
Chapitre 7

Intégrale

7.1 Construction de l’intégrale Riemann–Darboux

On sait, depuis les cours de géométrie plane élémentaire, comment calculer des aires de
régions simples, telles que rectangles, triangles ou disques.

Comment faire pour calculer des aires de régions plus compliquées, comme par exemple
l’aire sous le graphe d’une fonction?

Le calcul intégral, que nous allons développer dans ce chapitre, permet dans certains cas de
répondre à cette question.

Mais avant de vouloir la calculer, il faut définir précisément l’aire sous le graphe d’une
fonction.

Définition 7.1. Soit n ⩾ 1 un entier. La subdivision (ou partition) régulière (à n éléments)
de l’intervalle [a, b] est la division de [a, b] en n sous-intervalles de longueurs égales, Ik =
[xk−1, xk], k = 1, 2, . . . , n, où

xk = a+ k
b− a

n
, k = 0, 1, 2, . . . , n .
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7.1. Construction de l’intégrale Riemann–Darboux

Soient, pour k = 1, 2, . . . , n,

mk := min
x∈Ik

f(x)

Mk := max
x∈Ik

f(x).

Ces nombres sont bien définis puisque f est supposée continue.

On définit la somme de Darboux inférieure

sn :=
n∑

k=1

b− a

n
·mk,

et la somme de Darboux supérieure

Sn :=
n∑

k=1

b− a

n
·Mk,

D’un point de vue géométrique, pour une fonction prenant des valeurs positives sur [a, b],
la somme de Darboux inférieure (resp. supérieure) représente une somme d’aires de n rec-
tangles, tous de base égale à b−a

n
, dont les côtés supérieurs sont tous situés au-dessous (resp.

au-dessus) du graphe de f . Pour une partition contenant beaucoup de points, on s’attend à
ce que sn et Sn soient proches l’une de l’autre et tendent vers une même limite :
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7.1. Construction de l’intégrale Riemann–Darboux

Animation disponible sur botafogo.saitis.net/analyse-B

On peut effectivement garantir que ceci a lieu lorsque la fonction est continue :

Théorème 7.2. Si f : [a, b] → R est continue alors les suites (sn) et (Sn) sont convergentes, et
possèdent la même limite. Cette limite commune est appelée l’intégrale de f , on la note∫ b

a

f(x) dx := lim
n→∞

sn = lim
n→∞

Sn .

En fait, on peut montrer que limn→∞ sn = limn→∞ Sn même si f possède un nombre fini de
discontinuités ; dans de tels cas l’intégrale

∫ b

a
f(x) dx est aussi bien définie.

L’intégrale définie ci-dessus est ce qu’on appelle l’intégrale définie (on parlera d’intégrale
indéfinie plus tard).
Exemple 7.3. Soit f(x) = x. Calculons l’aire A de la région délimitée par l’axe Ox et le graphe
de f , entre a = 0 et un point b > 0. (Puisque cette région est un triangle, on sait qu’on doit
trouver A = 1

2
· b · x.)

Il s’agit donc de calculer ∫ b

0

x dx .

Comme f(x) est continue, on peut calculer cette intégrale à partir de sa définition, avec
limn→∞ sn ou limn→∞ Sn.

Fixons n ⩾ 1 et calculons la somme inférieure sn de f sur l’intervalle [0, b].

Animation disponible sur botafogo.saitis.net/analyse-B

Comme f est croissante sur [0, b], elle est croissante sur chaque intervalle Ik = [xk−1, xk], et
donc

Mk = max
x∈Ik

f(x) = f(xk) ,

mk = min
x∈Ik

f(x) = f(xk−1) .
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7.1. Construction de l’intégrale Riemann–Darboux

Puisque xk = 0 + k · b−0
n

= kb
n

,

sn =
n∑

k=1

b− 0

n
mk

=
b

n

n∑
k=1

f(xk−1)

=
b

n

n∑
k=1

f

(
b(k − 1)

n

)
=

b

n

n∑
k=1

b(k − 1)

n
( par définition de f)

=
b2

n2

n∑
k=1

(k − 1)

=
b2

n2

n−1∑
j=1

j

où on a fait le changement j := k − 1.

Or on sait (voir Analyse A) que

N∑
j=1

j = 1 + 2 + 3 + · · ·N =
N(N + 1)

2
.

En appliquant cette formule avec N = n− 1,

n−1∑
j=1

j =
(n− 1)n

2
.

On a donc

sn =
b2

n2
· n(n− 1)

2
=

b2(n− 1)

2n
,

ce qui implique que ∫ 1

0

x dx = lim
n→∞

sn

= lim
n→∞

b2(n− 1)

2n
=

b2

2
.

⋄
Exemple 7.4. Soit f(x) = 1 − x2. Calculons l’aire A de la région délimitée par l’axe Ox et le
graphe de f(x).

Par la parité de f , on a ∫ 1

−1

f(x) dx = 2

∫ 1

0

f(x) dx .
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7.1. Construction de l’intégrale Riemann–Darboux

Comme f est continue, on peut calculer cette deuxième intégrale,
∫ 1

0
f(x) dx, à partir de sa

définition, avec limn→∞ sn ou limn→∞ Sn.

Fixons n ⩾ 1 et calculons la somme supérieure Sn de f sur l’intervalle [0, 1].

Animation disponible sur botafogo.saitis.net/analyse-B

Comme f est décroissante sur [0, 1], elle est décroissante sur chaque intervalle Ik = [xk−1, xk],
et donc

Mk = max
x∈Ik

f(x) = f(xk−1) ,

mk = min
x∈Ik

f(x) = f(xk) .

Puisque xk = 0 + k · 1−0
n

= k
n

,

Sn =
n∑

k=1

1− 0

n
Mk

=
1

n

n∑
k=1

f(xk−1)

=
1

n

n∑
k=1

f

(
k − 1

n

)

=
1

n

n∑
k=1

(
1−

(
k − 1

n

)2
)

( par définition de f)

=
1

n

[
n− 1

n2

n∑
k=1

(k − 1)2

]

=
1

n

[
n− 1

n2

n−1∑
j=1

j2

]
,

où on a fait le changement j := k − 1.

Or on sait (voir Analyse A) que

N∑
j=1

j2 = 12 + 22 + 32 + · · ·N2 =
N(N + 1)(2N + 1)

6
.
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7.2. Propriétés de l’intégrale

En appliquant cette formule avec N = n− 1,
n−1∑
j=1

j2 =
(n− 1)n[2(n− 1) + 1]

6
=

n(n− 1)(2n− 1)

6
.

On a donc

Sn =
1

n

[
n− n(n− 1)(2n− 1)

6n3

]
= 1− n(n− 1)(2n− 1)

6n3
,

ce qui implique que ∫ 1

0

f(x) dx = lim
n→∞

Sn

= lim
n→∞

[
1− n(n− 1)(2n− 1)

6n3

]
= 1− 2

6

=
2

3
.

Finalement, ∫ 1

−1

f(x) dx = 2 · 2
3
=

4

3
⋄

7.2 Propriétés de l’intégrale

Dans cette section, on donne les principales propriétés de l’intégrale. Notons que la défini-
tion d’intégrale, donnée dans la section précédente, est une version légèrement simplifiée
en comparaison de celle trouvée généralement dans les textes d’analyse, et que certaines
des propriétés ci-dessous, pour pouvoir être démontrées rigoureusement, requièrent une
définition un peu plus générale.
Pour des raisons de commodité, commençons par définir∫ a

a

f(x) dx := 0 .

Ci-dessous, nous supposerons partout que f est une fonction continue sur un intervalle
[a, b].

• Relation de Chasles : si a < c < b,∫ c

a

f(x) dx+

∫ b

c

f(x) dx =

∫ b

a

f(x) dx .

Afin que la relation de Chasles reste valable pour un triplet quelconque a, b, c, on peut
définir ∫ a

b

f(x) dx := −
∫ b

a

f(x) dx

Ceci permer d’écrire ∫ b

a

f(x) dx+

∫ a

b

f(x) dx =

∫ a

a

f(x) dx = 0 .
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7.2. Propriétés de l’intégrale

• Linéarité : Si g est aussi continue sur [a, b], et si λ, µ sont deux constantes réelles, alors∫ b

a

(λf(x) + µg(x)) dx = λ

∫ b

a

f(x) dx+ µ

∫ b

a

g(x) dx .

• Inégalités : Si f(x) ⩽ g(x) pour tout x ∈ [a, b], alors∫ b

a

f(x) dx ⩽
∫ b

a

g(x) dx .

Démonstration. Notons Sf
n et Sg

n les sommes de Darboux supérieures associées à f et
g :

Sf
n =

n∑
k=1

b− a

n
M f

k , Sg
n =

n∑
k=1

b− a

n
M g

k .

Puisque f(x) ⩽ g(x) pour tout x ∈ [a, b], on a en particulier que pour chaque k =
1, 2, . . . , n,

M f
k = max

x∈Ik
f(x) ⩽ max

x∈Ik
g(x) = M g

k .

