
Chapitre 5

Dérivabilité

5.1 Définition et propriétés

5.1.1 Introduction

Étant donné une fonction f définie sur un voisinage de x0, une information sur le taux de
variation de f sur l’intervalle [x0, x0 + h] est donnée par le quotient

f(x0 + h)− f(x0)

(x0 + h)− x0

=
f(x0 + h)− f(x0)

h
,

appelé le rapport de Newton de f en x0. On pense à h comme un petit changement en x.
Géométriquement, le rapport de Newton représente la pente de la droite sécante (en vert
sur le dessin ci-dessous) au graphe de f , reliant les points (x0, f(x0)) et (x0 + h, f(x0 + h)).

Animation disponible sur botafogo.saitis.net/analyse-B

Remarque 5.1. Si on imagine que f(t) représente la distance parcourue par une particule
jusqu’au temps t, le rapport de Newton

f(t0 + h)− f(t0)

h

représente la vitesse moyenne entre les instants t0 et t0+h. Plus h est petit, plus cette vitesse
moyenne est proche de la vitesse instantanée en x0. ⋄
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5.1. Définition et propriétés

Plus h est petit, plus l’information donnée par le rapport de Newton sur la variation de f est
précise. On peut donc se poser la question : Que se passe-t-il si on fait tendre h → 0?

Si f est continue, (x0 + h, f(x0 + h)) se rapproche de (x0, f(x0)) à mesure que h se rapproche
de zéro. La limite du rapport de Newton représente donc une indétermination “0

0
”. Listons

quelques comportements possibles.

Lorsque h → 0, le rapport de Newton

f(x0 + h)− f(x0)

h

peut...
• ... tendre vers une limite finie,
• ... tendre vers ±∞,
• ... rester borné mais ne pas converger.

Considérons des exemples pour chacun de ces cas de figure.
Exemple 5.2. f(x) = x2 est continue en x0 = 2 et

lim
h→0

f(x0 + h)− f(x0)

h
= lim

h→0

(2 + h)2 − 22

h

= lim
h→0

4 + 4h+ h2 − 4

h
= lim

h→0
(4 + h) = 4 .

Géométriquement, la pente de la droite sécante (reliant les points (2, f(2)) à (2+h, f(2+h)))
tend vers 4 lorsque h tend vers 0.

⋄
Exemple 5.3. Considérons

f(x) =

{
x · sin

(
1
x

)
si x ̸= 0,

0 si x = 0 ,

qui est continue en x0 = 0 puisque

lim
x→0

f(x) = 0 = f(0) ,
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5.1. Définition et propriétés

mais pour laquelle
f(x0 + h)− f(x0)

h
=

h · sin
(
1
h

)
h

= sin

(
1

h

)
,

qui est borné mais n’a pas de limite lorsque h → 0. Géométriquement, la pente de la droite
sécante oscille entre +1 et −1 à mesure que h se rapproche de 0.

Animation disponible sur botafogo.saitis.net/analyse-B

⋄
Exemple 5.4. Considérons f(x) = 3

√
x− 1, qui est continue en x0 = 1 et

lim
h→0

f(1 + h)− f(1)

h
= lim

h→0

3
√

(1 + h)− 1− 3
√
1− 1

h

= lim
h→0

3
√
h

h

= lim
h→0

1
3
√
h2

= +∞ .

Géométriquement, la droite tangente au graphe de f en 1 est verticale :

⋄
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5.1. Définition et propriétés

5.1.2 Définition
Définition 5.5. Soit f définie sur un voisinage de x0. f est dérivable en x0 si la limite

lim
h→0

f(x0 + h)− f(x0)

h

existe (c’est-à-dire, est égale à un nombre réel). Dans ce cas, cette limite est appelée la dérivée
(ou le nombre dérivé) de f en x0, et on la note f ′(x0).

On peut écrire le nombre dérivé de diverses manières :

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h

= lim
∆x→0

f(x0 +∆x)− f(x0)

∆x

= lim
x→x0

f(x)− f(x0)

x− x0

.

Géométriquement, l’existence de la dérivée f ′(x0) est équivalente à l’existence d’une tan-
gente au graphe de f au point (x0, f(x0)). En effet, lorsque h → 0, la droite sécante tend vers
la droite tangente au point x0.

La pente de la tangente au graphe de f en x0 est donc

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h
= tan(φ).

L’équation de la tangente au graphe de f en x0 est

y = f ′(x0)(x− x0) + f(x0),

qui est l’équation de la droite de pente f ′(x0) passant par le point (x0, f(x0)).
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5.1. Définition et propriétés

Exemples 5.6. • Prenons f(x) = x2 en x0 = 2. On a f(2) = 4 et f ′(2) = 4 comme vu
avant, et donc la tangente est donnée par

y = f ′(x0)(x− x0) + f(x0) = 4(x− 2) + 4 = 4x− 4.

• Soit f(x) = |x− 1|. f n’est pas dérivable en x0 = 1. En effet, on a

lim
x→1+

f(x)− f(1)

x− 1
= lim

x→1+

(x− 1)− 0

x− 1
= 1,

lim
x→1−

f(x)− f(1)

x− 1
= lim

x→1−

−(x− 1)− 0

x− 1
= −1.

Donc la limite limx→1
f(x)−f(1)

x−1
(et donc f ′(1)) n’existe pas. Effectivement, le graphe de

f ne possède pas de tangente bien définie en x0 = 1.

⋄

5.1.3 Dérivabilité latérale

Le dernier exemple le suggère : des limites latérales permettent d’introduire des notions de
dérivabilité latérale.

Définition 5.7. • Soit f définie sur un voisinage à gauche de x0. Si

f ′
−(x0) := lim

h→0−

f(x0 + h)− f(x0)

h

existe, on l’appelle la dérivée à gauche de f en x0.
• Soit f définie sur un voisinage à droite de x0. Si

f ′
+(x0) := lim

h→0+

f(x0 + h)− f(x0)

h

existe, on l’appelle la dérivée à droite de f en x0.
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5.1. Définition et propriétés

Géométriquement, ces dérivées latérales représentent les pentes des demi-droites tangentes
au graphe de f à gauche et à droite, au point (x0, f(x0)).

Théorème 5.8. f est dérivable en x0 ⇐⇒ f est dérivable à gauche et à droite en x0, et f ′
−(x0) =

f ′
+(x0).

Exemple 5.9. Soit f : R → R définie par

f(x) =

{
(x2 + x+ 2)/2 si x < 0 ,√
x+ 1 si x ⩾ 0 .

On a f(0) =
√
0 + 1 = 1, et donc

f ′
−(0) = lim

h→0−

f(h)− f(0)

h
= lim

h→0−

(h2 + h+ 2)/2− 1

h

= lim
h→0−

h+ 1

2

=
1

2
,

et

f ′
+(0) = lim

h→0+

f(h)− f(0)

h
= lim

h→0+

√
h+ 1− 1

h

= lim
h→0+

1√
h+ 1 + 1

=
1

2
.

Comme f ′
−(0) = f ′

+(0) = 1
2
, on en déduit par le théorème que f est dérivable en x0 = 0 et

que sa dérivée en ce point vaut f ′(0) = 1
2
. ⋄

Exemple 5.10. Soit f(x) = |x − 1|. On a vu plus haut que les dérivées latérales en x0 =
1existent, et que

f ′
−(1) = −1 , f ′

+(1) = +1 .

Ainsi, f ′
−(1) ̸= f ′

+(1), et par conséquent le théorème implique que f n’est pas dérivable en
1. ⋄

5.1.4 Dérivabilité vs continuité
Théorème 5.11. Si f est une fonction définie sur un voisinage de x0, alors

f est dérivable en x0 =⇒ f est continue en x0 .

L’implication est aussi vraie si on replace la dérivabilité et la continuité par leurs analogues latéraux.

Démonstration. Supposons que f est dérivable en x0. On a

lim
x→x0

[f(x)− f(x0)] = lim
x→x0

f(x)− f(x0)

x− x0

· (x− x0)

=

(
lim
x→x0

f(x)− f(x0)

x− x0

)
·
(
lim
x→x0

(x− x0)

)
= f ′(x0) · 0
= 0.
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5.2. Approximation linéaire

On a donc limx→x0 f(x) = f(x0) : f est continue en x0.

Attention : la réciproque du théorème est fausse ! Par exemple, la fonction f(x) = |x| est
continue au point x0 = 0 mais elle n’est pas dérivable en ce point.

