Chapitre 5

Dérivabilité

5.1 Définition et propriétés

5.1.1 Introduction

Etant donné une fonction f définie sur un voisinage de x,, une information sur le taux de
variation de f sur 'intervalle [z, o + h] est donnée par le quotient

flwo+h) = flwo) _ flxo+h) — f(xo)
(xo +h) —z9 h

)

appelé le rapport de Newton de f en xy. On pense a h comme un petit changement en x.
Géométriquement, le rapport de Newton représente la pente de la droite sécante (en vert
sur le dessin ci-dessous) au graphe de f, reliant les points (zo, f (o)) et (xo + h, f(zo + h)).

Pente de la sécante: 0.6195

rn
d

Animation disponible sur botafogo.saitis.net/analyse-B

Remarque 5.1. Si on imagine que f(t) représente la distance parcourue par une particule
jusqu’au temps ¢, le rapport de Newton

f(to+h) — f(to)
h

représente la vitesse moyenne entre les instants ¢, et ¢, + h. Plus h est petit, plus cette vitesse
moyenne est proche de la vitesse instantanée en x. o
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5.1. Définition et propriétés

Plus h est petit, plus I'information donnée par le rapport de Newton sur la variation de f est
précise. On peut donc se poser la question : Que se passe-t-il si on fait tendre h — 07

Si f est continue, (zo + h, f(zo + h)) se rapproche de (x¢, f(z9)) @ mesure que h se rapproche
de zéro. La limite du rapport de Newton représente donc une indétermination “2”. Listons
quelques comportements possibles.

Lorsque h — 0, le rapport de Newton

f(wo + 1) = f(0)
h

peut...
e ... tendre vers une limite finie,
e ... tendre vers +oo,
e ... rester borné mais ne pas converger.
Considérons des exemples pour chacun de ces cas de figure.

Exemple 5.2. f(z) = x? est continue en xy = 2 et

_ 2 92
o St h) — fwo) (24 R -2
h—0 h h—0 h
444h+h? -4
= 11m
h—0 h

=lim(4+h) = 4.
h—0

Géométriquement, la pente de la droite sécante (reliant les points (2, f(2)) a (2+h, f(2+h)))
tend vers 4 lorsque h tend vers 0.

41

Exemple 5.3. Considérons

qui est continue en zy = 0 puisque

lim f(z) = 0 = f(0),

z—0
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mais pour laquelle

h - h h

flwo+h) = flwo) _h-sin(z) _ (}11) :

qui est borné mais n’a pas de limite lorsque 7 — 0. Géométriquement, la pente de la droite
sécante oscille entre +1 et —1 a mesure que h se rapproche de 0.

Pente de la s§cante: 0.5985

Animation disponible sur botafogo.saitis.net/analyse-B

o
Exemple 5.4. Considérons f(z) = v/= — 1, qui est continue en z, = 1 et
— /(1 —1-v1-1
o FOER =g YRR =1V
h—0 h h—0 h
_Vh
= lim —
h—0 h
B 1
0 R2
= +OO
Géométriquement, la droite tangente au graphe de f en 1 est verticale :
&
/ X
o
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5.1. Définition et propriétés

5.1.2 Définition

Définition 5.5. Soit f définie sur un voisinage de z,. f est dérivable en z si la limite

i £ @0+ h) = f(o)
h—0 h

existe (c’est-a-dire, est égale a un nombre réel). Dans ce cas, cette limite est appelée la dérivée
(ou le nombre dérivé) de f en x, et on la note f'(z).

On peut écrire le nombre dérivé de diverses manieres :

f(xo +h) — f(xo)

f'(wo) = Jim, h
~ lm f(xo+ Ax) — f(x0)
Az—0 Az
— lim flz) — f(xo)‘

T—xQ r — 29

Géométriquement, 1'existence de la dérivée f'(z() est équivalente a 'existence d'une tan-
gente au graphe de f au point (zo, f(zo)). En effet, lorsque » — 0, la droite sécante tend vers
la droite tangente au point .