Ainsi, Sf
n ⩽ Sg

n, et donc ∫ b

a

f(x) dx = lim
n→∞

Sf
n

⩽ lim
n→∞

Sg
n

=

∫ b

a

g(x) dx .

Une conséquence : ∣∣∣∣∫ b

a

f(x) dx

∣∣∣∣ ⩽ ∫ b

a

|f(x)| dx .

Démonstration. Puisque

−|f(x)| ⩽ f(x) ⩽ |f(x)| ∀x ∈ [a, b] ,

l’inégalité du dessus implique que

−
∫ b

a

|f(x)| dx︸ ︷︷ ︸
−B

⩽
∫ b

a

f(x) dx︸ ︷︷ ︸
A

⩽
∫ b

a

|f(x)| dx︸ ︷︷ ︸
B

.

On déduit que |A| ⩽ B.

• Si f est paire sur [−a, a], alors∫ a

−a

f(x) dx = 2

∫ a

0

f(x) dx .

• Si f est impaire sur [−a, a], alors ∫ a

−a

f(x) dx = 0 .
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7.3. Théorème fondamental de l’analyse (1)

7.2.1 Le Théorème de la moyenne

Théorème 7.5. Si f : [a, b] → R est continue, alors il existe c ∈]a, b[ tel que∫ b

a

f(x) dx = f(c) · (b− a).

Démonstration. Comme f est continue, elle atteint son minimum et son maximum sur [a, b] :

m := min
x∈[a,b]

f(x) , M := max
x∈[a,b]

f(x) .

Ainsi, m ⩽ f(x) ⩽ M pour tout x ∈ [a, b].∫ b

a

m dx︸ ︷︷ ︸
=m·(b−a)

⩽
∫ b

a

f(x) dx ⩽
∫ b

a

M dx︸ ︷︷ ︸
=M ·(b−a)

.

En divisant par b− a, on obtient m ⩽ f ⩽ M . Par le Théorème des valeurs intermédiaires, il
existe c ∈]a, b[ tel que f(c) = f .

Pour trouver la moyenne des nombres y1, y2, . . . yn, on prend la somme y1 + y2 + · · · yn et on
divise par n. Étant donné une fonction f , l’analogue serait de prendre l’intégrale de f sur
[a, b] et divise par la longueur de l’intervalle, b− a. Ainsi, la quantité

f :=
1

b− a

∫ b

a

f(x) dx

représente la moyenne de la fonction sur l’intervalle [a, b].
On a donc

∫ b

a
f(x) dx = f · (b − a), et le Théorème de la moyenne affirme qu’il existe un

c ∈]a, b[ tel que f(c) = f .

7.3 Théorème fondamental de l’analyse (1)

Définition 7.6. Soit f : [a, b] → R, continue ou possédant un nombre fini de discontinuités.
Pour tout x ∈ [a, b], on définit la fonction “aire” par

A(x) :=

∫ x

a

f(t) dt.
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7.3. Théorème fondamental de l’analyse (1)

On remarque que
• A(a) = 0,
• A(b) =

∫ b

a
f(x) dx (l’intégrale qu’on aimerait calculer).

Voyons deux exemples où la fonction aire se calcule facilement :
Exemples 7.7. • Si f(x) = C ∀x ∈ [a, b] (une fonction constante), alors

A(x) =

∫ x

a

C dt = C(x− a).

• Si f(x) = mx+ h ∀x ∈ [a, b], alors

A(x) =

∫ x

a

(mt+ h) dt

=
f(a) + f(x)

2
· (x− a) (aire de trapèze)

=
(ma+ h) + (mx+ h)

2
· (x− a)

=

(
1

2
mx2 + hx

)
−
(
1

2
ma2 + ha

)
.

⋄
On a vu dans ces deux exemples que la fonction aire était dérivable et que de plus A′(x) =
f(x). Cette propriété est vraie en général :

Théorème 7.8. (Théorème Fondamental de l’Analyse, 1ère partie) Soit f : [a, b] → R continue, et
soit A : [a, b] → R la fonction aire associée. Alors A(x) est dérivable sur ]a, b[ et

A′(x) = f(x) ∀x ∈]a, b[.

Démonstration. On doit montrer que pour tout x ∈]a, b[,

lim
h→0

A(x+ h)− A(x)

h
= f(x) .

Soit donc x ∈]a, b[, et soit h > 0.
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7.4. Primitives

Par la relation de Chasles, on a

A(x+ h) =

∫ x

a

f(t) dt︸ ︷︷ ︸
=A(x)

+

∫ x+h

x

f(t) dt.

Alors il découle que
A(x+ h)− A(x)

h
=

1

h

∫ x+h

x

f(t) dt.

Par le Théorème de la moyenne, il existe ch ∈]x, x+ h[ tel que∫ x+h

x

f(t) dt = f(ch) · [(x+ h)− x] = hf(ch) .

L’expression du dessus devient donc

A(x+ h)− A(x)

h
= f(ch).

Lorsque h → 0+, on a ch → x+, et donc

lim
h→0+

A(x+ h)− A(x)

h
= lim

h→0+
f(ch) = lim

c→x+
f(c) = f(x) .

La dernière égalité découle du fait que f est une fonction continue. L’affirmation dans le cas
h → 0− se montre de manière analogue, et on a donc limh→0

A(x+h)−A(x)
h

= f(x), pour tout
x ∈]a, b[.

7.4 Primitives

Les résultats de la section ont montré que la fonction aire est une fonction dont la dérivée est
égale à f . La nouvelle définition suivante est donc naturelle :

Définition 7.9. Une fonction dérivable F telle que F ′ = f est appelée une primitive de f .
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7.4. Primitives

Remarque 7.10. La terminologie anglophone pour “primitive” est “antiderivative”. ⋄
Par le Théorème Fondamental de l’Analyse (1ère partie), toute fonction continue possède au
moins une primitive, sa fonction aire associée A(x). (Ceci ne veut pas dire que la fonction
A(x) est facile à exprimer !)

De plus, la primitive d’une fonction n’est pas unique. En effet, puisque la dérivée d’une
constante C ∈ R est nulle, si F (x) est une primitive de f , alors F (x) + C l’est aussi.

Exemple 7.11. F1(x) =
x2

2
et F2(x) =

x2

2
+ 42 sont toutes les deux primitives de f(x) = x. ⋄

Donc une fonction qui possède une primitive en possède une infinité.

Le lemme suivant assure que sur un intervalle, toutes les primitives d’une fonction sont de
la même forme :

Lemme Soit f définie sur [a, b]. Si F1, F2 sont deux primitives de f sur cet intervalle,
alors il existe une constante C ∈ R telle que F2(x) = F1(x) + C pour tout x ∈]a, b[.

Ce lemme n’est plus vrai si le domaine n’est pas un intervalle mais une union d’intervalles
disjoints.

Définition 7.12. L’intégrale indéfinie de f est l’ensemble de toutes les primitives de f . On
note cet ensemble comme suit : ∫

f(x) dx .

Par le lemme et les remarques ci-dessus, étant donnée une primitive F de f sur un intervalle,
on a ∫

f(x) dx = {F (x) + C : C ∈ R} .

Par abus de notation , on écrira aussi∫
f(x) dx = F (x) + C ,

où C désigne une constante arbitraire.

Quelques exemples de primitives de fonctions élémentaires :

Exemples 7.13. •
∫
xn dx = xn+1

n+1
+ C,

•
∫

1
x
dx = ln |x|+ C, (x ̸= 0),

•
∫
cos(x) dx = sin(x) + C,

•
∫
sin(x) dx = − cos(x) + C,

•
∫
ex dx = ex + C,

⋄

7.4.1 Sur la recherche des primitives

On a
•
(∫

f(x) dx
)′
= f(x),

•
∫
f ′(x) dx = f(x) + C,

• (linéarité)
∫
(λf(x) + µg(x)) dx = λ

∫
f(x) dx+ µ

∫
g(x) dx

•
∫
(f(x) · g(x)) dx ̸=

∫
f(x) dx ·

∫
g(x) dx.
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7.4. Primitives

On peut obtenir beaucoup de primitives de fonctions en utilisant les propriétés ci-dessus, et
en remarquant que si on peut mettre une fonction sous la forme

f ′(g(x)) · g′(x) ,

alors la règle de dérivation de la composée permet de conclure que∫
f ′(g(x)) · g′(x) dx

∫
(f(g(x))′ dx = f(g(x)) + C .

Exemples 7.14. • ∫
cos(3x) dx =

1

3

∫
3 cos(3x) dx

=
1

3

∫
(sin(3x))′ dx

=
1

3
(sin(3x) + C)

=
1

3
sin(3x) + C ′ ,

où C ′ est la constante C
3

. Puisque C peut être une constante quelconque, C ′ peut aussi
prendre toutes les valeurs réelles. Ainsi, on peut simplement écrire∫

cos(3x) dx =
1

3
sin(3x) + C .