Le théorème ci-dessus nous montre que la continuité est une condition nécessaire pour
qu’une fonction soit dérivable. Mais il n’y a pas besoin de montrer séparément la conti-
nuité ; il suffit de montrer que la fonction est dérivable, et sa continuité est immédiate par le
résultat ci-dessus.

5.2 Approximation linéaire

Considérons une fonction f dérivable en x0, ainsi que la droite tangente au graphe de f au
point (x0, f(x0)) :

y = f(x0) + f ′(x0)(x− x0) ,

Pour souligner la dépendance en x, écrivons y = A(x), où

A(x) = f(x0) + f ′(x0)(x− x0)

Le nombre A(x) approxime bien la valeur de f(x) au voisinage de x0, dans le sens suivant.
Commençons par exprimer la différence

f(x)− A(x) = f(x)− [f ′(x0)(x− x0) + f(x0)]

= (x− x0) ·
[
f(x)− f(x0)

x− x0

− f ′(x0)

]
,
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où l’on voit apparaître la différence entre le rapport de Newton et f ′(x0), qui tend vers 0
lorsque x → x0 puisque f est dérivable en x0. Ainsi, f(x) − A(x) est un produit de deux
termes qui tendent vers zéro.

On appelle A(x) l’approximation linéaire de f(x) au voisinage x0.

Exemple 5.12. L’approximation linéaire de f(x) = sin(x) au voisinage de x0 = 0 est donnée
par

A(x) = f(0) + f ′(0)(x− 0)

= sin(0) + sin′(0)(x− 0)

= x

⋄

Exemple 5.13. L’approximation linéaire de f(x) = 3
√
x au voisinage de x0 = 8 est donnée par

A(x) = f(8) + f ′(8)(x− 8)

=
3
√
8 + 1

3
8−2/3(x− 8)

= 2 + 1
12
(x− 8) .

Par exemple, avec x = 8.012, on approxime 3
√
8.012 = f(8.012) par

A(8.012) = 2 + 1
12
(8.012− 8) = 2.001

Remarquons que la “vraie” valeur est f(8.012) = 3
√
8.012 = 2.00099949 . . . ⋄

5.3 Fonction dérivée et règles de dérivation

Définition 5.14. Si f est définie sur un intervalle ouvert I , f est dite dérivable sur I si f est
dérivable en tout point de I . On définit alors la fonction

f ′(x) := lim
h→0

f(x+ h)− f(x)

h
,

appelée la dérivée de f sur I .

Notation équivalente : f ′, df
dx

(notation de Leibniz).

Exemple 5.15. Représentons une fonction f et sa dérivée f ′.
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5.3. Fonction dérivée et règles de dérivation

• Au point A, la fonction f arrête de croître et commence à décroître. La dérivée f ′ est
donc > 0 avant A et < 0 après.

• Au point B, f décroît le plus rapidement et donc la dérivée y a un minimum.
• Au point C, f arrête de décroître et commence à croître. La dérivée passe donc de < 0

à > 0.
• Au point D, f croît le plus rapidement. f ′ y a donc un maximum.
• Au point E, la fonction f n’est pas dérivable, et la fonction f ′ n’est donc pas définie

en ce point.
• Au point F , f n’est pas dérivable et la tangente y est verticale. f ′ tend vers +∞.

⋄

5.3.1 Règles de dérivation

Théorème 5.16. Soient f et g dérivables sur I . Pour tout x ∈ I ,

1. (f + g)′(x) = f ′(x) + g′(x),

2. (λf)′(x) = λf ′(x), λ ∈ R,

3. (f · g)′(x) = f ′(x) · g(x) + f(x) · g′(x),

4. Si g(x) ̸= 0,
(
f

g

)′

(x) =
f ′(x)g(x)− f(x)g′(x)

g2(x)

Si f est dérivable en x et g et dérivable en f(x), on a aussi

(g ◦ f)′(x) = g′(f(x)) · f ′(x) .
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Démonstration. 1.

(f + g)′(x) = lim
h→0

(f + g)(x+ h)− (f + g)(x)

h

= lim
h→0

f(x+ h) + g(x+ h)− f(x)− g(x)

h

= lim
h→0

f(x+ h)− f(x)

h
+ lim

h→0

g(x+ h)− g(x)

h
= f ′(x) + g′(x).

2.

(λf)′(x) = lim
h→0

(λf)(x+ h)− (λf)(x)

h

= lim
h→0

λf(x+ h)− λf(x)

h

= λ lim
h→0

f(x+ h)− f(x)

h
= λf ′(x) .

(Cette propriété peut aussi être vue comme une conséquence de la suivante, où une
des fonctions est prise comme étant constante.)

3. Par définition,

(f · g)′(x) = lim
h→0

(f · g)(x+ h)− (f · g)(x)
h

.

Récrivons le quotient comme suit :

(f · g)(x+ h)− (f · g)(x)
h

=
f(x+ h)g(x+ h)− f(x)g(x)

h

=
f(x+ h)g(x+ h)−f(x)g(x+ h) + f(x)g(x+ h)− f(x)g(x)

h

=
f(x+ h)− f(x)

h
· g(x+ h) + f(x) · g(x+ h)− g(x)

h

Dans cette dernier ligne, les quotients convergent respectivement vers f ′(x) et g′(x).
Puis, comme g est dérivable, elle est continue en x, et donc

lim
h→0

g(x+ h) = g(x) .

Ceci implique que

lim
h→0

(f · g)(x+ h)− (f · g)(x)
h

= f ′(x)g(x) + f(x)g′(x) .
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5.3. Fonction dérivée et règles de dérivation

4. En procédant comme dans le point précédent,(
f

g

)′

(x) = lim
h→0

f(x+h)
g(x+h)

− f(x)
g(x)

h

= lim
h→0

f(x+ h) · g(x)− f(x) · g(x+ h)

h · g(x+ h) · g(x)

= lim
h→0

f(x+ h) · g(x)− f(x) · g(x) + f(x) · g(x)− f(x) · g(x+ h)

h · g(x+ h) · g(x)

=
1

g(x)
lim
h→0

1

g(x+ h)
· lim
h→0

[
g(x) · (f(x+ h)− f(x))

h
− f(x) · (g(x+ h)− g(x))

h

]
=

1

g(x)
· 1

g(x)
· (g(x) · f ′(x)− f(x) · g′(x))

=
g(x) · f ′(x)− f(x) · g′(x)

g2(x)
.

5.3.2 Dérivées de puissances

Voici quelques exemples de dérivées des fonctions élémentaires.

Remarquons pour commencer que si une fonction f est constante, f(x) = C pour tout x,
alors sa dérivée est nulle puisque

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

C − C

h
= 0 .

Théorème 5.17. Soit n ∈ Z. Alors
(xn)′ = nxn−1

(Si n est négatif, xn n’est bien sûr pas définie en x0 = 0.)

Démonstration. Commençons par les exposants entiers positifs, x ∈ N∗. On procède par ré-
currence sur n.

Lorsque n = 1, f(x) = x1, et donc

(x1)′ = lim
h→0

(x+ h)1 − x1

h
= lim

h→0

(x+ h)− x

h
= lim

h→0

h

h
= 1 .

Puisqu’on peut écrire cette dernière comme (x1)′ = 1 · x1−1, on a démontré le résultat pour
n = 1.

Supposons que pour un certain n ∈ N∗, (xn)′ = nxn−1. Pour n+1, on peut écrire xn+1 = xn ·x,
et utiliser la règle de dérivation d’un produit :

(xn+1)′ = (xn · x)′

= (xn)′ · x+ xn · (x)′

= nxn−1 · x+ xn · 1
= nxn + xn = (n+ 1)xn = (n+ 1)x(n+1)−1 .

NumChap: chap-derivabilite, Dernière compilation: 2025-03-19 15:19:20+01:00. (Version Web:botafogo.saitis.net/analyse-B) 77

botafogo.saitis.net/analyse-B


5.3. Fonction dérivée et règles de dérivation

Donc la formule est aussi vraie pour n+ 1.

Si on considère maintenant n ∈ Z, n < 0, alors m = −n ∈ N∗, et donc par la règle de
dérivation d’un quotient,

(xn)′ = (x−m)′ =

(
1

xm

)′

=
−(xm)′

(xm)2

=
−mxm−1

x2m

= (−m)x−m−1 = nxn−1 .

Exemple 5.18. (x1234)′ = 1234 · x1233 ⋄
Considérons une puissance non-entière, comme 1

2
:

Exemple 5.19. Si x > 0,

(
√
x)′ = lim

h→0

√
x+ h−

√
x

h

= lim
h→0

1√
x+ h+

√
x

=
1√

x+
√
x

=
1

2
√
x
.