/1 {5)

f;

X X
La pente de la tangente au graphe de f en z, est donc
f'(zo) = lim flwoth) = f(20) = tan(p).
h—0 h

L’équation de la tangente au graphe de f en z, est

y = ['(w0)(x — x0) + f(20),

qui est I’équation de la droite de pente f'(x,) passant par le point (x¢, f(xo)).
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Exemples 5.6. e Prenons f(z) = 22 enzyp = 2. On a f(2) = 4 et f'(2) = 4 comme vu

avant, et donc la tangente est donnée par

y = f'(zo)(x — z0) + flwo) =4(x —2) + 4 = 4z — 4.

e Soit f(z) = |x — 1|. f n’est pas dérivable en x(, = 1. En effet, on a

lim
z—1+ r—1 z—1+ r—1

— (1 —(r—1)—
N [ I et N
r—1— x—1 r—1— x—1

—1.

Donc la limite lim,_,; M (et donc f(1)) n’existe pas. Effectivement, le graphe de

—1
f ne possede pas de tangente bien définie en = = 1.

J 7

7~

[x—1]

5.1.3 Dérivabilité latérale

Le dernier exemple le suggere : des limites latérales permettent d’introduire des notions de

dérivabilité latérale.

Définition 5.7. * Soit f définie sur un voisinage a gauche de z,. Si
_ f(zo + h) — f(zo)
! =
f-(w) = i h

existe, on I'appelle la dérivée a gauche de f en .
* Soit f définie sur un voisinage a droite de . Si

f(xo+h) = f(xo)
h

existe, on I'appelle la dérivée a droite de f en x,.
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Géométriquement, ces dérivées latérales représentent les pentes des demi-droites tangentes
au graphe de f a gauche et a droite, au point (zo, f(zo)).

Théoreme 5.8. f est dérivable en vy <= f est dérivable a gauche et a droite en xy, et f' (zq) =
fi(xo).
Exemple 5.9. Soit f : R — R définie par
fa) (2 +2+2)/2 siz<O0,
€Tr) =
vao+1 sixz>0.
Ona f(0) =v0+1=1,etdonc

. f(h)— f(0) . (FP+h+2)/2-1
"(0) = lim 2V
FO=B = i s
. h+1
= lim ——
h—0~ 2
1
=)
et
L s (h)—f(00) . Vh+1-1
Ji0) = m == A
= Jim ——
st Vh 141
1
T2
Comme [’ (0) = f,(0) = %, on en déduit par le théoreme que f est dérivable en z, = 0 et
que sa dérivée en ce point vaut f'(0) = 1. o
Exemple 5.10. Soit f(z) = |z — 1]. On a vu plus haut que les dérivées latérales en =y =

lexistent, et que

=1, f1)=+1.
Ainsi, f' (1) # f1.(1), et par conséquent le théoréeme implique que f n’est pas dérivable en
1. ©

5.1.4 Dérivabilité vs continuité

Théoréme 5.11. Si f est une fonction définie sur un voisinage de x, alors
f est dérivableen vy = [ est continue en x .

L'implication est aussi vraie si on replace la dérivabilité et la continuité par leurs analogues latéraux.

Démonstration. Supposons que f est dérivable en z,. On a

f@) = ),

Jim [£(2) = flao)] = lim S5 S (=)
= (i =) (e )
= f'(x0) - 0
= 0.
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On a donc lim, ., f(z) = f(xo) : f est continue en xy. O

Attention : la réciproque du théoreme est fausse! Par exemple, la fonction f(z) = |z| est
continue au point z, = 0 mais elle n’est pas dérivable en ce point.

Ix1
[an cins  dinpubles

{m clims amlinues

Le théoreme ci-dessus nous montre que la continuité est une condition nécessaire pour
qu'une fonction soit dérivable. Mais il n’y a pas besoin de montrer séparément la conti-
nuité; il suffit de montrer que la fonction est dérivable, et sa continuité est immédiate par le
résultat ci-dessus.

5.2 Approximation linéaire

Considérons une fonction f dérivable en x(, ainsi que la droite tangente au graphe de f au
point (xg, f(xo)) :

y = f(zo) + f'(w0)(z — x0),

Pour souligner la dépendance en z, écrivons y = A(z), out

A(z) = f(zo) + f'(0)(x — 20)

£
Al

W/

Le nombre A(z) approxime bien la valeur de f(z) au voisinage de z, dans le sens suivant.
Commencons par exprimer la différence

flx) = A(z) = f(z) = [f'(z0)(x — x0) + f(0)]
f(ill') — f(ilfo) _ f’(ﬂfo) :

= (x — @) -
(z — o) pra—
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ol l'on voit apparaitre la différence entre le rapport de Newton et f'(zy), qui tend vers 0
lorsque x — 1z, puisque f est dérivable en z,. Ainsi, f(z) — A(z) est un produit de deux
termes qui tendent vers zéro.

