés de I'identité par = et on fait tendre x — +o00:
1=A+2B = B=-1.
* On évalue en n'importe quelle valeur de z, par exemple z = 1 :
4 2 C-1

4_2 C-1 C=1.
5= 17 3 =
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7.10 Aires de régions du plan

On a vu que l'aire analytique définie par le graphe d’une fonction f et 'axe Oz est donnée
par fabf(:v) d.

L’aire géométrique est donnée par fab |f(z)] dx.

y Ain ana(ly‘@u 4 Airc j&:)mf’/)vfwa
/ 2 ) , g2 .,

[ 48 10 o= [ e+ [0

Exemple 7.36. Calculons l'aire géométrique A de la région du plan délimitée par la courbe
y = f(z) =2 — /x, les axes Ox et Oy et la droite = = 9.

d1

V
X

=7
14 <

Remarquons que f change de signe en z = 4. Donc

1= [
- [ s s [[1-sna
:/04[2—\/E]da;+/49[—2+\/5]dx

4 9
2 3
+ {—2:13 + §$2}
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Exemple 7.37. Calculons l'aire A du disque de rayon R centré a I'origine.

Q¢
Vadl

L'équation du cercle est 2 + y? = R?, et pour z,y > 0,0on a
y=VR?—a?=: f(x).

On a donc

A:4/0Rf(:c)dx:4/0R\/R2—x2dx.

En posant © = ¢(t) := Rsin(t), cette derniére devient

™

4/2 VR — (Rsin(t))? - Rcos(t) dt = 4R* /2 cos®(t) dt
0 W—’/(t) 0
%)

2

1 1
— 2| = Z&
=4R [Qt + 1 sm(2t)]

0
T

= AR*—
4

= 1R

<

Remarque 7.38. Si on integre par changement de variable, il faut soit revenir a la variable ini-
tiale pour évaluer par rapport aux bornes d’intégration originales, soit exprimer les bornes
en fonction de la nouvelle variable. o
On peut aussi calculer 'aire entre deux courbes y = f(z) et y = g(z). Pour ceci, il est utile de

* trouver les points d’intersection des courbes,
* esquisser le domaine,

e calculer I'aire A = f: |f(z) — g(x)| dz.
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d

—r L
j -4 e -
[ 160-300 e [0~

Exemple 7.39. Calculons l'aire A de la région bornée, délimitée par les courbes

y =1 —dv = f(r), y=6—2"= g(x).

Un simple croquis permet de comprendre la situation :

J
{(x)

<

W

/ //// > X
g%

Commencons par chercher les points d’intersection des deux graphes :

flx)=g(r) <= 2* —4r=6—2"
= 2* 4z —-6=0
— (22+2)(x—3)=0
<~ x=—-loux=3.
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Comme le graphe de g est au-dessus de celui de f sur [-1,3],ona |f(z) —g(z)| = g(z) — f(x)
sur cet intervalle, et donc I’aire cherchée vaut

A=/_1\f<x>—g<x>rdx

-/ 9(o)— fla) do

o

L’aire d'une région peut en souvent s’exprimer aussi a 1’aide d"une intégration selon y, ce
giu peut parfois simplifier les calculs.

Exemple 7.40. Calculons l'aire A de la région délimitée par I'axe Oy, la droite y = 7 et la
courbe y = f(z) = arcsin(z).

My

AN

7
P

Commencons a intégrer par rapporta z :

1 1
A= / (3 — arcsin(z)) do = = — / arcsin(x) dx
0 0

o] 2
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En posant x = sin(t),

INIE]

arcsin(sin(t)) cos(t) dt

I
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Regardons maintenant ce qui se passe en intégrant par rapporta y :

7.10.1 Régions délimitées par des courbes paramétrées
Soit maintenant

M : |a, B] — R?
t— M(t) = (x(t), y(t))

une courbe paramétrée. Pour simplifier, supposons que la portion de courbe pour ¢ € [, []
est située au-dessus de 1’axe Oz, et qu’elle ne s’auto-intersecte pas :

j/\ M)

-y

> X

Comment calcule-t-on l'aire A sous la courbe, a I'aide d’une intégrale en la variable ¢ ?
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x () croissomte x (1) dipmissomTe
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Supposons d’abord que la fonction x(t) est croissante, c’est-a-dire, que la particule se déplace
vers la droite.

En prenant une partition {to, t1, . . ., t,_1, t,, } suffisamment fine de l'intervalle du temps |, ],
ona

n

A~ Zy(ti) x(t) — 2 (tic)]

i=1 >0
“ X tl — X ti,1
- Zy(ti) A t) t( ) (b = ti1),
i—1 i bi—1
:x(tz)

et si z(t) est une fonction dérivable avec dérivée continue, on peut montrer que lorsque
n — 00,

B
A:/ y(t) - d(t) dt.