Remarquons qu’avec un exposant,
√
x = x1/2, cette dernière prend la forme

(x1/2)′ = 1
2
x

1
2
−1 .

⋄
La dernière remarque suggère que la formule donnée dans le théorème précédent est aussi
valable pour des exposants rationnels.

Théorème 5.20. Soient p ∈ Z, q ∈ Z∗. Alors

(x
p
q )′ = p

q
x

p
q
−1 , x > 0

Démonstration. Commençons par le cas p = 1, q ∈ N∗. On a

(x
1
q )′ = lim

x̃→x

x̃1/q − x1/q

x̃− x
.
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Effectuons le changement de variable x̃1/q = ỹ, x1/q = y :

lim
x̃→x

x̃1/q − x1/q

x̃− x
= lim

ỹ→y

ỹ − y

ỹq − yq

= lim
ỹ→y

1
ỹq−yq

ỹ−y

=
1

limỹ→y
ỹq−yq

ỹ−y

=
1

qyq−1

=
1

q(x1/q)q−1

= 1
q
x

1
q
−1

Maintenant, pour une valeur quelconque p ∈ N∗, par la règle de dérivation d’une composée,

(x
p
q )′ =

(
(x1/q)p

)′
= p(x1/q)p−1(x1/q)′

= p(x1/q)p−1 1
q
x1/q−1

= p
q
x

p
q
−1 .

5.3.3 Dérivées des fonctions trigonométriques

Théorème 5.21. Pour tout x ∈ R,

(sin(x))′ = cos(x)

(cos(x))′ = − sin(x) .

Pour tout x ∈ R \ {π
2
+ kπ, k ∈ Z},

(tan(x))′ =

{
1 + tan2(x) ou

1
cos2(x)

.

Démonstration. Par définition,

(sin(x))′ = lim
h→0

sin(x+ h)− sin(x)

h

On utilise la relation (voir Analyse A)

sin(x+ h) = sin(x) cos(h) + cos(x) sin(h) .

Après avoir réarrangé les termes, le quotient devient

sin(x+ h)− sin(x)

h
= sin(x) · cos(h)− 1

h
+ cos(x) · sin(h)

h
.
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Or on a d’une part que 1− cos(h) ∼ h2/2 au voisinage de h = 0, donc

lim
h→0

cos(h)− 1

h
= lim

h→0

−h2/2

h
= 0 ,

et d’autre part on sait que

lim
h→0

sin(h)

h
= 1 .

Ceci implique que

lim
h→0

sin(x+ h)− sin(x)

h
= cos(x) .

En utilisant ensuite les relations

sin(x+ π
2
) = cos(x) ,

cos(x+ π
2
) = − sin(x) ,

on peut utiliser la formule pour la dérivée d’une composée comme suit :

(cos(x))′ =
(
sin(x+ π

2
)
)′

= cos(x+ π
2
) · (x+ π

2
)′︸ ︷︷ ︸

=1

= − sin(x) .

Finalement, par la règle de dérivation d’un quotient,

(tan(x))′ =

(
sin(x)

cos(x)

)′

=
cos2(x) + sin2(x)

cos2(x)
,

que l’on peut simplifier avec cos2(x) + sin2(x) = 1, ou alors séparer en

cos2(x) + sin2(x)

cos2(x)
=

cos2(x)

cos2(x)
+

sin2(x)

cos2(x)
= 1 + tan2(x)

Exemple 5.22. (√
sin(x)

)′
=

1

2
√

sin(x)
· (sin(x))′ = cos(x)

2
√

sin(x)
.

⋄

5.3.4 Dérivées exponentielles et logarithmes

Théorème 5.23. Pour tout x ∈ R,
(ex)′ = ex .

Pour tout x ∈ R∗
+,

(ln(x))′) =
1

x
.
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5.4. Tangentes à des courbes dans R2

5.4 Tangentes à des courbes dans R2

La dérivée d’une fonction évaluée en x0 ∈ R nous donne la pente de la tangente à la courbe
définie par la fonction dans le plan au point (x0, f(x0)). On peut utiliser la dérivée pour
résoudre des problèmes géométriques, comme ci-dessous.

Attention : il ne faut pas confondre la fonction dérivée avec l’équation de la tangente !

Exemple 5.24. Soit f(x) =
√
1− x2, Df = [−1, 1].

Déterminons l’équation de la tangente t au graphe de f en x0 =
√
3
2

. On sait que l’équation
de t est donnée par

y = f ′(x0)(x− x0) + f(x0) .

On a d’abord que

f(x0) =

√√√√1−

(√
3

2

)2

=

√
1− 3

4
=

√
1

4
=

1

2
,

et puisque

f ′(x) =
[(
1− x2

) 1
2

]′
=

(1− x2)
′

2
√
1− x2

=
−2x

2
√
1− x2

=
−x√
1− x2

,

on peut calculer f ′(x0) =
−
√
3/2√

1−
(√

3
2

)2
= −

√
3. L’équation de t est donc

y = −
√
3
(
x−

√
3
2

)
+

1

2
.

⋄
On peut aussi chercher des tangentes à une courbe sans connaître a priori le point de tan-
gence.

Exemple 5.25. Soit f(x) = x −
√
x2 + 1. Déterminons l’équation de la tangente t au graphe

de f issue du point P (2, 1).
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5.4. Tangentes à des courbes dans R2

Il s’agit ici de déterminer le point de tangence (x0, f(x0)) (où la tangente touche de graphe
de f ).

t a l’équation y = f ′(x0)(x − x0) + f(x0). Comme t passe par P (2, 1), on doit avoir 1 =
f ′(x0)(2−x0)+f(x0). Résolvons cette équation pour trouver x0. Il nous faut d’abord calculer
la dérivée en un point quelconque :

f ′(x) = 1− 1

2
· 2x√

x2 + 1
= 1− x√

x2 + 1
=⇒ f ′(x0) = 1− x0√

x2
0 + 1

.

Ainsi, l’équation du dessus en x0 devient

1 =
(
1− x0√

x2
0 + 1

)
(2− x0) +

(
x0 −

√
x2
0 + 1

)
⇐⇒ 1 = 2− x0 −

2x0√
x2
0 + 1

+
x2
0√

x2
0 + 1

+ x0 −
√
x2
0 + 1

⇐⇒ − 1 =
x2
0 − 2x0√
x2
0 + 1

−
√

x2
0 + 1

⇐⇒ −
√

x2
0 + 1 = x2

0 − 2x0 −
(
x2
0 + 1

)
⇐⇒ 2x0 + 1 =

√
x2
0 + 1 (et donc 2x0 + 1 ⩾ 0)

⇐⇒ (2x0 + 1)2 = x2
0 + 1 et x0 ⩾

−1

2

⇐⇒ 4x2
0 + 4x0 + 1 = x2

0 + 1 et x0 ⩾
−1

2

⇐⇒ x0(3x0 + 4) = 0 et x0 ⩾
−1

2

⇐⇒ x0 = 0 car
−4

3
<

−1

2
.

L’équation de t est donc

y = f ′(0)(x− 0) + f(0) =

(
1− 0√

02 + 1

)
x+

(
0−

√
02 + 1

)
= x− 1 .

⋄
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5.4. Tangentes à des courbes dans R2

5.4.1 Tangente commune à deux courbes

Considérons deux fonctions y = f(x) et y = g(x), et considérons une tangente commune à
leurs graphes, c’est-à-dire une droite qui est tangente à la fois au graphe de f et au graphe
de g :

Les points de tangence sont a priori distincts (comme sur l’image), on les nomme x1 et x2,

Pour trouver l’équation y = mx+ c de la tangente commune, il faut que

m = f ′(x1) = g′(x2) ,

et que les points (x1, f(x1)) et (x2, g(x2)) soient tous deux sur la droite y = mx+ c.
Exemple 5.26. Cherchons les tangentes communes aux graphes des fonctions f(x) = x2 + 2
et g(x) = −x2 + 6x− 7 = −(x− 3)2 + 2.

— On a m = f ′(x1) = g′(x2) :

m = f ′(x1) = 2x1

m = g′(x2) = −2x2 + 6.

On a donc 2x1 = −2x2 + 6 ⇐⇒ x1 = −x2 + 3.
— (x1, f(x1)) se trouve sur la tangente commune y = mx+ c :

f(x1) = mx1 + c

x2
1 + 2 = (2x1)x1 + c

c = −x2
1 + 2.