On appelle A(x) I'approximation linéaire de f(x) au voisinage .

Exemple 5.12. L'approximation linéaire de f(z) = sin(x) au voisinage de x(, = 0 est donnée
par

A(z) = f(0) + f'(0)(z = 0)
= sin(0) + sin’(0)(x — 0)

=X

<

Exemple 5.13. L'approximation linéaire de f(z) = /= au voisinage de z(, = 8 est donnée par

Alx) = f8) + [(8)(z = 8)
= 8+ 1872/3(z — 8)
=2+ 5(z—8).
Par exemple, avec z = 8.012, on approxime v/8.012 = f(8.012) par

A(8.012) = 2 + 55(8.012 — 8) = 2.001

Remarquons que la “vraie” valeur est f(8.012) = v/8.012 = 2.00099949 . ... o

5.3 Fonction dérivée et regles de dérivation

Définition 5.14. Si f est définie sur un intervalle ouvert I, f est dite dérivable sur [ si f est
dérivable en tout point de /. On définit alors la fonction

fo) it D) = 1)

h—0 h ’

appelée la dérivée de f sur /.

Notation équivalente : f, % (notation de Leibniz).

Exemple 5.15. Représentons une fonction f et sa dérivée f'.
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/5

7 X

/4

7 X

e Au point 4, la fonction f arréte de croitre et commence a décroitre. La dérivée f’ est

donc > 0 avant A et < 0 apres.

* Au point B, f décroit le plus rapidement et donc la dérivée y a un minimum.
* Aupoint C, f arréte de décroitre et commence a croitre. La dérivée passe donc de < 0

a> 0.

e Aupoint D, f croit le plus rapidement. f’' y a donc un maximum.

* Au point F, la fonction f n’est pas dérivable, et la fonction f’ n’est donc pas définie

en ce point.

* Au point F, f n’est pas dérivable et la tangente y est verticale. f’ tend vers +oo.

5.3.1 Regles de dérivation

Théoreme 5.16. Soient f et g dérivables sur I. Pour tout x € I,
L (f+9)(z) = f'(x) + ¢'(z),
2. (Af)(z) = Af'(z), A R,
3. (f-9) (@) =f'(z) g(z) + f(z) - ¢ (),

. f 4 f/ . f p
4 Sig(z) £0, (E) (2) = (m)g(:c;m (©)gw)
Si f est dérivable en x et g et dérivable en f(z), on a aussi

(9o f)(z) =g'(f(2)) f(z).
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Démonstration. 1.

h—0 h
g L@ )+ gla ) — f(x) — g()
h—0 h
_fla+h) = fl@) . glz+h)—g(z)
= firg h + o h
= ['(z) +d'(z)

AN +h) — (Af)(2)

(Af)'(x) = lim

h—0 h
T M(z+h) = Af(x)
h—0 h
i St ) = (@)
h—0 h
=\f'(x).

(Cette propriété peut aussi étre vue comme une conséquence de la suivante, ou une
des fonctions est prise comme étant constante.)

3. Par définition,

Récrivons le quotient comme suit :

(f-9)@+h)—(fg9)(x)
h
flx+h)g(z+h) - f(z)g(z)
h
flx+h)g(x +h)—f(x)g(z +h) + f(z)g(z + h) — f(z)g(x)

h
SIS o ny + g(w) -2

(z+h) = g(z)
h

Dans cette dernier ligne, les quotients convergent respectivement vers f/(x) et ¢'(x).
Puis, comme g est dérivable, elle est continue en z, et donc

lim g(z +h) = g(z).