Si la fonction x(t) est décroissante, c’est-a-dire, la particule se déplace vers la gauche, alors
on a

n

i=1 A
- —|T tz — X ti_
= _ult)- | <t> t = (ti = i),
i=1 Pt
:—a'c(ti)

et si () est une fonction dérivable avec dérivée continue, on peut montrer que lorsque
n — 0o,

B
A= [y (i)
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7.11. Volumes de solides

Exemple 7.41. Calculons l'aire A du disque de rayon R.

>~

RL_ = (Re(T-t), Ran(E-t))
= (Rsnt), Peost))

\r

Paramétrisons le quart de cercle x,y > 0 ainsi :

M :[0,7/2] — R?
t— M(t) = (Rsin(t), Rcos(t)).

La fonction z(t) est croissante sur [0, 7/2] et donc

w/2 /2
A= 4/ Rcos(t) - Rcos(t) dt = 4R2/ cos®(t) dt = TR

=) =)

7.11 Volumes de solides

Dans cette section, on utilise le calcul intégral pour calculer le volume de certains solides
tridimensionnels.

Puisqu’on ne traite dans ce cours que de 'analyse d'une variable réelle, ces solides devront
étre d’un type particulier.

Plus précisément, on supposera qu’il existe toujours un axe selon lequel on peut utiliser une
variable, disons z, de facon a ce que la section du solide qui est perpendiculaire a 1’axe en =

soit d’aire connue A(z) :
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Une tranche infinitésimale d’aire A(z) et d’épaisseur dz a un volume infinitésimal donné par
dV(z) = A(z)dz.

Ainsi, le volume du solide s’obtient en intégrant les tranches :

V= /ade(z) - /abA(z)dz

Exemple 7.42. Calculons le volume V' d"un cone de hauteur H, dont la base est un disque de
rayon R.

r(x)

Ici, I’axe naturel est celui qui dirige 1’axe du cone. Une section perpendiculaire a cet axe est
aussi un disque. Si on paramétrise la hauteur des sections par la variable = qui mesure la
distance au sommet (donc 0 < x < H, alors l'aire de la section a hauteur z est donnée par
A(z) = 7r(z)?, ot r(x) est le rayon du disque a la hauteur z, et le volume infinitésimal de la

tranche correspondante par dV (z) = A(z) dz = 7r(x)? dz. Puisque r(z) = £z,

V= /OH AV (z) = /OH r(x)? da

R\®> H?
:W(ﬁ) 3
1 2
=—-. (wR*) ‘H
3 =

aire de la base
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<

Ce raisonnement peut étre adapté pour montrer que le volume V' d’un cone de base quel-
conque est donné par

ol A est 'aire de la base.

7.11.1 Solides de révolution

Une classe de solides que 'on peut traiter a 1’aide de calcul intégral d"une seule variable est
celle des solides de révolution, obtenus par la rotation d"une région autour d’un axe.

Par exemple, on peut considérer la rotation de la région située sous le graphe d'une fonction
f : [a,b] — R continue, autour de Oz. Dans ce cas, les sections du solide de révolution
obtenu sont des disques, et le disque en z a un rayon égal a f(z) :

Al)= 7 (6)°

Le volume est donc

vzl%w@

:/a Alz) dx:/abw-f(x)2 da.

Lorsque la rotation du graphe se fait autour d’un autre axe, il faut adapter cette construction.
Exemples 7.43. Soit f(z) = vz — 1,2 € [1,2].
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On considere la rotation du graphe de f autour de plusieurs axes.
* Rotation autour de Oz :

oy

/ ]

AK)

Dans ce cas, comme on a dit ci-dessus, les sections sont des disques de rayon f(z), et
donc

V:/127T~f(a:')2dx:7r/12(x—1)dx:g.

e Rotation autour de la droite horizontale y = —1:

(8- ()= f5+1

Al

Dans ce cas, la section est un disque de rayon égal a f(z) — (—1) = f(x) + 1, et donc

V:/jdV(m):/jw-(\/ﬁ—(—l)f dx
:ﬂ'/lz(a:+2\/E)dx

i
==
e Rotation autour de la droite horizontale y = 2 :
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Dans ce cas, la section est un disque de rayon égal a 2— f (), daire A(z) = 7(2— f(z))?,
et donc