— (x2, g(x2)) se trouve sur la tangente commune y = mx+ c :

g(x2) = mx2 + c

−x2
2 + 6x2 − 7 = (−2x2 + 6)x2 + c

c = x2
2 − 7.

— Les inconnues x1, x2, c doivent donc satisfaire
x1 = −x2 + 3

c = −x2
1 + 2

c = x2
2 − 7
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5.5. Théorème de Rolle

On peut commencer par égaler la deuxième et la troisième équation, puis insérer la
première :

−x2
1 + 2 = x2

2 − 7 ⇐⇒ − (−x2 + 3)2 + 2 = x2
2 − 7

⇐⇒ 2x2(x2 − 3) = 0.

On a donc deux solutions :

x2 = 0, x1 = 3 et x2 = 3, x1 = 0.

Les deux tangentes communes sont donc

t1 : y = 6x− 7

t2 : y = 2.

⋄

5.5 Théorème de Rolle
Définition 5.27. Une fonction f : [a, b] → R possède

• un maximum global en x0 si pour tout x ∈ [a, b], on a f(x) ⩽ f(x0) ; on dit alors que
son maximum est atteint en x0.

• un minimum global en x0 si pour tout x ∈ [a, b], on a f(x) ⩾ f(x0) ; on dit alors que
son minimum est atteint en x0..

Théorème 5.28. Soit f : [a, b] → R continue. Alors f atteint son maximum et son minimum sur
[a, b].
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5.5. Théorème de Rolle

Combiné avec le Théorème des valeurs intermédiaires, ce résultat implique que l’image d’un
intervalle fermé et borné, par une fonction continue, est aussi un intervalle fermé et borné.

La recherche des max/min globaux peut parfois se faire à l’aide de l’étude de la dérivée
de la fonction, lorsque celle-ci existe. Mais puisque la dérivée est une propriété locale des
fonctions, on a aussi besoin d’une notion local de max/min.

Définition 5.29. Une fonction f possède
• un maximum local en x0 si il existe un voisinage de x0 sur lequel f(x) ⩽ f(x0)
• un minimum local en x0 si il existe un voisinage de x0 sur lequel f(x) ⩾ f(x0)

Théorème 5.30. Soit f dérivable sur ]a, b[. Si f possède un minimum ou maximum local en x0 ∈
]a, b[, alors f ′(x0) = 0.

Démonstration. Supposons que f admet un maximum local en x0 ∈]a, b[ (on a une preuve
analogue dans le cas d’un minimum). Puisque f est dérivable en x0, elle est en particulier à
gauche et à droite en x0, ce qui implique

f ′(x0) = lim
h→0+

f(x0 + h)− f(x0)

h

= lim
h→0−

f(x0 + h)− f(x0)

h
.

Mais, puisque f(x0) est un maximum local, on a f(x0+h) ⩽ f(x0) pour tout h suffisamment
petit. On a donc d’une part que

lim
h→0+

f(x0 + h)− f(x0)

h
⩽ 0 ,

et d’autre part que

lim
h→0−

f(x0 + h)− f(x0)

h
⩾ 0 .

Ceci implique que 0 ⩽ f ′(x0) ⩽ 0, d’où f ′(x0) = 0.
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5.6. Théorème des accroissements finis

Remarquons que l’implication inverse n’est pas vraie. Par exemple, la dérivée de la fonction
f(x) = x3 s’annule en 0 mais la fonction n’y possède pas de maximum ni de minimum.

Théorème 5.31 (Théorème de Rolle). Soit f continue sur [a, b] et dérivable sur ]a, b[. Si f(a) =
f(b), alors il existe x0 ∈]a, b[ tel que f ′(x0) = 0.

On remarque qu’il peut bien sûr y avoir plusieurs points où f ′ s’annule.

Démonstration. Comme f y est continue, f atteint son maximum et son minimum global sur
[a, b].

• Si un maximum ou un minimum se trouve en un point intérieur x0 ∈]a, b[, alors par
le résultat précédent, on a f ′(x0) = 0.

• Si il n’y a pas de maximum ou de minimum en un point intérieur, alors la valeur
f(a) = f(b) est à la fois le maximum et le minimum de f sur [a, b]. Ceci implique que
f est constante sur [a, b] et donc f ′(x) = 0 pour tout x ∈]a, b[.

5.6 Théorème des accroissements finis
Théorème 5.32 (Théorème des accroissements finis (TAF)). Soit f continue sur [a, b] et dérivable
sur ]a, b[. Alors il existe x0 ∈]a, b[ tel que

f ′(x0) =
f(b)− f(a)

b− a
.

Démonstration. L’équation de la sécante d passant par (a, f(a)) et (b, f(b)) est

y =

(
f(b)− f(a)

b− a

)
· (x− a) + f(a).

On définit la fonction de la différence entre d et f(x) :

g(x) := f(x)−
[(

f(b)− f(a)

b− a

)
· (x− a) + f(a)

]
.
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5.6. Théorème des accroissements finis

g est continue sur [a, b] et dérivable sur ]a, b[, car f l’est, et on a g(a) = g(b) = 0. Les hypo-
thèses du Théorème de Rolle sont alors vérifiées, et on a donc un x0 ∈]a, b[ tel que g′(x0) = 0.
Mais

g′(x) = f ′(x)−
(
f(b)− f(a)

b− a

)
,

et donc g′(x0) = f ′(x0)−
(

f(b)−f(a)
b−a

)
= 0 implique que

f ′(x0) =
f(b)− f(a)

b− a
.

Remarques
• Le Théorème des accroissements finis est une généralisation du Théorème de

Rolle.
• Si f décrivait la distance parcourue en fonction du temps, le TAF dirait qu’il y a

un moment auquel la vitesse instantanée est égale à la vitesse moyenne entre le
temps a et le temps b. Par exemple, si on réalise un trajet à une vitesse moyenne
de 100 km/h, alors il doit y avoir un moment du trajet où on roule à 100 km/h!

• Géométriquement, ce théorème dit qu’il y a au moins un point x0 entre a et b tel
que la tangente en x0 est parallèle à la droite sécante entre (a, f(a)) et (b, f(b)).

• Ce résultat est essentiel pour déduire des conséquences géométriques de la déri-
vée, comme on va voir.

Exemples 5.33. • Soit f(x) =

{
−1 si x ⩽ 1,

x2 − 2x si x > 1.
et soit Γ le graphe de f . Déterminons

x0 ∈]0, 4[ tel que la tangente à Γ en x0 est parallèle à la sécante passant par (0, f(0)) =
(0,−1) et (4, f(4)) = (4, 8).

Pour pouvoir appliquer le TAF sur ]0, 4[, il nous faut vérifier les hypothèses
— f continue sur [0, 4], et
— f dérivable sur ]0, 4[.
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5.6. Théorème des accroissements finis

En effet, f est continue sur [0, 4], puisque f est clairement continue en x ̸= 1, et en 1
on a limx→1− f(x) = −1 = limx→1+ f(x), donc f y est continue aussi.

f est clairement dérivable en x ̸= 1, et en 1 on a

lim
h→0−

f(1 + h)− f(1)

h
= lim

h→0−

−1− (−1)

h
= 0, et

lim
h→0+

f(1 + h)− f(1)

h
= lim

h→0+

(1 + h)2 − 2(1 + h)− (−1)

h
= lim

h→0+

h2

h
= 0,

d’où f est dérivable en 1 aussi. Alors le TAF s’applique et implique que x0 existe. On
peut le trouver explicitement.

La pente de la sécante passant par (0,−1) et (4, 8) est 8−(−1)
4−0

= 9
4
.

La pente de la tangente en x0 est

f ′(x0) =

{
0 si x0 ⩽ 1,

2x0 − 2 si x0 > 1.

Pour que les deux droites soient parallèles, il nous faut f ′(x0) =
9
4
, c’est-à-dire 2x0 −

2 = 9
4
. On a donc x0 =

17
8
∈]0, 4[.

• Soit f(x) = |x|. La pente de la sécante passant par (−1, f(−1)) et (1, f(1)) est 0. Mais
il n’y a pas de x0 ∈]− 1, 1[ tel que f ′(x0) = 0, et donc pas de tangente parallèle à cette
sécante. En effet, f ne vérifie pas les hypothèses du TAF car f n’est pas dérivable en
0 ∈]− 1, 1[.