Ceci implique que

i 9@+ h) —(f-9)(@)

h—0 h

= f'(x)g(z) + f(z)g'(x).
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4. En procédant comme dans le point précédent,

fla+h) _ f(=)

<i)' (&) = lim 2 62

g h—0 h
S h) () (@) gle 4 B)
h—0 h-g(x+h)-g(r)
o fh) (o) — f(@) - 9(e) + F@) - gla) — F(x) gl + B)
h—>0 h-g(x+h)-g(x)
[ 1 . (f(z+h) - f(z)) (g9(z +h) —g(x))
~ g(x) }lg% g(z+h) }Lli}"(l) 9(x) h /(@) h

5.3.2 Dérivées de puissances

Voici quelques exemples de dérivées des fonctions élémentaires.

Remarquons pour commencer que si une fonction f est constante, f(z) = C pour tout z,
alors sa dérivée est nulle puisque

Py = i LEEW S C-C

h—0 h h—0 h

Théoréme 5.17. Soit n € Z. Alors

(mn)/ — nm”_l

(Si n est négatif, x™ n’est bien siir pas définie en xy = 0.)
8! p
Démonstration. Commencons par les exposants entiers positifs, z € N*. On procéde par ré-
currence sur 7.
Lorsque n =1, f(z) = z', et donc
1y/ (x4 h) 2! . (z+h)—2 . h
=lim—2 " —lim— 2
(«) h0 h h0 h h—0 h

Puisqu’on peut écrire cette derniere comme (z')’ = 1 - z'!, on a démontré le résultat pour
n=1.

Supposons que pour un certain n € N*, (")’ = nz"~!. Pour n+ 1, on peut écrire 2" ! = 2",
et utiliser la régle de dérivation d"un produit :
(&) = (" -y
— (mn)/ . _|_l,n . (x)/
=na" a1

= na" 42" = (n+ 2" = (n + DaH-1,
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Donc la formule est aussi vraie pour n + 1.

Si on considere maintenant n € Z, n < 0, alors m = —n € N, et donc par la régle de
dérivation d"un quotient,
1 /
(") = (@) = (x—m)

— (™)

T @

_mxm—l

Exemple 5.18. (z1231)" = 1234 - 11233 o
Considérons une puissance non-entiére, comme 3 :
Exemple 5.19.Siz > 0,

(Va) = fim YV

h—0
= m —|/8M
h=0+/x + h+\/x
1
VTV
1
N
Remarquons qu’avec un exposant, /= = r'/2, cette derniere prend la forme
(x1/2)’ _ %x%fl _

<

La derniere remarque suggere que la formule donnée dans le théoreme précédent est aussi
valable pour des exposants rationnels.

Théoreme 5.20. Soient p € Z, q € Z*. Alors

Démonstration. Commencons parlecasp =1,¢ € N*.Ona

Tla _ 41/q
(xq) = lim ’
T—x .CE — X
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Effectuons le changement de variable 7V/¢ = g, /7 = y

Ve — gl/a -y
lim —_— = lim =
T—T xr— X y—y yq — yq

5.3.3 Dérivées des fonctions trigonométriques

Théoreme 5.21. Pour tout x € R,

(sin(z))" = cos(x)

(cos(x)) = —sin(x) .
Pour tout x € R\ {5 + k7, k € Z},

(tan(z)) = {1 j:tan (r) ou

cos?(zx) °

Démonstration. Par définition,

sin(z + h) — sin(z)

(sin(x))" = lim

On utilise la relation (voir Analyse A)
sin(x 4+ h) = sin(x) cos(h) + cos(z) sin(h) .
Apres avoir réarrangé les termes, le quotient devient

sin(z + h) —sin(x) ~cos(h) —1

sin(h)
o = sin(z) . —.

h

+ cos(z) -
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Or on a d'une part que 1 — cos(h) ~ h?/2 au voisinage de h = 0, donc

_ _h2
fim S L T2
h—0 h h—0 h
et d’autre part on sait que
ti 520 g
h—0 h
Ceci implique que
. B) — s
. sin(z + h) — sin(z) _ cos().
h—0

En utilisant ensuite les relations

sin(z + 3) = cos(z),
2

cos(xz + §) = —sin(x),

on peut utiliser la formule pour la dérivée d"une composée comme suit :

(cos(z)) = (sin(z + 2))’
=cos(x+ %) (z+3)
\_;,1_/

= —sin(x).