V:/l2dV(x):/127r-(2—\/m)2dx
:w-/12(3+x—4\/ﬁ)dx

_rw
==
¢ Rotation autour de I’axe vertical Oy :
AQ}) s
[ t > X
1 2

Dans ce cas, la variable naturelle est y € [0, 1], et la section a hauteur y est un disque
de rayon f~*(y). Or

y=fl@)=Va-1 <= z=f"y =y +1,
et donc ce disque a une aire A(y) = 7(y* + 1)*:
1 1
V:/ dV(y):/ T (P + 1) dy
0 0
_ 2
15

e Rotation autour de la droite verticale x = 3 :
J s

A%)

1) e

!
i
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Dans ce cas, la section est un disque de rayon 3 — f~!(y), et donc d’aire A(y) = (3 —
(y* + 1))

1 1
V:/dV(y)dy:ﬂ~/(4—4y2—|—y4)dy
0 0

437
15
o
Exemple 7.44. Soit R la région du plan délimitée par les courbes
y=x et x= y2.
Calculons le volume du solide obtenu par la rotation de R autour de I'axe Oz.
% Rk)
7
Avl) L ARG
711 w0 v
A
Remarquons que la courbe z = y? intersecte la droite y = x aux points x = 0 et z = 1.
Aussi, la section obtenue en fixant x € [0, 1] est un anneau,
* de rayon extérieur R(x) = \/z (la réciproque de = = g(y) = y?), et
e de rayon intérieur r(z) = .
Donc son aire se calcule comme une différence de deux disques :
Alr) =7 R(x)*> —7-r(x).
Ainsi,
1
V= / A(z) dz
0
1 9 T
:/ [T V1 —7-2 do = —.
0 6
On remarque que ce volume peut aussi étre calculé par V = V; — V5, ot
e V] estle volume du solide extérieur (obtenu par la rotation de /z autour de Oz),
* 1} est le volume du solide intérieur (obtenu par la rotation de = autour de Ox).
o
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7.11.2 Rotation d’un arc paramétré

Soit maintenant

M : o, B] — R?
t M(t) = (2(t), y(t))

une courbe paramétrée, comme dans la section précédente.

Considérons la rotation de la courbe autour d’un axe, par exemple Oz :

J

Supposons d’abord que la fonction x(t) est croissante, c’est-a-dire, que la particule se déplace
vers la droite.

En prenant une partition {to, t1, .. ., t,_1, t,, } suffisamment fine de l'intervalle du temps |, ],
ona

V ~ Z volume du i-eme cylindre

=1
n

=Y 7 y(t) falt) —x(tiy)

=1

base hauteur
- T tz — X ti,
:Zﬂ'y(ti)z' (to) — 2(tia) (ti — tic1),
— ti —ti1
:w(tl)

et si z(t) est une fonction dérivable avec dérivée continue, on a, dans la limite n — oo,

8
V:/ m-y(t)? - (t) dt.

De maniere similaire, si z(t) est décroissante, on obtient

8
V:/ my(t)? - (—a(t)) dt.
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Exemple 7.45. La sphere de rayon R centrée a l’origine est un solide de révolution, puisqu’on
peut l'obtenir en faisant tourner un demi-cercle autour de 'axe Oz. Calculons donc son
volume V.

Paramétrisons la moitié supérieure du cercle, par exemple avec

M :[0,7] — R?
t— M(t) = (Rcos(t), Rsin(t)).

/

Comme z(t) = R cos(t) est décroissante sur [0, 7], le volume est donné par
V= / mey(t)? - (—a(t)) dt
0
= / 7+ (Rsin(t))? - Rsin(t) dt
0
= 7TR2/ sin®(t) dt
0
— R / (1 cos?(t)) - (—sin(t)) dt
0
En posant u = cos(t), cette derniere devient
-1
V= —7TR2/ (1 —u?) du
1

1
= 7TR2/ (1 —u?) du

1
41 R?

3

7.12 Longueurs d’arcs

Dans cette section, on voit quelques méthodes pour calculer la longueur d"une courbe dans
le plan; on parlera aussi de longueur d’arc.
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7121 Longueur du graphe d’une fonction

Considérons pour commencer une fonction f : [a,b] — R, et voyons comment calculer la
longueur de son graphe, que nous noterons L.

Soit {xo, z1, T2, . . ., x, } une subdivision de l'intervalle [a, b]. Considérons 1’approximation du
graphe de f par la ligne polygonale obtenue en reliant, pour chaque i = 1,2, ..., n, le point
(i1, f(xiz1)) @ (@, f(2;)), par un segment. Soit L, la longueur de ce segment.

a ]%)—//xfa)

A X X

Ainsi, la longueur d’arc L est approximée par

i=1

Mais, par le Théoreme de Pythagore, on a

L; = \/(iﬂz —xi21)? + (f(z;) — f(z21))?
= \/1 + (f<xl) — f(le)>2 (wp — i),

Ty — Tj—1

et remarquons que si f est dérivable, alors lorsque n est grand,

fxi) — f(wiq1)

Ti — Tj—1

~ f'(x:) .