On fera souvent ce genre de simplification par la suite.
• ∫

cos2(x) dx =

∫
1 + cos(2x)

2
dx

=
1

2

∫
1 dx+

1

2
· 1
2

∫
2 cos(2x) dx

=
1

2
(x+ C1) +

1

4
[sin(2x) + C2]

=
1

2
x+

1

4
sin(2x) + C.

• ∫
sin2(x) dx =

∫
[1− cos2(x)] dx

= x−
[
1

2
x+

1

4
sin(2x)

]
+ C

=
1

2
x− 1

4
sin(2x) + C.

• ∫
ex

ex + 1
dx =

∫
(ex + 1)′

ex + 1
dx = ln(ex + 1) + C .

⋄
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7.5. Théorème fondamental de l’analyse (2)

7.5 Théorème fondamental de l’analyse (2)

Théorème 7.15. (Théorème Fondamental de l’Analyse, 2ème partie) Soit f : [a, b] → R continue. Si
F est une primitive de f , alors ∫ b

a

f(x) dx = F (b)− F (a).

Démonstration. On sait que la fonction “aire” A(x) =
∫ x

a
f(t) dt est une primitive de f . Par le

lemme sur les primitives précédent, il existe une constante C ∈ R telle que

A(x) = F (x) + C.

Mais A(a) = 0, donc 0 = F (a) +C, d’où C = −F (a). Ceci implique que A(x) = F (x)− F (a),
et donc ∫ b

a

f(x) dx = A(b) = F (b)− F (a).

Exemples 7.16. • Reprenons l’exemple f(x) = 1 − x2. On a la primitive F (x) = x − x3

3
,

et donc le Théorème Fondamental ci-dessus implique que∫ 1

−1

(1− x2) dx = F (1)− F (−1)

=

(
1− 13

3

)
−
(
−1− (−1)3

3

)
= 2− 2

3
=

4

3
,

comme nous avions trouvé au début du chapitre.
• ∫ π

2

0

cos(x) dx = sin
(π
2

)
− sin(0) = 1 ,

comme calculé aux exercices.
⋄

Exemple 7.17. Supposons que f est une fonction continue. Si on définit

G(x) :=

∫ sin(x)

x

f(t) dt ,

comment calculer sa dérivée G′(x)?

Puisque f est continue, elle possède une primitive F : F ′ = f . Le Théorème Fondamental
permet donc d’affirmer que

G(x) = F (sin(x))− F (x) .

Ainsi,

G′(x) = [F (sin(x))− F (x)]′

= (sin(x))′ · F ′(sin(x))− F ′(x)

= cos(x)f(sin(x))− f(x) .

Donc on n’a pas besoin de connaître F pour connaître G′. ⋄
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7.6 Intégration par parties

Soient f, g deux fonctions dérivables. La règle de dérivation pour leur produit,

(f(x)g(x))′ = f ′(x)g(x) + f(x)g′(x)

peut s’écrire
f ′(x)g(x) = (f(x)g(x))′ − f(x)g′(x) .

Si on suppose que f ′ et g′ sont continues, le théorème fondamental garantit que la fonction
f ′(x)g(x) possède une intégrale indéfinie, et∫

f ′(x) · g(x) dx =

∫
(f(x) · g(x))′ dx︸ ︷︷ ︸

=f(x)·g(x)

−
∫

f(x) · g′(x) dx .

C’est la formule d’intégration par parties :∫
f ′(x) · g(x) dx = f(x) · g(x)−

∫
f(x) · g′(x) dx

On utilise cette formule lorsqu’on cherche la primitive d’un produit dans lequel on a pu
identifier une partie que l’on va intégrer, f ′(x), et une partie que l’on va dériver, g(x).
Exemples 7.18. • ∫

x︸︷︷︸
g(x)

· sin(x)︸ ︷︷ ︸
f ′(x)

dx = − cos(x) · x−
∫

(− cos(x) · 1) dx

= −x cos(x) +

∫
cos(x) dx

= −x cos(x) + sin(x) + C.

• ∫
x︸︷︷︸

f ′(x)

· ln(x)︸ ︷︷ ︸
g(x)

dx =
x2

2
· ln(x)−

∫
x2

2
· 1
x
dx

=
x2

2
· ln(x)− 1

2

∫
x dx

=
x2

2
· ln(x)− 1

4
x2 + C.

• ∫
ln(x) dx =

∫
1︸︷︷︸

f ′(x)

· ln(x)︸ ︷︷ ︸
g(x)

dx

= x · ln(x)−
∫

x · 1
x
dx

= x · ln(x)− x+ C.

⋄
Avec la notation F (x)|ba := F (b) − F (a), on peut aussi donner une version de l’intégration
par parties pour les intégrales définies :∫ b

a

f ′(x) · g(x) dx = f(x)g(x)|ba −
∫ b

a

f(x) · g′(x) dx.
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7.7 Intégration par changement de variable

Dans cette section, on suppose que f est continue, et g est dérivable avec g′ continue.

On a déjà vu l’expression ∫
f(g(x)) · g′(x) dx = F (g(x)) + C ,

où F est une primitive de f . Pour rendre plus clair l’étape qui consiste à chercher la primitive
de f , récrivons cette expression à l’aide d’une étape intermédiaire, en voyant g(x) comme
une nouvelle variable :

g(x) = u .

On a donc

u′ =
du

dx
= g′(x) ,

ce qui mène à l’association “du = g′(x)dx”. On peut ainsi écrire notre intégrale indéfinie en
termes de u seulement : ∫

f(g(x)︸︷︷︸
u

) · g′(x) dx︸ ︷︷ ︸
du

=

∫
f(u) du .

On a ainsi isolé la difficulté, qui est de calculer

=

∫
f(u) du = F (u) + C .

Ensuite, on revient à la variable x,

F (u) + C = F (g(x)) + C .

Exemples 7.19. • Calculons
∫
cos(3x) dx, en posant u = 3x, du = 3dx :∫

cos(3x) dx =

∫
cos(u)

du

3

=
1

3

∫
cos(u) du

=
1

3
sin(u) + C

=
1

3
sin(3x) + C

• Calculons
∫
x · ex2+1 dx En posant u = x2 + 1, du = 2xdx :∫

x · ex2+1 dx =
∫
eu du

2
= 1

2

∫
eu du = 1

2
eu + C = 1

2
ex

2+1 + C.
• En posant u = x+ 1, du = 1 · dx :∫

(x+ 1)1000 dx =
∫
u1000 du = u1001

1001
+ C = (x+1)1001

1001
+ C.
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• En posant u =
√
x+ 1, du = 1

2
√
x
dx ( ⇐⇒

√
x = u− 1, dx = 2(u− 1)du) :∫ √

x√
x+ 1

dx =

∫
u− 1

u
· 2(u− 1)du

= 2

∫
(u− 1)2

u
du

= 2

∫ (
u− 2 +

1

u

)
du

= u2 − 4u+ 2 ln |u|+ C

= (
√
x+ 1)2 − 4(

√
x+ 1) + 2 ln(

√
x+ 1) + C

= x+ 2
√
x+ 1− 4

√
x− 4 + 2 ln(

√
x+ 1) + C

= x− 2
√
x+ 2 ln(

√
x+ 1) + C.

⋄
Voici la version de l’intégration par changement de variable pour les intégrales définies :∫ b

a

f ′(g(x)) · g′(x) dx =

∫ g(b)

g(a)

f ′(u) du = f(u)|g(b)g(a) = f(g(b))− f(g(a)).

7.8 Changement de variable : fonctions trigonométriques

Dans la sous-section précédente, on a défini une nouvelle variable en fonction de l’ancienne :
u = g(x).

On peut aussi exprimer l’ancienne variable en fonction d’une nouvelle : x = φ(t). Si φ est
bijective (et donc inversible), alors t = φ−1(x), et donc si on trouve que∫

f(x) dx =

∫
f(φ(t))φ′(t) dt = H(t) + C ,

pour une certaine fonction H , on a alors∫
f(x) dx = H(φ−1(x)) + C .

Exemple 7.20. Considérons ∫ √
1− x2 dx , x ∈ [−1, 1] .

Si 1− x2 était un carré, y2, ce serait plus facile d’intégrer. Mais

1− x2 = y2 ⇐⇒ x2 + y2 = 1 ,

c’est-à-dire si (x, y) est sur le cercle unité. Ceci suggère d’introduire une variable d’angle t,
et de faire la substitution

x = φ(t) = cos(t) t ∈ [0, π] .
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Remarquons que φ : [0, φ] → [−1, 1] est bijective, et que sa réciproque est t = φ−1(x) =
arccos(x). Puisque φ′(t) = − sin(t),∫ √

1− x2 dx =

∫ √
1− cos2(t)(− sin(t)) dt

=

∫
sin(t)(− sin(t)) dt

= −
∫

sin2(t) dt .

Dans la dernière égalité, on a utilisé le fait que sin(t) ⩾ 0 puisque t ∈ [0, π]).