⋄
On va maintenant parler de quelques conséquences du TAF. Comme on a mentionné, ce
résultat nous aide à déduire des conséquences géométriques de la dérivée. Si on a des infor-
mations sur f , on peut pendre la limite du rapport du Newton pour trouver f ′ et déduire
des informations sur la variation de la fonction. Mais si on a des informations sur la déri-
vée, comment avoir de l’information sur f ? On ne peut pas “défaire” la limite, mais on peut
justement utiliser le TAF.

88 NumChap: chap-derivabilite, Dernière compilation: 2025-03-19 15:19:20+01:00. (Version Web:botafogo.saitis.net/analyse-B)

botafogo.saitis.net/analyse-B


5.6. Théorème des accroissements finis

On sait que pour une fonction constante, la dérivée s’annule. Le TAF nous permet de mon-
trer que l’implication inverse est vraie aussi.

Corollaire 4. Soit f dérivable sur un intervalle ouvert I , telle que f ′(x) = 0 pour tout x ∈ I . Alors
f(x) = c pour tout x ∈ I , où c ∈ R est une constante.

Démonstration. Pour n’importe quels a, b ∈ I avec a < b, il existe x0 ∈]a, b[ tel que f ′(x0) =
f(b)−f(a)

b−a
par le TAF. Or f ′(x0) = 0, donc f(b)−f(a)

b−a
= 0 et alors f(b) = f(a). Comme ceci est vrai

pour n’importe quels a, b ∈ I , f prend donc la même valeur partout sur I , donc f(x) = c
pour une certaine constante c ∈ R.

Corollaire 5. Soient f, g dérivables sur un intervalle ouvert I , telles que f ′(x) = g′(x) pour tout
x ∈ I . Alors il existe c ∈ R tel que f(x) = g(x) + c pour tout x ∈ I .

Démonstration. Laissée en exercice.

Corollaire 6. Soit I un intervalle ouvert, et f une fonction dérivable sur I .
• f ′(x) ⩾ 0 sur I ⇐⇒ f est croissante sur I .
• f ′(x) ⩽ 0 sur I ⇐⇒ f est décroissante sur I .

Démonstration. On montre la première équivalence, la deuxième est laissée en exercice.

Supposons d’abord que f est croissante sur I . Prenons x0 ∈ I et h > 0 tel que x0 + h ∈ I .
Alors on a f(x0 + h) ⩾ f(x0), et donc f(x0+h)−f(x0)

h
⩾ 0, d’où

f ′
+(x0) = lim

h→0+

f(x0 + h)− f(x0)

h
⩾ 0.

Mais puisque f est dérivable en x0, f ′(x0) = f ′
+(x0), et donc on a f ′(x0) ⩾ 0.

Supposons maintenant que f ′(x) ⩾ 0 pour tout x ∈ I . Soient a, b ∈ I tels que a < b. Par le
TAF appliqué à l’intervalle [a, b], il existe c ∈]a, b[ tel ue

f(b)− f(a)

b− a
= f ′(c) ⩾ 0.

Puisque b− a > 0, on a donc que f(b)− f(a) ⩾ 0, d’où f(a) ⩽ f(b).

On remarque qu’on a aussi
• f ′(x) > 0 sur I =⇒ f est strictement croissante sur I ,
• f ′(x) < 0 sur I =⇒ f est strictement décroissante sur I .

Par contre, une fonction strictement croissante ou strictement décroissante peut avoir une
dérivée nulle, par exemple f(x) = x3 en 0.

Corollaire 7. Soit f une fonction continue en x0 et dérivable sur un voisinage épointé de x0. Si
limx→x0 f

′(x) existe, alors f est dérivable en x0 et f ′(x0) = limx→x0 f
′(x).
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5.6. Théorème des accroissements finis

Démonstration. La fonction f est continue en x0 et dérivable sur un voisinage épointé de x0.
Donc pour tout h tel que x0 + h appartient à ce voisinage, on peut appliquer le TAF sur
l’intervalle [x0, x0 + h] si h > 0, ou [x0 + h, x0] si h < 0 :

∃t ∈]0, 1[ tel que
f(x0 + h)− f(x0)

h
= f ′(x0 + t · h).

Lorsque h → 0,

lim
h→0

f(x0 + h)− f(x0)

h
= lim

h→0
f ′(x0 + t · h).

Par hypothèse, la limite limx→x0 f
′(x) existe. Elle est donc unique et ne dépend pas de la

façon dont x tend vers x0. On a alors

lim
x→x0

f ′(x) = lim
h→0

f ′(x0 + t · h).

Alors f ′(x0) existe et

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h
= lim

h→0
f ′(x0 + t · h) = lim

x→x0

f ′(x).

Attention : ce résultat ne dit pas que la dérivée est continue ! Il dit juste que la seule façon de
ne pas être continue pour une fonction dérivée est une limite limx→x0 f

′(x) non existante.

Ce corollaire est utile si par exemple on a une fonction qui est clairement dérivable à gauche
et à droite de x0, et on voudrait montrer qu’elle l’est aussi en x0. Au lieu de calculer et
comparer les dérivées à gauche et à droite, grâce à ce corollaire, on peut simplement montrer
que limx→x0 f

′(x) existe (en calculant cette limite à gauche et à droite, par exemple) et ainsi
on aura que f ′(x0) = limx→x0 f

′(x).

Exemple 5.34. Soit f(x) =

{
−1 si x ⩽ 1,

x2 − 2x si x > 1.

On peut montrer que f est dérivable en 1 en calculant

lim
h→0−

f(1 + h)− f(1)

h
= lim

h→0−

−1− (−1)

h
= 0,

lim
h→0+

f(1 + h)− f(1)

h
= lim

h→0+

(1 + h)2 − 2(1 + h)− (−1)

h
= lim

h→0+

h2

h
= 0.

Mais grâce au corollaire ci-dessus, on peut simplement constater que f est continue, on a

f ′(x) =

{
0 si x < 1,

2x− 2 si x > 1,

et limx→1 f
′(x) existe et vaut 0. On a donc que f ′(1) = 0. ⋄

Le théorème suivant sera utilisé dans la preuve de la Règle de Bernoulli–de l’Hôpital.

Théorème 5.35 (TAF généralisé). Soient f et g continues sur [a, b] et dérivables sur ]a, b[, tel que
g′(x) ̸= 0 pour tout x ∈]a, b[. Alors il existe t ∈]a, b[ tel que

f ′(t)

g′(t)
=

f(b)− f(a)

g(b)− g(a)
.
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5.7. Règle de Bernoulli–de l’Hôpital

Démonstration. Idée : On applique le TAF à la fonction h(x) := (f(b) − f(a))g(x) − (g(b) −
g(a))f(x).

On remarque qu’en prenant g(x) = x, on retrouve le TAF.

5.7 Règle de Bernoulli–de l’Hôpital

On a utilisé les limites pour calculer les dérivées à partir de la définition. On va voir main-
tenant que les dérivées peuvent nous aider à calculer les limites.
Prenons l’exemple d’une indétermination du type “0

0
”,

lim
x→0

sin(x)− x

x3
.

On ne peut pas utiliser l’IPE sin(x) ∼ x ici, car ce n’est pas une expression factorisée. Pour
calculer cette limite, on introduit l’outil suivant.

Théorème 5.36 (Règle de BH). Soient f et g définies sur un voisinage épointé V de x0 ∈ R, telles
que f et g y sont dérivables et g(x), g′(x) ̸= 0 sur V . Si

lim
x→x0

f(x) = lim
x→x0

g(x) ∈ {0,+∞,−∞}

et la limite limx→x0

f ′(x)
g′(x)

existe ou est égale à +∞ ou −∞, alors on a

lim
x→x0

f(x)

g(x)
= lim

x→x0

f ′(x)

g′(x)
.

Ce théorème reste vrai si on remplace
• limx→x0 par limx→x+

0
ou limx→x−

0
, ou

• V par un voisinage de ±∞ et limx→x0 par limx→±∞.

Démonstration. Montrons le cas particulier où

lim
x→x0

f(x) = lim
x→x0

g(x) = 0, et lim
x→x0

f ′(x)

g′(x)
= L ∈ R.

On prolonge d’abord f et g par continuité en définissant

f̃(x) :=

{
f(x) si x ̸= x0

0 si x = x0,
et g̃(x) :=

{
g(x) si x ̸= x0

0 si x = x0.

Ces prolongées sont continues sur un voisinage de x0.