L’approximation par la ligne polygonale est donc

L~ Z V14 (f'(x))? (2 —2iq) .

Si f’ est elle-méme continue, alors dans la limite n — oo, cette derniére somme tend vers
I'intégrale

L= [ VTP
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On peut interpréter cette intégrale comme étant

L=/jd€<x>:/abmdx,

oudl(x) = /1+ f'(x)? dz est"élément de longueur infinitésimal de la courbe au-dessus du
point x :

Exemples 7.46. * Soit f(x) = z. Calculons la longueur d’arc pour z € [0, 1] en utilisant
la formule ci-dessus (on s’attend a trouver v/2).

L:/Olmdx:/olmdx:ﬁ.

e Soit f(z) =22, €[0,1].0Ona

1 1
L:/ \/l—i-(x?)’dx:/ V1+4x2? dx.
0 0

7.12.2 Longueur d’une courbe paramétrée

Soit maintenant une courbe paramétrée,

M : |a, B] — R?
bt M(t) = (x(1),y(t))
telle que les fonctions x(t) et y(t) sont dérivables et dont les dérivées sont continues. Comme
on a fait plus haut, on prend une subdivision réguliere {ty,t;,...t¢,} de l'intervalle [«, 3] et

on approxime la courbe en prenant sur chaque intervalle [t;_;, ¢;] le segment de droite reliant
M(t;—1) a M(t;). Soit L; la longueur de ce segment.
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ﬁ/

X (;/-l-—i > X } %L)

Ainsi, la longueur d’arc L est approximée par

i=1

Par le Théoreme de Pythagore,

Li = /(x(t:) — w(ti1))? + (y(t:) — y(tia))?
_ \/<x(ti> “el)y (W) Zwl)y

by — 11 b — 11

Encore une fois, si z(t) et y(t) sont dérivables alors lorsque n est grand,

x(ti) — x(ti-1) ~ i(t) y(ti) —y(ti-1)
ti —ti1 v by —ti1

~y(ti),

et I'approximation par la ligne polygonale est
LY Vi) + () - (t— tioa)
i=1

Lorsque les dérivées i(t) et y(t) sont continues, cette derniere somme converge, lorsque
n — oo, vers l'intégrale

B
L:/ VEO? 902 dt

On remarque qu’en prenant le vecteur tangent

la formule ci-dessus devient

5
L:/ 170 dt.
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M(3)
M) FE)

/O&:@ ’

M)

B B .
L= [ay == [ I

ot d0(t) = ||F(t)|| dt est I’élément de longueur infinitésimal.
Exemple 7.47. Calculons la circonférence d'un cercle de rayon R (que l'on sait étre égale a
2mR), que I’on peut centrer a 1’origine.

Utilisons la paramétrisation ¢ — M (t) = (R cos(t), Rsin(t)), t € [0,27]. On a
S [—R sin(t)
) = ( R cos(t) ) ’

et donc

o

Exemple 7.48. Une cycloide est la trajectoire décrite par un point M fixé sur le bord d'un
disque de rayon R, lorsque ce dernier roule sur la droite :

o t=1.66
trace construction cycloide r
Animation disponible sur botafogo.saitis.net/analyse-B
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7.13. Surfaces de révolution

On se propose ici de calculer la longueur de la cycloide, lorsque le disque effectue un tour
complet.

Pour paramétriser la position du point M (t) = (z(t),y(t)), utilisons 1’angle ¢ € [0, 27| fait
par le rayon (segment reliant le centre du disque au point) avec la verticale. La position du
centre du disque pour une valeur ¢ de ’angle est donnée par

O(t) = (Rt, R)

Ensuite,

Par la relation de Chasles,

\

OM(#) = OC(#) + C(H) M8 ,

et donc
(Rt — Rsin(t)
OM(t; = (R—Rcos(t)) , te]0,2n]
La longueur d’arc est donc donnée par
2m
I :/ ViR - 902 dt
0
2T
= V(R — Rcos(t))? + (Rsin(t))? dt
0
27
= R/ V2 —2cos(t) dt
0
2
= V2R V1 —cos(t) dt
0
2T
= \/§R/O \/2sin?(5) dt  (u=

= \/§2R/ |sin(u)| - 2 du

s
0

)

DO |+

= 4R/ sin(u) du
0
= 8R.