Ensuite, on a vu plus haut que

−
∫

sin2(t) dt = −1

2
t+

1

4
sin(2t)︸ ︷︷ ︸

H(t)

+C

= −1

2
t+

1

2
sin(t) cos(t) + C .

On a donc : ∫ √
1− x2 dx = −1

2
arccos(x) +

1

2
x
√
1− x2 + C.

⋄
Plus généralement, si la fonction à intégrer contient

√
a2 − b2x2,

a, b ∈ R constantes, on peut essayer un changement de variable de la forme

x =
a

b
cos(t) ou x =

a

b
sin(t).

Notons que pour la substitution x = a
b
sin(t), il faut que t ∈

[−π
2
, π
2

]
pour que φ(t) := sin(t)

soit bijective.
Exemples 7.21. • Pour calculer

∫ √
4− 3x2 dx, on pose x = 2√

3
cos(t).

• Pour calculer
∫ √

2x− x2 dx, on complète le carré 2x − x2 = 1 − (x − 1)2, et on pose
x− 1 = cos(t).

⋄
Les prochains exemples utilisent les fonctions hyperboliques cosh(t) et sinh(t). De manière
analogue aux fonctions trigonométriques cos(t) et sin(t) qui paramétrisent le cercle unité
x2+y2 = 1, les fonctions hyperboliques donnent une paramétrisation x = cosh(t), y = sinh(t)
de l’hyperbole unité x2 − y2 = 1.
Exemple 7.22.

∫ √
1 + x2 dx, x ∈ R.

De nouveau, si 1 + x2 était un carré, y2, ce serait plus facile à intégrer. On a l’identité

cosh2(x)− sinh2(x) = 1,

et donc on peut poser x = sinh(t), t ∈ R. Ainsi,
√
1 + x2 =

√
1 + sinh2(t) =

√
cosh2(t) =

cosh(t), dx = cosh(t) dt et t = argsinh(x).
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On a ∫ √
1 + x2 dx =

∫
cosh(t) · cosh(t) dt

=

∫
cosh2(t) dt

=

∫ [
et + e−t

2

]2
dt

=
1

4

∫
(e2t + 2 + e−2t) dt

=
1

4
(
1

2
e2t + 2t− 1

2
e−2t) + C

=
1

4

(
2t+

e2t − e−2t

2

)
+ C

=
1

4
[2t+ sinh(2t)] + C

=
1

4
[2t+ 2 sinh(t) · cosh(t)] + C

=
1

4

[
2 argsinh(x) + 2x

√
1 + x2

]
+ C.

⋄
Plus généralement, si la fonction à intégrer contient

√
a2 + b2x2,

a, b ∈ R constantes, on peut essayer un changement de variable de la forme

x =
a

b
sinh(t).

Ce changement donnerait

√
a2 + b2x2 =

√
a2 + b2

(a
b
sinh(t)

)2
=

√
a2(1 + sinh2(t)) = |a| · cosh(t).

Exemple 7.23.
∫ √

x2 − 1 dx.

Ici, l’intégrande est définie pour x ∈]−∞,−1]∪ [1,+∞[. Comme dans l’exemple précédent,
on peut utiliser l’identité

cosh2(x)− sinh2(x) = 1.
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Si x ⩾ 1 :

On peut poser x = cosh(t), t ⩾ 0. Ainsi,
√
x2 − 1 =

√
cosh2(t)− 1 =

√
sinh2(t) = | sinh(t)| =

sinh(t) (car t ⩾ 0), dx = sinh(t) dt et t = argcosh(x).

On a ∫ √
x2 − 1 dx =

∫
sinh2(t) dt

= · · ·

= −1

2
argcosh(x) +

1

2
x
√
x2 − 1 + C.

Si x ⩽ −1 :

On peut poser x = − cosh(t), t ⩾ 0. Ainsi,
√
x2 − 1 =

√
(− cosh(t))2 − 1 =

√
sinh2(t) =

| sinh(t)| = sinh(t) (car t ⩾ 0), dx = − sinh(t) dt et t = argcosh(−x).

On a ∫ √
x2 − 1 dx =

∫
− sinh2(t) dt

= · · ·

=
1

2
argcosh(−x) +

1

2
x
√
x2 − 1 + C.

En résumé,

∫ √
x2 − 1 =


1
2
argcosh(−x) + 1

2
x
√
x2 − 1 + C1 si x ⩽ −1

−1
2
argcosh(x) + 1

2
x
√
x2 − 1 + C2 si x ⩾ 1.

Attention : les constantes C1 et C2 peuvent être différentes. ⋄
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Plus généralement, si la fonction à intégrer contient
√
b2x2 − a2,

a, b ∈ R constantes, l’intégrande est définie sur
]
−∞,−

∣∣a
b

∣∣]∪ [∣∣a
b

∣∣ ,+∞
[
. On peut essayer un

changement de variable de la forme

x = ±
∣∣∣a
b

∣∣∣ cosh(t),
en choisissant le signe selon les cas x ⩾

∣∣a
b

∣∣ ou x ⩽ −
∣∣a
b

∣∣. Ce changement donnerait

√
b2x2 − a2 =

√
b2
(a
b
cosh(t)

)2
− a2 =

√
a2(cosh2(t)− 1) = |a| · sinh(t).

7.9 Intégration de fonctions rationnelles

Dans cette section, on considère des intégrales de la forme∫
P (x)

Q(x)
dx, où P (x), Q(x) sont des polynômes.

Pour trouver ces primitives, on va décomposer la fonction rationnelle en éléments simples
qu’on sait intégrer. On sait intégrer les cas simples suivants.

•
∫

1
x
dx = ln |x|+ C

•
∫

1
xn dx = x−n+1

−n+1
+ C (n ̸= 1)

•
∫

1
x2+1

dx = arctan(x) + C

•
∫

x
x2+1

dx = 1
2

∫
2x

x2+1
dx = 1

2

∫ u′(x)
u(x)

dx = 1
2
ln(x2 + 1) + C

Exemples 7.24. • En posant u = x√
3
, du = dx√

3
, on a∫

1

x2 + 3
dx =

1

3

∫
1

x2

3
+ 1

dx

=
1

3

∫
1(

x√
3

)2
+ 1

dx

=
1

3
·
√
3

∫
1

u2 + 1
du

=
1√
3
arctan(u) + C

=
1√
3
arctan

(
x√
3

)
+ C.

• En posant u = x+1√
2

, du = dx√
2
, on a∫
1

x2 + 2x+ 3
dx =

∫
1

(x+ 1)2 + 2
dx

=
1

2

∫
1(

x+1√
2

)2
+ 1

dx

=
1√
2
arctan

(
x+ 1√

2

)
+ C.
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• On remarque que (x2 + x+ 1)′ = 2x+ 1, et 3x+ 1 = 3
2
(2x+ 1)− 1

2
, et donc∫

3x+ 1

x2 + x+ 1
dx =

3

2

∫
2x+ 1

x2 + x+ 1
dx︸ ︷︷ ︸

u=x2+x+1

−1

2

∫
1

x2 + x+ 1
dx

=
3

2
ln(x2 + x+ 1)− 1

2

∫
1(

x+ 1
2

)2
+ 3

4

dx

=
3

2
ln(x2 + x+ 1)− 1

2
· 4
3

∫
1(

x+1/2√
3/2

)2
+ 1︸ ︷︷ ︸

u= x+1√
3/2

dx

=
3

2
ln(x2 + x+ 1)− 2

3
·
√
3

2
arctan

(
x+ 1/2√

3/2

)
=

3

2
ln(x2 + x+ 1)−

√
3

3
arctan

(
x+ 1/2√

3/2

)
+ C.

⋄
Les exemples ci-dessus sont du type∫

ex+ f

ax2 + bx+ c
dx, ∆ = b2 − 4ac < 0.

Pour un discriminant < 0, on peut exprimer le dénominateur sous la forme (αx + β)2 + γ,
γ > 0, et on sait donc comment traiter ces cas en utilisant ln et arctan, comme ci-dessus. Le
cas ∆ < 0 correspond à un polynôme irréductible qui n’a pas de racines réelles, et donc ne
se factorise pas (sur R).
Que peut-on faire si ∆ ⩾ 0? Si ∆ ⩾ 0 pour le dénominateur, alors il a des racines réelles et
on peut le factoriser. On utilise cette factorisation pour le décomposer en éléments simples.
Exemple 7.25. Pour calculer

∫
1

x2−1
dx, où ∆ > 0, on essaie d’abord de trouver des constantes

A,B ∈ R telles que
1

x2 − 1
=

1

(x− 1)(x+ 1)
=

A

x− 1
+

B

x+ 1
, (∀x ̸= ±1).

On a
A

x− 1
+

B

x+ 1
=

A(x+ 1) +B(x− 1)

(x− 1)(x+ 1)
=

(A+B)x+ (A−B)

(x− 1)(x+ 1)
,

et donc
(A+B)x+ (A−B) = 1,

ce qui implique A+B = 0 et A−B = 1. On résout ce système pour trouver

A = 1
2
, B = −1

2
.