Soit x ∈ V tel que x0 < x. Alors f̃ et g̃ sont continues sur [x0, x] et dérivables sur ]x0, x[. On
peut donc appliquer le TAF généralisé sur cet intervalle. Ainsi, il existe t ∈]x0, x[ tel que

f̃ ′(t)

g̃′(t)
=

f̃(x)− f̃(x0)

g̃(x)− g̃(x0)
=

f̃(x)

g̃(x)
.
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5.7. Règle de Bernoulli–de l’Hôpital

Lorsque x → x+
0 , on a t → x+

0 , et donc

lim
x→x+

0

f(x)

g(x)
= lim

x→x+
0

f̃(x)

g̃(x)
= lim

x→x+
0

f̃ ′(t)

g̃′(t)
= lim

t→x+
0

f̃ ′(t)

g̃′(t)
= L.

De manière analogue, on montre que limx→x−
0

f(x)
g(x)

= L. On peut donc conclure que limx→x0

f(x)
g(x)

=
L.

La Règle de BH s’applique seulement dans un cas d’indétermination du type “0
0
” ou “±∞

±∞”.

Exemples 5.37. • (“0
0
”) : limx→0

sin(x)−x
x3

— f , g définies et dérivables sur un voisinage épointé de 0, par ex. ]− 1, 1[\{0},
— g(x) ̸= 0, g′(x) = 3x2 ̸= 0 sur ce voisinage épointé.
On calcule

lim
x→0

f ′(x)

g′(x)
= lim

x→0

cos(x)− 1

3x2

= lim
x→0

−(x2/2)

3x2
(par IPE)

=
−1

6
.

Par BH, on a donc limx→0
sin(x)−x

x3 = −1
6

.
• (“∞

∞”) : limx→∞
x
ex

— f , g définies et dérivables sur ]1,∞[,
— g(x) ̸= 0, g′(x) = ex ̸= 0 sur ]1,∞[.
On calcule

limx→∞
f ′(x)
g′(x)

= limx→∞
1
ex

= 0,

Par BH, on a donc limx→∞
x
ex

= 0.
⋄

Généralisation : pour tout n ∈ N∗, on a limx→∞
xn

ex
.

Démonstration. Preuve par récurrence :
Vérifié pour n = 1 ci-dessus. Si c’est vrai pour n, alors on a pour n+ 1 :

lim
x→∞

xn+1

ex
=︸︷︷︸
BH

lim
x→∞

(n+ 1)xn

ex
= (n+ 1) · lim

x→∞

xn

ex︸ ︷︷ ︸
=0 par hyp.

= 0.

On déduit que pour tout polynôme P (x), on a limx→∞
P (x)
ex

= 0, et que pour tout n ∈ N∗,

lim
x→∞

(ln(x))n

x
= lim

y→∞

yn

ey
= 0,

en utilisant le changement de variable y = ln(x).

Exemples 5.38. Voici quelques autres indéterminations.
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5.7. Règle de Bernoulli–de l’Hôpital

• (“0 · ±∞”) : limx→0+(x · ln(x))

lim
x→0+

(x · ln(x)) = − lim
x→0+

− ln(x)

1/x

= − lim
x→0+

−1/x

−1/x2
( par BH,

∞
∞

)

= − lim
x→0+

x

= 0.

• (“00”) : limx→0+ xx

lim
x→0+

xx = lim
x→0+

ex ln(x)
(
en général, f(x)g(x) = eg(x)·ln(f(x))

)
= exp( lim

x→0+
(x · ln(x))) (car exp(x) est continue)

= exp(0) = 1.

• (“1∞”) : limx→∞
(
1 + 1

x

)x
lim
x→∞

(
1 +

1

x

)x

= lim
x→∞

exp

(
x · ln

(
1 +

1

x

))
= exp

(
lim
x→∞

(
x · ln

(
1 +

1

x

)))
= exp

(
lim
x→∞

ln
(
1 + 1

x

)
1/x

)

= exp

(
lim
x→∞

1
1+1/x

· (−1/x2)

(−1/x2)

)
= exp(1) = e.

⋄
Exemples 5.39. Voici aussi quelques exemples où il ne faudrait pas utiliser la Règle de BH.

• limx→0
x

2x+1
̸= limx→0

1
2
= 1

2
.

Ceci n’est pas une forme indéterminée, la limite du dénominateur n’est pas 0. On a
limx→0

x
2x+1

= 0.
• limx→0

sin(x)
x

= 1.

Même si BH s’applique, on connaît déjà cette limite après notre travail sur les IPE.

• limx→∞
√
x+1√
x−1

= limx→∞

√
1 + 2

x−1
= 1.

Ici, BH s’applique mais ne donne rien d’utile :

limx→∞
√
x+1√
x−1

= limx→∞
1/2

√
x+1

1/2
√
x−1

= limx→∞
√
x−1√
x+1

.

• limx→∞
x999−x1000

3x1000−x1001 = limx→∞
−x1000

−x1001 = 0.

⋄
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5.8 Extrema de fonctions

On a déjà donné les définitions d’extrema, à savoir de maximum/minimum global/local
dans une section précédente.

Remarque 5.40. Un extremum global est aussi un extremum local. Par contre, un extremum
local n’est pas forcément global. ⋄
À titre d’illustration, voyons quelques cas “faciles” de fonctions pour lesquelles les extrema
peuvent être trouvés sans difficulté.
Exemple 5.41. Soit f : [0, 3] → R, définie par f(x) = x2 − 2x.
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Puisque f(x) = (x− 1)2 − 1, on peut représenter la parabole précisément, et en déduire que
f possède :

• un minimum global en x = 1,
• un maximum global en x = 3,
• un maximum local en x = 0.

⋄
Exemple 5.42. Soit f : R → R, définie par f(x) = sin(x).

f possède
• une infinité de maximums globaux, en π

2
+ 2πk, k ∈ Z,

• une infinité de minimums globaux, en −π
2
+ 2πk, k ∈ Z.

⋄
Exemple 5.43. Soit f : [0, 2] → R, définie par

f(x) =

{
1− |x− 1| si x ̸= 1,

−1 si x = 1 .
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Alors f
• possède un minimum global en x = 1,
• possède deux minimums locaux en x = 0 et en x = 2,
• ne possède pas de maximum (ni local ni global).

⋄

5.8.1 Recherche analytique d’extrema

Comment peut-on trouver les extrema d’une fonction donnée, par des méthodes analy-
tiques?

Avant de chercher des extrema, il faudrait déjà être sûr que la fonction en possède. Et rap-
pelons que si la fonction est continue, et définie sur un intervalle fermé et borné, f : [a, b] → R,
alors l’existence des extrema globaux est garantie, ce qui est un bon point de départ, même
si on a besoin d’un algorithme plus précis qui mène à leur détermination.

Ensuite, on a aussi vu le résultat suivant : pour une fonction dérivable f sur ]a, b[, si f pos-
sède un minimum/maximum local en x0 ∈]a, b[, alors f ′(x0) = 0. On a aussi noté que sa
réciproque n’est pas vraie.

Donc si f ′(x0) = 0, alors x0 est un candidat à être un minimum/maximum local.

Mais si f n’est pas dérivable en x0, f peut y posséder un minimum/maximum local, ou
pas :

Pour trouver les candidats à être extrema locaux il faut
• trouver les points x0 tels que f ′(x0) = 0,
• trouver les points où f n’est pas dérivable,
• regarder les points sur le bord du domaine, s’il y en a.

Ensuite on étudie la dérivée au voisinage du point, lorsque c’est possible, pour déterminer
lesquels de ces candidats sont des extrema locaux.

Théorème 5.44. Soit f continue en x0 et dérivable dans un voisinage épointé de x0. Si f ′ change de
signe en x0, alors f possède un extremum local en x0.
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5.8. Extrema de fonctions

Par “change de signe en x0”, on veut dire qu’il existe δ > 0 tel que
• f ′(x) ⩾ 0 pour tout x ∈ [x0 − δ, x0[ et f ′(x) ⩽ 0 pour tout x ∈]x0, x0 + δ] (dans ce cas, il

y a un max local en x0), ou
• f ′(x) ⩽ 0 pour tout x ∈ [x0 − δ, x0[ et f ′(x) ⩾ 0 pour tout x ∈]x0, x0 + δ] (dans ce cas, il

y a un min local en x0).

Remarques
• Il faut vérifier la continuité de f en x0 ! Sinon, l’assertion du théorème pourrait

être fausse. Par exemple, reprenons l’exemple précédent

f : [0, 2] → R, f(x) =

{
1− |x− 1| si x ̸= 1,

−1 si x = 1.

f n’est pas continue en x0 = 1, et malgré le changement de signe de f ′ en x0, il n’y
a pas de max en x0.