7.13 Surfaces de révolution

Etant donné une fonction f : [a,b] — R, comment calculer l’aire de la surface de révolution
engendrée par la rotation du graphe de f autour de 'axe Oz ?
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SH

Pour commencer, considérons le cas simple ot le graphe de f est un segment de longueur /.
On appelle bracelet la surface obtenue par la rotation de ce segment autour de Oz :

N~

Lemme L’aire de la surface d"un tel bracelet est donnée par

ord. <7“1_-|-7‘2> -
2

On remarque que 212 représente la distance qui sépare le milieu du segment a Ox.
2

Démonstration. Remarquons que 1'aire du bracelet peut étre vue comme la différence des
aires de deux cones de bases circulaires, le grand dont le rayon de la base est égal a 5, le
petit dont le rayon de la base est r; :
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Il s’agit donc de pouvoir calculer I'aire de la surface latérale d’un cone, ce que 'on fait en le
coupant et le déployant :

27

Onad-L = 27r, etdonc § = Z*. Laire de surface du cone est 'aire du secteur de rayon L et
d’angle ¢, qui est donnée par

1
0L =—-. "~ . [?=qrL
2 2 L o
Ona L L ( ( ¢
™ T2 ro—T1 o —T o —T1
Donc l'aire du bracelet est égale a
2¢ 2¢
7T7"2L2 — 7T7'1L1 =T "2 — T i
o —T1 o —T1
:71'(7’2 + 7’1)5
:27rr1 i TQE.

]

Ayant trouvé l'aire de surface du bracelet, on peut maintenant trouver l'aire d"une surface
de révolution.

On prend une partition {z¢, x1, x2, . .., x,} de l'intervalle [a, b] et on approxime la fonction f
par une fonction linéaire par morceaux en prenant sur chaque intervalle [z;_;, z;| le segment
de droite reliant les points (x;_1, f(x;—1)) et (z;, f(x;)). Soit L; la longueur de ce segment.

5 /
{(x)

L “x
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Ainsi, I’aire S de la surface de révolution est approximée par

S ~ zn: Si:
i=1

ou S; est l'aire de surface du bracelet obtenu en tournant le i-ieme segment. En utilisant le
lemme précédent, on a

[l 1) + f ()

Si =27 Lz
— . f(xz 1 ‘f‘ f :L‘, \/ i 1 (f(J?z) _ f(ﬁi—1)>2
zzﬂ.f(xl ! +fx’ \/1+ _i(xi_l)> (= ).

Lorsque n est grand,

flzia) + f(z;) ~ f(z:) fxi) — fziq)

2 Ty — L1

~ f'(z;)

Ainsi, dans la limite n — oo, la somme tend vers l'intégrale

5:/ o7 f(2) /1 + F(2)? da.

Quel que soit I’axe de révolution, on peut trouver 1'aire de surface de révolution de la ma-

niere suivante :
b b
S:/ dS:/ 27 di,

ou r est la distance a I'axe de rotation et dS = 27r dl est le changement infinitésimal d’aire
de surface.

Exemple 7.49. Calculons 1'aire de surface S du paraboloide formé par la rotation de la
courbe y = \/x autour I'axe Oz, pour z € [1,2].
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> X

2 1 \2
S /1 T +(2\/§) dx
2
Iﬂ'/ Vir +1dx
1

|

2

Njw

— [é(llx +1)

_T (9% 5%)
=5 ,

1

Soit maintenant

M : |a, B] — R?
t M(t) = (z(t),y(t))

une courbe paramétrée, telle que les fonctions x(t) et y(t) sont dérivables et dont les dérivées
sont continues. De maniére analogue au cas d"une fonction standard, on prend une partition
{to,t1,...t,} del'intervalle |, 5] et on approxime la courbe en prenant sur chaque intervalle

[ti_1,ti] le segment de droite entre les points M(t;_1) et M(¢;). Soit L; la longueur de ce
segment.
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Ainsi, I’aire de la surface de révolution S est approximée par

S~Y"8;
=1
ou S; est I’aire de surface du i-iéme bracelet. On a

y(tio1) +y(t)

= o W) V) ) e+ () — wlti)

:zﬂw\/(%ﬁ—ﬂl (M)Q-@i—t“).

En prenant la limite n — oo, la somme tend vers l'intégrale

ti —tia

B
5= / A ONC OO

On remarque qu’en prenant le vecteur tangent

la formule ci-dessus devient

’ .
5= / 2y (BIIF)|| dt.

On remarque qu’en faisant la rotation autour de I’axe Oy, les roles de x(t) et y(t) seront

inversés.
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