On a donc ∫
1

x2 − 1
dx =

∫
1/2

x− 1
dx+

∫
−1/2

x+ 1
dx

=
1

2
ln |x− 1| − 1

2
ln |x+ 1|+ C

=
1

2
ln

∣∣∣∣x− 1

x+ 1

∣∣∣∣+ C.
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⋄
À la fin de la section, on discute encore de comment trouver les coefficients A,B, . . ..

7.9.1 Méthode générale

On décrit maintenant la procédure à suivre dans le cas général. Soit

f(x) =
P (x)

Q(x)

une fonction rationnelle (P (x), Q(x) polynômes).

1. Si deg(P ) ⩾ deg(Q), effectuer la division polynomiale pour trouver

f(x) = S(x) +
R(x)

Q(x)
,

où S(x), R(x) sont des polynômes, et deg(R) < deg(Q).
Exemple 7.26.

4x3 − 22x2 − 4x+ 4

2x2 + x− 1
= 2x− 12 +

10x− 8

2x2 + x− 1
.

⋄
2. Factoriser le plus possible le dénominateur Q(x) (en facteurs irréductibles).

Exemple 7.27. x3 − 1 = (x− 1) (x2 + x+ 1)︸ ︷︷ ︸
∆<0

. ⋄

3. Maintenant on a les possibilités suivantes.
• Cas I : Si Q(x) peut être factorisé en un produit de k facteurs de degré 1 distincts,

Q(x) = (a1x+ b1)(a2x+ b2) · · · (akx+ bk),

alors on cherche des constantes A1, A2, . . . Ak telles que

R(x)

Q(x)
=

A1

a1x+ b1
+

A2

a2x+ b2
+ · · · Ak

akx+ bk
.

Exemple 7.28.
x+ 6

x(x− 4)(3x+ 2)
=

A

x
+

B

x− 4
+

C

3x+ 2
.

⋄
• Cas II : Si un des facteurs de degré 1 de Q(x) est de multiplicité r, (ax + b)r, alors

on ajoute à la décomposition en éléments simples les termes

A1

ax+ b
+

A2

(ax+ b)2
+ · · ·+ Ar

(ax+ b)r
.
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Exemple 7.29.

x3 − x+ 1

x2(x− 5)3
=

A

x
+

B

x2
+

C

x− 5
+

D

(x− 5)2
+

E

(x− 5)3
.

⋄
• Cas III : Si un des facteurs de Q(x) est un facteur irréductible du type ax2 + bx+ c

où ∆ = b2 − 4ac < 0, alors on ajoute à la décomposition en éléments simples le
terme

Ax+B

ax2 + bx+ c
.

Exemple 7.30.

x

(x− 7)(x2 + 1)(x2 + 4)
=

A

x− 7
+

Bx+ C

x2 + 1
+

Dx+ E

x2 + 4

⋄
• Cas IV : Si un des facteurs de Q(x) est un facteur irréductible de degré 2 de multi-

plicité r, (ax2 + bx+ c)r avec ∆ = b2 − 4ac < 0, alors on ajoute à la décomposition
en éléments simples les termes

A1x+B1

ax2 + bx+ c
+

A2x+B2

(ax2 + bx+ c)2
+ · · ·+ Arx+Br

(ax2 + bx+ c)r
.

Exemple 7.31.

x3 + x2 + 1

(x+ 7)(x2 + x+ 1)(x2 + 1)3

=
A

x+ 7
+

Bx+ C

x2 + x+ 1
+

Dx+ E

x2 + 1
+

Fx+G

(x2 + 1)2
+

Hx+ I

(x2 + 1)3

⋄
Exemple 7.32. Calculons ∫

2x2 − 2x+ 12

x3 + 3x
dx.

On factorise le dénominateur. On a x3 + 3x = x(x2 + 3). La décomposition en éléments
simples est donc

A

x
+

Bx+ C

x2 + 3
=

A(x2 + 3) + x(Bx+ C)

x(x2 + 3)

=
(A+B)x2 + Cx+ 3A

x(x2 + 3)

=
2x2 − 2x+ 12

x(x2 + 3)

On obtient donc le système d’équations
A+B = 2

C = −2

3A = 12
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dont la solution est A = 4, B = −2 et C = −2. Ainsi∫
2x2 − 2x+ 12

x3 + 3x
dx =

∫ [
4

x
+

−2x− 2

x2 + 3

]
dx

=

∫
4

x
dx−

∫
2x

x2 + 3
dx−

∫
2

x2 + 3
dx

= 4 ln |x| − ln(x2 + 3)− 2√
3
arctan

(
x√
3

)
+ C.

⋄

7.9.2 Sur la recherche des coefficients

Lorsqu’on décompose une fraction en éléments simples, on peut toujours trouver les coef-
ficients par identification comme on l’a fait jusqu’ici. Mais on peut aussi utiliser la méthode
dite d’évaluation pour rendre les calculs plus rapides.
Exemple 7.33. Décomposons 5x−3

(x+1)(x−3)
en éléments simples. On pose

5x− 3

(x+ 1)(x− 3)
=

A

x+ 1
+

B

x− 3
.

Pour calculer les coefficients A et B, on peut mettre les fractions au même dénominateur et
identifier les coefficients des polynômes au numérateur de part et d’autre de l’égalité :

5x− 3

(x+ 1)(x− 3)
=

A(x− 3) +B(x+ 1)

(x+ 1)(x− 3)
=

(A+B)x+ (B − 3A)

(x+ 1)(x− 3)
,

ce qui nous amène à résoudre le système{
A+B = 5

B − 3A = −3

pour obtenir A = 2, B = 3.

Mais on peut aussi partir de l’équation

5x− 3

(x+ 1)(x− 3)
=

A

x+ 1
+

B

x− 3
,

qui doit être valide pour tout x ̸∈ {−1, 3}, multiplier les deux côtés par (x+1), et faire tendre
x vers −1 (ce qui revient ici à l’évaluer simplement en x = −1) pour obtenir le coefficient A :

5x− 3

x− 3
= A+

B(x+ 1)

x− 3
⇒ −5− 3

−1− 3
= A = 2.

De même en multipliant les deux côtés par (x− 3) et en faisant tendre x vers 3, on obtient la
valeur du coefficient B :

5x− 3

x+ 1
=

A(x− 3)

x+ 1
+B ⇒ 15− 3

3 + 1
= B = 3.

⋄
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Exemple 7.34. Décomposons x2+2
x(x+1)2

en éléments simples. On pose

x2 + 2

x(x+ 1)2
=

A

x
+

B

x+ 1
+

C

(x+ 1)2
.

• On multiplie les deux côtés de l’identité par x et on fait tendre x vers 0 :

x2 + 2

(x+ 1)2
= A+

Bx

x+ 1
+

Cx

(x+ 1)2
⇒ A = 2 .

• On multiplie les deux côtés de l’identité par (x+ 1)2 et on fait tendre x vers −1 :

x2 + 2

x
= A(x+ 1)2 +B(x+ 1) + C ⇒ C = −3.

• Pour trouver le dernier coefficient B, on peut évaluer l’identité en une valeur quel-
conque, par exemple en x = 1 :

3

4
=

2

1
+

B

2
− 3

4
⇒ B = −1 .

Alternativement, on peut aussi multiplier l’identité

x2 + 2

x(x+ 1)2
=

A

x
+

B

x+ 1
+

C

(x+ 1)2

par x, pour obtenir
x2 + 2

(x+ 1)2
= A+

Bx

x+ 1
+

Cx

(x+ 1)2
,

et prendre la limite x → +∞ pour trouver

1 = A+B ⇒ B = −1 .

L’idée est de multiplier l’égalité par une puissance de x assez grande pour que la
fraction de gauche admette une limite, et assez petite pour que le terme contenant le
coefficient qu’on cherche (ici, B) survive le passage à la limite.

⋄
Exemple 7.35. Décomposons x2+x+2

x(x2+1)
en éléments simples. On pose

x2 + x+ 2

x(x2 + 1)
=

A

x
+

Bx+ C

x2 + 1
.

• On multiplie les deux côtés de l’identité par x et on fait tendre x vers 0 :

x2 + x+ 2

x2 + 1
= A+

(Bx+ C)x

x2 + 1
⇒ A = 2 .

• On multiplie les deux côtés de l’identité par x et on fait tendre x → +∞ :

1 = A+B ⇒ B = −1 .

• On évalue en n’importe quelle valeur de x, par exemple x = 1 :

4

2
=

2

1
+

C − 1

2
⇒ C = 1 .

⋄
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7.10 Aires de régions du plan

On a vu que l’aire analytique définie par le graphe d’une fonction f et l’axe Ox est donnée
par

∫ b

a
f(x) dx.

L’aire géométrique est donnée par
∫ b

a
|f(x)| dx.

Exemple 7.36. Calculons l’aire géométrique A de la région du plan délimitée par la courbe
y = f(x) = 2−

√
x, les axes Ox et Oy et la droite x = 9.