• La réciproque du théorème est fausse : si f possède un extremum local en x0, f ′

ne change pas forcément de signe en x0.

Pour les extrema globaux, en vu du fait que les extrema globaux sont aussi des extrema
locaux, il faut juste évaluer la fonction aux points qu’on a trouvés ci-dessus comme extrema
locaux, et trouver parmi eux les plus grandes et les plus petites valeurs.
Rappel : une fonction continue atteint ses bornes sur un intervalle fermé.

Exemples 5.45. • f : R → R, f(x) = x3 − x.

f ′(x) = 3x2 − 1 et donc f ′(x) = 0 ⇐⇒ x = ±1√
3
.
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Il n’y a pas d’extrema globaux.
• f : [−π, π] → R, f(x) = sin |x|.

On a f(x) =

{
sin(x) si 0 ⩽ x ⩽ π

sin(−x) si − π ⩽ x < 0,

et donc, puisque sin(−x) = − sin(x), f ′(x) =

{
cos(x) si 0 < x < π

− cos(x) si − π < x < 0.

En 0, on a

f ′
+(0) = lim

x→0+

f(x)− f(0)

x− 0
= lim

x→0+

sin(x)

x
= 1,

f ′
−(0) = lim

x→0−

f(x)− f(0)

x− 0
= lim

x→0−

− sin(x)

x
= −1,

et donc f n’est pas dérivable en 0.

Les candidats sont
— x = ±π

2
( ⇐⇒ f ′(x) = 0),

— x = 0, où f n’est pas dérivable,
— x = ±π, les points du bord.

Ici, les extrema locaux sont aussi globaux.
⋄

5.9 Problèmes d’optimisation

La recherche d’extrema de fonctions permet de résoudre des problèmes d’optimisation concrets.
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Exemple 5.46. Trouver le rectangle inscrit entre la courbe y = 1− x2 et l’axe Ox d’aire maxi-
male. (On suppose que les côtés du rectangle sont parallèles aux axes de coordonnées.)

Paramétrisons tous les rectangles à l’aide de la variable x ∈ [0, 1], visible sur l’image ci-
dessus. Pour un x fixé, l’aire du rectangle représenté est égale à

A(x) = base × hauteur = 2x · (1− x2) .

On aimerait donc trouver le maximum global de la fonction

A : [0, 1] → R
x 7→ A(x) = 2x(1− x2) .

On a A′(x) = −6x2 + 2, et donc la variation de A est donnée par

A s’annule sur le bord de [0, 1] bord, A(0) = A(1) = 0, et donc A possède un max local et
global en x = 1√

3
. En ce point, A

(
1√
3

)
= 4

3
√
3
. ⋄

Exemple 5.47. Trouver, parmi tous les cylindres inscrits dans une sphère de rayon R, celui
dont le volume est maximal.
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Utilisons la variable x ∈ [0, R] visible ci-dessus ; x représente le rayon du cylindre inscrit.

Volume pour un x donné,

V (x) = aire de la base · hauteur = πx2 · h(x) .

On a x2 +
(

h(x)
2

)2
= R2, d’où h(x) = 2

√
R2 − x2.

On cherche donc le maximum global de

V : [0, R] → R
x 7→ V (x) = 2πx2

√
R2 − x2

Or

V ′(x) = 2π

(
2x

√
R2 − x2 + x2 · −2x

2
√
R2 − x2

)
= 2π

2x(R2 − x2)− x3

√
R2 − x2

= 2π
x(2R2 − 3x2)√

R2 − x2
.

On a donc, sur ]0, R[, que

V ′(x) = 0 ⇐⇒ x =

√
2

3
R .

En ce point,

V

(√
2

3
R

)
=

1√
3
· 4
3
πR3 > 0 ,

alors que sur le bord, V (0) = V (R) = 0. On conclut donc que V possède un maximum global

en x =
√

2
3
R. Le cylindre correspondant a un volume égale à 1√

3
= 0.577 . . . fois celui de la

sphère. ⋄
Exemple 5.48. Une fourmi au cinéma cherche à maximiser l’angle sous lequel elle voit l’écran :
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Repérons la position de la fourmi à l’aide de x ∈ ]0,∞[, la distance (en mètres) entre la
fourmi et le mur.

Lorsqu’elle est à distance x du mur, elle voit l’écran sous un angle

θ(x) = α(x)− β(x) = arctan

(
8

x

)
− arctan

(
3

x

)
On cherche donc le maximum global de

θ : ]0,∞[ → R,

x 7→ θ(x) = arctan

(
8

x

)
− arctan

(
3

x

)
Remarquons que sur les bords du domaine,

lim
x→0+

θ(x) =
π

2
− π

2
= 0 , lim

x→+∞
θ(x) = 0 .

Ensuite, sur ]0,+∞[,

θ′(x) =
1

1 +
(
8
x

)2 · −8

x2
− 1

1 +
(
3
x

)2 · −3

x2

=
−8

x2 + 64
+

3

x2 + 9

=
−8x2 − 72 + 3x2 + 192

(x2 + 64)(x2 + 9)

=
120− 5x2

(x2 + 64)(x2 + 9)
.

Ainsi, θ′(x) = 0 ⇐⇒ x =
√
24, et
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Puisque θ(
√
24) > 0, on a donc un maximum global en x =

√
24. Pour maximiser l’angle

sous lequel elle voit l’écran, la fourmi doit donc s’asseoir à
√
24 mètres de l’écran. ⋄

5.10 Études de fonctions

Généralement, l’étude d’une fonction f signifie décrire les principales caractéristiques de la
dépendence de f(x) en fonction de x, qu’elles soient locales ou globales, autant du point de
vue quantitatif que qualitatif.

Les sections précédentes ont montré comme la dérivée se présente comme un outil puissant
pour l’analyse locale.

Avant de passer en revue les principaux éléments que peuvent constituer une étude de fonc-
tion, introduisons certaines notions additionnelles.

5.10.1 Branches infinies

Parmi les propriétés globales caractéristiques d’une fonction, on peut considérer les portions
de son graphe, s’il y en a, qui contiennent des points arbitrairement éloignées de l’origine.
On parle alors de branches infinies.

Commençons par les branches infinies données par directement par l’étude simple de li-
mites à l’infini, ou proche d’un point x0.

Définition 5.49. Si au moins une des limites limx→x+
0
f(x), limx→x−

0
f(x) est ±∞, on dit que

la droite verticale d’équation x = x0 est une asymptote verticale pour le graphe de f .

Si une fonction possède une asymptote verticale, cela signifie qu’il existe au moins une
portion de son graphe qui, infiniment loin de l’origine, s’approche de plus en plus de son
asymptote :
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Définition 5.50. Si au moins une des limites limx→∞ f(x), limx→−∞ f(x), existe et vaut L, on
dit que la droite horizontale d’équation y = L est une asymptote horizontale pour le graphe
de f .

Exemple 5.51. Étudions les asymptotes de f(x) =
1

x2 + x− 2
, sur Df = R \ {−2, 1}.

— Puisque lim
x→±∞

f(x) = 0, la droite y = 0 est asymptote horizontale.

— Puisque lim
x→−2±

f(x) = ∓∞, la droite x = −2 est asymptote verticale.

— Puisque lim
x→1±

f(x) = ±∞, la droite x = 1 est asymptote verticale.

⋄
Si f(x) n’a pas de limite lorsque x → ±∞, c’est qu’il n’y a pas d’asymptote horizontale. Mais
cela n’empêche pas que f possède des portions infiniment loin de l’origine, proches d’une
droite oblique (c’est-à-dire de pente non-nulle).

Définition 5.52. Si limx→∞ f(x) = ±∞ et s’il existe m,h ∈ R tels que m ̸= 0 et

lim
x→∞

|f(x)− (mx+ h)| = 0,

la droite d’équation y = mx + h est une asymptote oblique pour le graphe de f . (On a une
définition semblable si x → −∞.)
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Si on sait que y = mx+ h est asymptote oblique, comment trouver m et h?

Remarquons que si on a à la fois

lim
x→∞

f(x) = +∞ et lim
x→∞

|f(x)− (mx+ h)| = 0 ,

avec m ̸= 0, alors la limite limx→∞ f(x)− (mx+h) représente une indétermination “∞−∞”.
Mais puisque cette limite est nulle, on peut réécrire

0 = lim
x→∞

|f(x)− (mx+ h)| = lim
x→∞

|x| ·
∣∣∣∣f(x)x

−
(
m+

h

x

)∣∣∣∣ .
Puisque |x| → ∞, on doit donc nécessairement avoir que

lim
x→∞

∣∣∣∣f(x)x
−
(
m+

h

x

)∣∣∣∣ = 0 .