Remarquons que f change de signe en x = 4. Donc

A =

∫ 9

0

|f(x)| dx

=

∫ 4

0

f(x) dx+

∫ 9

4

[−f(x)] dx

=

∫ 4

0

[2−
√
x] dx+

∫ 9

4

[−2 +
√
x] dx

=

[
2x− 2

3
x

3
2

]∣∣∣∣4
0

+

[
−2x+

2

3
x

3
2

]∣∣∣∣9
4

=

(
8− 2

3
· 8
)
− 0 +

(
−2 · 9 + 2

3
· 27
)
−
(
−8 +

2

3
· 8
)

=
16

3
.

⋄
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Exemple 7.37. Calculons l’aire A du disque de rayon R centré à l’origine.

L’équation du cercle est x2 + y2 = R2, et pour x, y ⩾ 0, on a

y =
√
R2 − x2 =: f(x).

On a donc

A = 4

∫ R

0

f(x) dx = 4

∫ R

0

√
R2 − x2 dx .

En posant x = φ(t) := R sin(t), cette dernière devient

4

∫ π
2

0

√
R2 − (R sin(t))2 ·R cos(t)︸ ︷︷ ︸

φ′(t)

dt = 4R2

∫ π
2

0

cos2(t) dt

= 4R2

[
1

2
t+

1

4
sin(2t)

]∣∣∣∣π2
0

= 4R2π

4
= πR2.

⋄
Remarque 7.38. Si on intègre par changement de variable, il faut soit revenir à la variable ini-
tiale pour évaluer par rapport aux bornes d’intégration originales, soit exprimer les bornes
en fonction de la nouvelle variable. ⋄
On peut aussi calculer l’aire entre deux courbes y = f(x) et y = g(x). Pour ceci, il est utile de

• trouver les points d’intersection des courbes,
• esquisser le domaine,
• calculer l’aire A =

∫ b

a
|f(x)− g(x)| dx.
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Exemple 7.39. Calculons l’aire A de la région bornée, délimitée par les courbes

y = x2 − 4x =: f(x), y = 6− x2 =: g(x).

Un simple croquis permet de comprendre la situation :

Commençons par chercher les points d’intersection des deux graphes :

f(x) = g(x) ⇐⇒ x2 − 4x = 6− x2

⇐⇒ 2x2 − 4x− 6 = 0

⇐⇒ (2x+ 2)(x− 3) = 0

⇐⇒ x = −1 ou x = 3.
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Comme le graphe de g est au-dessus de celui de f sur [−1, 3], on a |f(x)−g(x)| = g(x)−f(x)
sur cet intervalle, et donc l’aire cherchée vaut

A =

∫ 3

−1

|f(x)− g(x)| dx

=

∫ 3

−1

g(x)− f(x) dx

=

∫ 3

−1

(6− x2)− (x2 − 4x) dx

=

∫ 3

−1

−2x2 + 4x+ 6 dx

=

(
−2

3
x3 +

4

2
x2 + 6x

)∣∣∣∣3
−1

=
64

3
.

⋄

L’aire d’une région peut en souvent s’exprimer aussi à l’aide d’une intégration selon y, ce
qiu peut parfois simplifier les calculs.

Exemple 7.40. Calculons l’aire A de la région délimitée par l’axe Oy, la droite y = π
2

et la
courbe y = f(x) = arcsin(x).

Commençons à intégrer par rapport à x :

A =

∫ 1

0

(
π
2
− arcsin(x)

)
dx =

π

2
−
∫ 1

0

arcsin(x) dx
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En posant x = sin(t),

A =
π

2
−
∫ π

2

0

arcsin(sin(t)) cos(t) dt

=
π

2
−
∫ π

2

0

t cos(t) dt

=
π

2
−

[
t sin(t)|

π
2
0 −

∫ π
2

0

sin(t) dt

]
=

π

2
− π

2
− cos(t)|

π
2
0

= 1.

Regardons maintenant ce qui se passe en intégrant par rapport à y :

A =

∫ π
2

0

sin(y) dy

= − cos(x)
∣∣π2
0

= 1.

⋄

7.10.1 Régions délimitées par des courbes paramétrées

Soit maintenant

M : [α, β] → R2

t 7→ M(t) = (x(t), y(t))

une courbe paramétrée. Pour simplifier, supposons que la portion de courbe pour t ∈ [α, β]
est située au-dessus de l’axe Ox, et qu’elle ne s’auto-intersecte pas :

Comment calcule-t-on l’aire A sous la courbe, à l’aide d’une intégrale en la variable t?
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Supposons d’abord que la fonction x(t) est croissante, c’est-à-dire, que la particule se déplace
vers la droite.

En prenant une partition {t0, t1, . . . , tn−1, tn} suffisamment fine de l’intervalle du temps [α, β],
on a

A ≃
n∑

i=1

y(ti) · [x(ti)− x(ti−1)︸ ︷︷ ︸
⩾0

]

=
n∑

i=1

y(ti) ·
x(ti)− x(ti−1)

ti − ti−1︸ ︷︷ ︸
≃ẋ(ti)

·(ti − ti−1),

et si x(t) est une fonction dérivable avec dérivée continue, on peut montrer que lorsque
n → ∞,

A =

∫ β

α

y(t) · ẋ(t) dt.

Si la fonction x(t) est décroissante, c’est-à-dire, la particule se déplace vers la gauche, alors
on a

A ≃
n∑

i=1

y(ti) · [x(ti−1)− x(ti)︸ ︷︷ ︸
⩾0

]

=
n∑

i=1

y(ti) ·
−[x(ti)− x(ti−1)]

ti − ti−1︸ ︷︷ ︸
≃−ẋ(ti)

·(ti − ti−1),

et si x(t) est une fonction dérivable avec dérivée continue, on peut montrer que lorsque
n → ∞,

A =

∫ β

α

y(t) · (−ẋ(t)) dt.
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Exemple 7.41. Calculons l’aire A du disque de rayon R.

Paramétrisons le quart de cercle x, y ⩾ 0 ainsi :

M : [0, π/2] → R2

t 7→ M(t) = (R sin(t), R cos(t)).

La fonction x(t) est croissante sur [0, π/2] et donc

A = 4

∫ π/2

0

R cos(t)︸ ︷︷ ︸
=y(t)

·R cos(t)︸ ︷︷ ︸
=ẋ(t)

dt = 4R2

∫ π/2

0

cos2(t) dt = πR2.

⋄

7.11 Volumes de solides

Dans cette section, on utilise le calcul intégral pour calculer le volume de certains solides
tridimensionnels.

Puisqu’on ne traite dans ce cours que de l’analyse d’une variable réelle, ces solides devront
être d’un type particulier.

Plus précisément, on supposera qu’il existe toujours un axe selon lequel on peut utiliser une
variable, disons z, de façon à ce que la section du solide qui est perpendiculaire à l’axe en z
soit d’aire connue A(z) :
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Une tranche infinitésimale d’aire A(z) et d’épaisseur dz a un volume infinitésimal donné par

dV (z) = A(z) dz .

Ainsi, le volume du solide s’obtient en intégrant les tranches :

V =

∫ b

a

dV (z) =

∫ b

a

A(z) dz

Exemple 7.42. Calculons le volume V d’un cône de hauteur H , dont la base est un disque de
rayon R.

Ici, l’axe naturel est celui qui dirige l’axe du cône. Une section perpendiculaire à cet axe est
aussi un disque. Si on paramétrise la hauteur des sections par la variable x qui mesure la
distance au sommet (donc 0 ⩽ x ⩽ H , alors l’aire de la section à hauteur x est donnée par
A(x) = πr(x)2, où r(x) est le rayon du disque à la hauteur x, et le volume infinitésimal de la
tranche correspondante par dV (x) = A(x) dx = πr(x)2 dx. Puisque r(x) = R

H
x,

V =

∫ H

0

dV (x) =

∫ H

0

πr(x)2 dx

= π

(
R

H

)2 ∫ H

0

x2 dx

= π

(
R

H

)2

· H
3

3

=
1

3
· (πR2)︸ ︷︷ ︸

aire de la base

·H
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⋄
Ce raisonnement peut être adapté pour montrer que le volume V d’un cône de base quel-
conque est donné par

V =
1

3
· A ·H ,

où A est l’aire de la base.

7.11.1 Solides de révolution

Une classe de solides que l’on peut traiter à l’aide de calcul intégral d’une seule variable est
celle des solides de révolution, obtenus par la rotation d’une région autour d’un axe.

Par exemple, on peut considérer la rotation de la région située sous le graphe d’une fonction
f : [a, b] → R continue, autour de Ox. Dans ce cas, les sections du solide de révolution
obtenu sont des disques, et le disque en x a un rayon égal à f(x) :

Le volume est donc

V =

∫ b

a

dV (x)

=

∫ b

a

A(x) dx =

∫ b

a

π · f(x)2 dx.

Lorsque la rotation du graphe se fait autour d’un autre axe, il faut adapter cette construction.