Mais comme h
x
→ 0, on a

lim
x→∞

∣∣∣∣f(x)x
−m

∣∣∣∣ = 0

et donc

m = lim
x→∞

f(x)

x
,

ce qui fixe la valeur de m.

En connaissant m on peut alors trouver h, puisque

lim
x→∞

|f(x)− (mx+ h)| = 0 =⇒ h = lim
x→∞

(f(x)−mx).

Exemple 5.53. Étudions les asymptotes du graphe de f(x) =
√
x2 + x, définie sur Df =

[−1, 0]. Remarquons que

lim
x→±∞

√
x2 + x = lim

x→±∞
|x| ·

√
1 +

1

x
= +∞ ,
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donc il n’y a pas d’asymptotes horizontales. Pour voir s’il peut y en avoir des obliques,
étudions les limites

m = lim
x→±∞

f(x)

x
= lim

x→±∞

|x|
√
1 + 1

x

x

= lim
x→±∞

±x
√
1 + 1

x

x
= ±1 .

On peut donc passer à

h = lim
x→±∞

(f(x)− (±1)x) = lim
x→±∞

(
√
x2 + x∓ x)

= lim
x→±∞

x√
x2 + x± x

= lim
x→±∞

x

±x
√

1 + 1
x
± 1

= ±1

2
.

On a donc l’asymptote oblique y = x+ 1
2

lorsque x → +∞ et l’asymptote oblique y = −x− 1
2

lorsque x → −∞.

⋄
La procédure présentée ci-dessus a montré que l’existence d’une asymptote oblique y =
mx + h procède comme suit : on trouve la pente m (si la limite qui la définit existe), et
ensuite on trouve l’ordonnée à l’origine h, si la limite qui la définit existe.

Or il se pourrait très bien que m existe mais que f(x)−mx n’ait pas de limite.
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Exemple 5.54. Si f(x) = x+ sin(x), alors

m = lim
x→+∞

f(x)

x
= lim

x→+∞

x+ sin(x)

x

= 1 + lim
x→+∞

sin(x)

x
= 1 ,

mais h n’existe pas puisque f(x)− 1x = sin(x), qui n’a pas de limite lorsque x → ∞. Donc il
n’existe aucune droite y = x+ h telle que

lim
x→+∞

|f(x)− (x+ h)| = 0 ,

donc il n’y a pas d’asymptote oblique pour le graphe de f .

Animation disponible sur botafogo.saitis.net/analyse-B

⋄
Que se passe-t-il, alors, dans le cas où la limite qui définit h est infinie?

Définition 5.55. Si m = lim
x→+∞

f(x)

x
existe mais

lim
x→+∞

(f(x)−mx) = ±∞ ,

on dit que f admet une branche parabolique (de direction de pente m). (On a une définition
semblable si x → −∞.)

Expliquons le pourquoi de cette terminologie sur un exemple.
Exemple 5.56. Considérons f(x) =

√
x, sur R+. On a que

lim
x→+∞

√
x = +∞ ,

et

m = lim
x→+∞

f(x)

x
= lim

x→+∞

√
x

x

= lim
x→+∞

1√
x
= 0 ,
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alors que

lim
x→+∞

(f(x)− 0x) = lim
x→+∞

√
x = ∞ ,

donc le graphe de f possède une branche parabolique de direction horizontale m = 0. (Sans
pour autant posséder d’asymptote horizontale !)

Animation disponible sur botafogo.saitis.net/analyse-B

⋄

Dans certains cas où m n’existe pas, on peut quand-même avoir une information sur le
comportement de la fonction loin de l’origine :

Définition 5.57. (Le cas “m = ±∞”.) Si

lim
x→+∞

f(x)

x
= ±∞ ,

on dit que f admet une branche parabolique de direction verticale. (On a une définition
semblable si x → −∞.)

Exemple 5.58. Si f(x) = x2 − 3x, alors

lim
x→±∞

f(x)

x
= lim

x→±∞

x2 − 3x

x
= lim

x→±∞
(x− 3) = ±∞ ,

donc le graphe de f possède une branche parabolique verticale.
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Animation disponible sur botafogo.saitis.net/analyse-B

⋄

5.10.2 Elements de l’étude d’une fonction

Regroupons maintenant certaines des étapes que l’on pourra, lorsque c’est possible, inclure
dans l’étude d’une fonction réelle f définie sur son domaine Df .

• Si Df est symétrique (x ∈ Df ⇔ −x ∈ Df ), il sera utile de tester la parité de f . Cas
échéant, cette parité devra se retrouver plus tard dans la représentation graphique de
f .

• Lorsque c’est possible, l’étude du signe de f pourra aussi renseigner sur la position
du graphe de f relativement à Ox.

• La recherche des points de continuité/discontinuité de f .
• Sur les parties de de Df où f est dérivable, l’analyse du signe de f ′ renseignera sur la

variation de f , et mènera dans certains cas à la détermination des extrema locaux de
f . Lorsqu’il y en a, on pourra déterminer les extrema globaux de f .

• Si Df le permet et s’il y en a, étudier la nature des branches infinies de f (asymptotes
horizontales, verticales, obliques ou paraboliques).

• Enfin, tracer un graphe contenant les principales informations obtenues dans l’étude
analytique.

Remarquons qu’une fonction peut présenter un comportement intéressant proche de cer-
tains points. Par exemple, lorsque f est dérivable dans un voisinage épointé de x0, on dira
que f possède

• un point de tangence verticale en x0 si limx→x0 f
′(x) = +∞ ou −∞,
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5.10. Études de fonctions

• un point anguleux en x0 si limx→x−
0
f ′(x) et limx→x+

0
f ′(x) existent et sont distinctes,

• un point de rebroussement en x0 si

lim
x→x−

0

f ′(x) = −∞ et lim
x→x+

0

f ′(x) = +∞ ,

ou
lim

x→x−
0

f ′(x) = +∞ et lim
x→x+

0

f ′(x) = −∞ ,

Si la fonction est continue en ces points, ils correspondent donc à des extrema locaux.
Exemple 5.59. Sur Df = R, étudions

f(x) = 5
√

x4(x− 1)

Le signe de f est régi par celui de x− 1 :
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Étant un produit de fonctions continues, f est continue sur R. Calculons ensuite

f ′(x) =
(
(x4(x− 1))1/5

)′
=

5x− 4

5 5
√
x 5
√

(x− 1)4
.

Ainsi, f n’est pas dérivable en x = 0 et en x = 1, et f ′(4
5
) = 0.

Donc f possède un minimum local en x = 4
5
, au point (4

5
, f(4

5
)).

Remarquons aussi que
• limx→0∓ f ′(x) = ±∞, donc f possède un point de rebroussement en x = 0, qui im-

plique que (0, 0) est un maximum local
• limx→1 f

′(x) = +∞, donc f possède un point de tangence verticale en x = 1.
Passons à l’étude des branches infinies. Pour commencer,

lim
x→±∞

f(x) = lim
x→±∞

5

√
x5

(
1− 1

x

)
= lim

x→±∞
x

5

√
1− 1

x
= ±∞ ,

ce qui implique que f ne possède pas d’extrema globaux.

Ensuite,

m = lim
x→±∞

f(x)

x
= lim

x→±∞
5

√
1− 1

x
= 1 ,

et
h = lim

x→±∞
(f(x)− (1)x) = lim

x→±∞

[
5
√

x4(x− 1)− x
]
.

En posant a = 5
√

x4(x− 1) et b = x, on peut utiliser

a5 − b5 = (a− b)(a4 + a3b+ a2b2 + ab3 + b4).

Ainsi, on obtient

lim
x→±∞

[
5
√

x4(x− 1)− x
]

= lim
x→±∞

(a− b)

= lim
x→±∞

a5 − b5

a4 + a3b+ a2b2 + ab3 + b4

= lim
x→±∞

x4(x− 1)− x5

a4 + a3b+ a2b2 + ab3 + b4

= lim
x→±∞

−1(
1− 1

x

) 4
5 +

(
1− 1

x

) 3
5 +

(
1− 1

x

) 2
5 +

(
1− 1

x

) 1
5 + 1

= −1

5
.

On a donc l’asymptote oblique y = x− 1
5

lorsque x → ±∞.

On peut maintenant tracer le graphe de f :
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⋄
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