Exemples 7.43. Soit f(x) =
√
x− 1, x ∈ [1, 2].
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On considère la rotation du graphe de f autour de plusieurs axes.
• Rotation autour de Ox :

Dans ce cas, comme on a dit ci-dessus, les sections sont des disques de rayon f(x), et
donc

V =

∫ 2

1

π · f(x)2 dx = π

∫ 2

1

(x− 1) dx =
π

2
.

• Rotation autour de la droite horizontale y = −1 :

Dans ce cas, la section est un disque de rayon égal à f(x)− (−1) = f(x) + 1, et donc

V =

∫ 2

1

dV (x) =

∫ 2

1

π ·
(√

x− 1− (−1)
)2

dx

= π ·
∫ 2

1

(x+ 2
√
x− 1) dx

=
17π

6
.

• Rotation autour de la droite horizontale y = 2 :
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Dans ce cas, la section est un disque de rayon égal à 2−f(x), d’aire A(x) = π(2−f(x))2,
et donc

V =

∫ 2

1

dV (x) =

∫ 2

1

π ·
(
2−

√
x− 1

)2
dx

= π ·
∫ 2

1

(3 + x− 4
√
x− 1) dx

=
11π

6
.

• Rotation autour de l’axe vertical Oy :

Dans ce cas, la variable naturelle est y ∈ [0, 1], et la section à hauteur y est un disque
de rayon f−1(y). Or

y = f(x) =
√
x− 1 ⇐⇒ x = f−1(y) = y2 + 1 ,

et donc ce disque a une aire A(y) = π(y2 + 1)2 :

V =

∫ 1

0

dV (y) =

∫ 1

0

π · (y2 + 1)2 dy

=
28π

15
.

• Rotation autour de la droite verticale x = 3 :
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Dans ce cas, la section est un disque de rayon 3− f−1(y), et donc d’aire A(y) = π(3−
(y2 + 1))2

V =

∫ 1

0

dV (y) dy = π ·
∫ 1

0

(4− 4y2 + y4) dy

=
43π

15
.

⋄
Exemple 7.44. Soit R la région du plan délimitée par les courbes

y = x et x = y2.

Calculons le volume du solide obtenu par la rotation de R autour de l’axe Ox.

Remarquons que la courbe x = y2 intersecte la droite y = x aux points x = 0 et x = 1.

Aussi, la section obtenue en fixant x ∈ [0, 1] est un anneau,
• de rayon extérieur R(x) =

√
x (la réciproque de x = g(y) = y2), et

• de rayon intérieur r(x) = x.
Donc son aire se calcule comme une différence de deux disques :

A(x) = π ·R(x)2 − π · r(x)2 .

Ainsi,

V =

∫ 1

0

A(x) dx

=

∫ 1

0

[π ·
√
x
2 − π · x2] dx =

π

6
.

On remarque que ce volume peut aussi être calculé par V = V1 − V2, où
• V1 est le volume du solide extérieur (obtenu par la rotation de

√
x autour de Ox),

• V2 est le volume du solide intérieur (obtenu par la rotation de x autour de Ox).
⋄
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7.11.2 Rotation d’un arc paramétré

Soit maintenant

M : [α, β] → R2

t 7→ M(t) = (x(t), y(t))

une courbe paramétrée, comme dans la section précédente.

Considérons la rotation de la courbe autour d’un axe, par exemple Ox :

Supposons d’abord que la fonction x(t) est croissante, c’est-à-dire, que la particule se déplace
vers la droite.

En prenant une partition {t0, t1, . . . , tn−1, tn} suffisamment fine de l’intervalle du temps [α, β],
on a

V ≃
n∑

i=1

volume du i-ème cylindre

=
n∑

i=1

π · y(ti)2︸ ︷︷ ︸
base

·[x(ti)− x(ti−1)︸ ︷︷ ︸
hauteur

]

=
n∑

i=1

π · y(ti)2 ·
x(ti)− x(ti−1)

ti − ti−1︸ ︷︷ ︸
≃ẋ(ti)

·(ti − ti−1),

et si x(t) est une fonction dérivable avec dérivée continue, on a, dans la limite n → ∞,

V =

∫ β

α

π · y(t)2 · ẋ(t) dt.

De manière similaire, si x(t) est décroissante, on obtient

V =

∫ β

α

π · y(t)2 · (−ẋ(t)) dt.
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7.12. Longueurs d’arcs

Exemple 7.45. La sphère de rayon R centrée à l’origine est un solide de révolution, puisqu’on
peut l’obtenir en faisant tourner un demi-cercle autour de l’axe Ox. Calculons donc son
volume V .

Paramétrisons la moitié supérieure du cercle, par exemple avec

M : [0, π] → R2

t 7→ M(t) = (R cos(t), R sin(t)).

Comme x(t) = R cos(t) est décroissante sur [0, π], le volume est donné par

V =

∫ π

0

π · y(t)2 · (−ẋ(t)) dt

=

∫ π

0

π · (R sin(t))2 ·R sin(t) dt

= πR2

∫ π

0

sin3(t) dt

= −πR2

∫ π

0

(1− cos2(t)) · (− sin(t)) dt

En posant u = cos(t), cette dernière devient

V = −πR2

∫ −1

1

(1− u2) du

= πR2

∫ 1

−1

(1− u2) du

=
4πR2

3
.

⋄

7.12 Longueurs d’arcs

Dans cette section, on voit quelques méthodes pour calculer la longueur d’une courbe dans
le plan ; on parlera aussi de longueur d’arc.

NumChap: chap-integrale, Dernière compilation: 2025-03-19 15:19:20+01:00. (Version Web:botafogo.saitis.net/analyse-B) 173

botafogo.saitis.net/analyse-B


7.12. Longueurs d’arcs

7.12.1 Longueur du graphe d’une fonction

Considérons pour commencer une fonction f : [a, b] → R, et voyons comment calculer la
longueur de son graphe, que nous noterons L.

Soit {x0, x1, x2, . . . , xn} une subdivision de l’intervalle [a, b]. Considérons l’approximation du
graphe de f par la ligne polygonale obtenue en reliant, pour chaque i = 1, 2, . . . , n, le point
(xi−1, f(xi−1)) à (xi, f(xi)), par un segment. Soit Li la longueur de ce segment.

Ainsi, la longueur d’arc L est approximée par

L ≃
n∑

i=1

Li .

Mais, par le Théorème de Pythagore, on a

Li =
√

(xi − xi−1)2 + (f(xi)− f(xi−1))2

=

√
1 +

(f(xi)− f(xi−1)

xi − xi−1

)2
· (xi − xi−1) ,

et remarquons que si f est dérivable, alors lorsque n est grand,

f(xi)− f(xi−1)

xi − xi−1

≃ f ′(xi) .

L’approximation par la ligne polygonale est donc

L ≃
n∑

i=1

√
1 + (f ′(xi))2 · (xi − xi−1) .

Si f ′ est elle-même continue, alors dans la limite n → ∞, cette dernière somme tend vers
l’intégrale

L =

∫ b

a

√
1 + f ′(x)2 dx
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7.12. Longueurs d’arcs

On peut interpréter cette intégrale comme étant

L =

∫ b

a

dℓ(x) =

∫ b

a

√
1 + f ′(x)2 dx,

où dℓ(x) =
√
1 + f ′(x)2 dx est l’élément de longueur infinitésimal de la courbe au-dessus du

point x :

Exemples 7.46. • Soit f(x) = x. Calculons la longueur d’arc pour x ∈ [0, 1] en utilisant
la formule ci-dessus (on s’attend à trouver

√
2).

L =

∫ 1

0

√
1 + (x)′ dx =

∫ 1

0

√
1 + 1 dx =

√
2.

• Soit f(x) = x2, x ∈ [0, 1]. On a

L =

∫ 1

0

√
1 + (x2)′ dx =

∫ 1

0

√
1 + 4x2 dx.

⋄

7.12.2 Longueur d’une courbe paramétrée

Soit maintenant une courbe paramétrée,

M : [α, β] → R2

t 7→ M(t) = (x(t), y(t))

telle que les fonctions x(t) et y(t) sont dérivables et dont les dérivées sont continues. Comme
on a fait plus haut, on prend une subdivision régulière {t0, t1, . . . tn} de l’intervalle [α, β] et
on approxime la courbe en prenant sur chaque intervalle [ti−1, ti] le segment de droite reliant
M(ti−1) à M(ti). Soit Li la longueur de ce segment.
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7.12. Longueurs d’arcs

Ainsi, la longueur d’arc L est approximée par

L ≃
n∑

i=1

Li .

Par le Théorème de Pythagore,

Li =
√

(x(ti)− x(ti−1))2 + (y(ti)− y(ti−1))2

=

√(x(ti)− x(ti−1)

ti − ti−1

)2
+
(y(ti)− y(ti−1)

ti − ti−1

)2
· (ti − ti−1).

Encore une fois, si x(t) et y(t) sont dérivables alors lorsque n est grand,

x(ti)− x(ti−1)

ti − ti−1

≃ ẋ(ti) ,
y(ti)− y(ti−1)

ti − ti−1

≃ ẏ(ti) ,

et l’approximation par la ligne polygonale est

L ≃
n∑

i=1

√
ẋ(ti)2 + ẏ(ti)2 · (ti − ti−1)

Lorsque les dérivées ẋ(t) et ẏ(t) sont continues, cette dernière somme converge, lorsque
n → ∞, vers l’intégrale

L =

∫ β

α

√
ẋ(t)2 + ẏ(t)2 dt

On remarque qu’en prenant le vecteur tangent

˙⃗r(t) =

(
ẋ(t)
ẏ(t)

)
,

la formule ci-dessus devient

L =

∫ β

α

∥ ˙⃗r(t)∥ dt.
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7.12. Longueurs d’arcs

On a

L =

∫ β

α

dℓ(t) = L =

∫ β

α

∥ ˙⃗r(t)∥ dt,

où dℓ(t) = ∥ ˙⃗r(t)∥ dt est l’élément de longueur infinitésimal.
Exemple 7.47. Calculons la circonférence d’un cercle de rayon R (que l’on sait être égale à
2πR), que l’on peut centrer à l’origine.

Utilisons la paramétrisation t 7→ M(t) = (R cos(t), R sin(t)), t ∈ [0, 2π]. On a

˙⃗r(t) =

(
−R sin(t)
R cos(t)

)
,

et donc

L =

∫ 2π

0

∥ ˙⃗r(t)∥ dt

=

∫ 2π

0

√
(−R sin(t))2 + (R cos(t))2 dt

=

∫ 2π

0

R dt

= 2πR.

⋄
Exemple 7.48. Une cycloïde est la trajectoire décrite par un point M fixé sur le bord d’un
disque de rayon R, lorsque ce dernier roule sur la droite :

Animation disponible sur botafogo.saitis.net/analyse-B
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7.13. Surfaces de révolution

On se propose ici de calculer la longueur de la cycloïde, lorsque le disque effectue un tour
complet.

Pour paramétriser la position du point M(t) = (x(t), y(t)), utilisons l’angle t ∈ [0, 2π] fait
par le rayon (segment reliant le centre du disque au point) avec la verticale. La position du
centre du disque pour une valeur t de l’angle est donnée par

C(t) = (Rt,R)

Ensuite,
−−−−−−→
C(t)M(t) =

(
−R sin(t)
−R cos(t)

)
Par la relation de Chasles,

−−−−→
OM(t) =

−−−→
OC(t) +

−−−−−−→
C(t)M(t) ,

et donc
−−−−→
OM(t) =

(
Rt−R sin(t)
R−R cos(t)

)
, t ∈ [0, 2π]

La longueur d’arc est donc donnée par

L =

∫ 2π

0

√
ẋ(t)2 + ẏ(t)2 dt

=

∫ 2π

0

√
(R−R cos(t))2 + (R sin(t))2 dt

= R

∫ 2π

0

√
2− 2 cos(t) dt

=
√
2R

∫ 2π

0

√
1− cos(t) dt

=
√
2R

∫ 2π

0

√
2 sin2

(
t
2

)
dt (u = t

2
)

=
√
2
2
R

∫ π

0

| sin(u)| · 2 du

= 4R

∫ π

0

sin(u) du

= 8R.

⋄

7.13 Surfaces de révolution

Étant donné une fonction f : [a, b] → R, comment calculer l’aire de la surface de révolution
engendrée par la rotation du graphe de f autour de l’axe Ox?
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7.13. Surfaces de révolution

Pour commencer, considérons le cas simple où le graphe de f est un segment de longueur ℓ.
On appelle bracelet la surface obtenue par la rotation de ce segment autour de Ox :

Lemme L’aire de la surface d’un tel bracelet est donnée par

2πℓ ·
(
r1 + r2

2

)
.

On remarque que r1+r2
2

représente la distance qui sépare le milieu du segment à Ox.

Démonstration. Remarquons que l’aire du bracelet peut être vue comme la différence des
aires de deux cônes de bases circulaires, le grand dont le rayon de la base est égal à r2, le
petit dont le rayon de la base est r1 :
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7.13. Surfaces de révolution

Il s’agit donc de pouvoir calculer l’aire de la surface latérale d’un cône, ce que l’on fait en le
coupant et le déployant :

On a θ ·L = 2πr, et donc θ = 2πr
L

. L’aire de surface du cône est l’aire du secteur de rayon L et
d’angle θ, qui est donnée par

1

2
θL2 =

1

2
· 2πr

L
· L2 = πrL .

On a
L1

r1
=

L2

r2
=

ℓ

r2 − r1
=⇒ L1 =

r1ℓ

r2 − r1
, L2 =

r2ℓ

r2 − r1
.

Donc l’aire du bracelet est égale à

πr2L2 − πr1L1 =π
r22ℓ

r2 − r1
− π

r21ℓ

r2 − r1
=π(r2 + r1)ℓ

=2π
r1 + r2

2
ℓ.

Ayant trouvé l’aire de surface du bracelet, on peut maintenant trouver l’aire d’une surface
de révolution.

On prend une partition {x0, x1, x2, . . . , xn} de l’intervalle [a, b] et on approxime la fonction f
par une fonction linéaire par morceaux en prenant sur chaque intervalle [xi−1, xi] le segment
de droite reliant les points (xi−1, f(xi−1)) et (xi, f(xi)). Soit Li la longueur de ce segment.
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7.13. Surfaces de révolution

Ainsi, l’aire S de la surface de révolution est approximée par

S ≃
n∑

i=1

Si,

où Si est l’aire de surface du bracelet obtenu en tournant le i-ième segment. En utilisant le
lemme précédent, on a

Si = 2π · f(xi−1) + f(xi)

2
· Li

= 2π · f(xi−1) + f(xi)

2
·
√

(xi − xi−1)2 + (f(xi)− f(xi−1))2

= 2π · f(xi−1) + f(xi)

2
·

√
1 +

(
f(xi)− f(xi−1)

xi − xi−1

)2

· (xi − xi−1).

Lorsque n est grand,

f(xi−1) + f(xi)

2
≃ f(xi) ,

f(xi)− f(xi−1)

xi − xi−1

≃ f ′(xi)

Ainsi, dans la limite n → ∞, la somme tend vers l’intégrale

S =

∫ b

a

2πf(x)
√

1 + f ′(x)2 dx.

Quel que soit l’axe de révolution, on peut trouver l’aire de surface de révolution de la ma-
nière suivante :

S =

∫ b

a

dS =

∫ b

a

2πr dℓ,

où r est la distance à l’axe de rotation et dS = 2πr dℓ est le changement infinitésimal d’aire
de surface.
Exemple 7.49. Calculons l’aire de surface S du paraboloïde formé par la rotation de la
courbe y =

√
x autour l’axe Ox, pour x ∈ [1, 2].
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7.13. Surfaces de révolution

On a

S =

∫ 2

1

2π
√
x

√
1 +

(
1

2
√
x

)2

dx

= π

∫ 2

1

√
4x+ 1 dx

= π

[
1

6
(4x+ 1)

3
2

]∣∣∣∣2
1

=
π

6

(
9

3
2 − 5

3
2

)
.

⋄
Soit maintenant

M : [α, β] → R2

t 7→ M(t) = (x(t), y(t))

une courbe paramétrée, telle que les fonctions x(t) et y(t) sont dérivables et dont les dérivées
sont continues. De manière analogue au cas d’une fonction standard, on prend une partition
{t0, t1, . . . tn} de l’intervalle [α, β] et on approxime la courbe en prenant sur chaque intervalle
[ti−1, ti] le segment de droite entre les points M(ti−1) et M(ti). Soit Li la longueur de ce
segment.
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7.13. Surfaces de révolution

Ainsi, l’aire de la surface de révolution S est approximée par

S ≃
n∑

i=1

Si,

où Si est l’aire de surface du i-ième bracelet. On a

Si = 2π · y(ti−1) + y(ti)

2
· Li

= 2π · y(ti−1) + y(ti)

2
·
√

(x(ti)− x(ti−1))2 + (y(ti)− y(ti−1))2

= 2π · y(ti−1) + y(ti)

2
·

√(
x(ti)− x(ti−1)

ti − ti−1

)2

+

(
y(ti)− y(ti−1)

ti − ti−1

)2

· (ti − ti−1) .

En prenant la limite n → ∞, la somme tend vers l’intégrale

S =

∫ β

α

2πy(t)
√

ẋ(t)2 + ẏ(t)2 dt

On remarque qu’en prenant le vecteur tangent

˙⃗r(t) =

(
ẋ(t)
ẏ(t)

)
,

la formule ci-dessus devient

S =

∫ β

α

2πy(t)∥ ˙⃗r(t)∥ dt.

On remarque qu’en faisant la rotation autour de l’axe Oy, les rôles de x(t) et y(t) seront
inversés.
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