Finalement, par la regle de dérivation d"un quotient,

)

sin(z) " cos?(z) + sin®(x)
cos(x)> B cos?(x)

(ana)) = (

que l'on peut simplifier avec cos?(x) + sin?(x) = 1, ou alors séparer en

cos?(z) +sin®(z)  cos?(z) sin’(z)

cos?(2) " cos2(z) | cos(z) =1+ tan“(x)
[
Exemple 5.22.
i ot sin(x))’ = _coslw)
(Voin@)) = g - sinle)) = =
o

5.3.4 Dérivées exponentielles et logarithmes

Théoreme 5.23. Pour tout x € R,
(ea:)l — 63: .

Pour tout x € R,
1
| =
(In(2))) = —
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5.4 Tangentes a des courbes dans R”

La dérivée d"une fonction évaluée en z, € R nous donne la pente de la tangente a la courbe
définie par la fonction dans le plan au point (z, f(z0)). On peut utiliser la dérivée pour
résoudre des probléemes géométriques, comme ci-dessous.

Attention : il ne faut pas confondre la fonction dérivée avec I'équation de la tangente!
Exemple 5.24. Soit f(z) = V1 — 2%, Dy = [-1,1].

y/\

X

Déterminons I'équation de la tangente ¢ au graphe de f en 2y = \/Tg On sait que 1'équation
de t est donnée par

y = f'(wo)(x — x0) + f(20) -

On a d’abord que
LT 1
4 4 2
et puisque
() 2
i o
on peut calculer f'(zy) = TR L'équation de ¢ est donc

—(9)
yz—\/g(x—%g)+%.

o

On peut aussi chercher des tangentes a une courbe sans connaitre a priori le point de tan-
gence.

Exemple 5.25. Soit f(z) = x — Va2 + 1. Déterminons 1’équation de la tangente ¢ au graphe
de f issue du point P(2,1).

NumChap: chap-derivabilite, Derniére compilation: 2025-03-19 15:19:20+01:00. (Version Web: botafogo.saitis.net/analyse-B) 81


botafogo.saitis.net/analyse-B

5.4. Tangentes a des courbes dans R?

_d

4/

vV

Il s’agit ici de déterminer le point de tangence (zo, f(zo)) (olt la tangente touche de graphe
de f).

t a l'équation y = f'(xo)(x — xo) + f(zo). Comme ¢ passe par P(2,1), on doit avoir 1 =
f'(x0)(2—x0) + f(z0). Résolvons cette équation pour trouver zy. Il nous faut d’abord calculer
la dérivée en un point quelconque :

1 2x T To
() =1—c —— =1 = f(gg)=1— ——2 .
fe) 2 Vi?+1 Vor1 @) 2+ 1

Ainsi, I’équation du dessus en z, devient

1:(1—%)(2—%”(%—\/@)

Lo
2 2
—1=2—x)— ;EO + :ZO + a0 — /2 +1
Vi +1l  Jxi+1
22 /
Vi +1
= —\Jal+1l=a]— 2z — (2§ +1)

< 210+ 1=1/23+1 (etdonc2zy+1>0)

—1
= 2ro+ 1) =al+letzy > —

2
-1
= day +dzg+ 1 =25+ letzy > —

< 20(3x9+4) =0etzg >
-1

<:>x0:()car%<7.

2
L’équation de ¢ est donc

y = f(0)(z —0) + f(0) = (1 - % _1> x + (0— m)

=x—1.
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5.4. Tangentes a des courbes dans R?

5.4.1 Tangente commune a deux courbes

Considérons deux fonctions y = f(z) et y = g(x), et considérons une tangente commune a
leurs graphes, c’est-a-dire une droite qui est tangente a la fois au graphe de f et au graphe
deg:

J %)
o

g

Les points de tangence sont a priori distincts (comme sur I'image), on les nomme z; et x,

Pour trouver I'équation y = mxz + c de la tangente commune, il faut que
m = f'(z1) = ¢'(z2)

et que les points (1, f(x1)) et (22, g(z2)) soient tous deux sur la droite y = maz + c.
Exemple 5.26. Cherchons les tangentes communes aux graphes des fonctions f(z) = 22 + 2
etg(r) = —2*+6x—7=—(x—3)*+2.
— Onam = f'(z1) = ¢'(22) :
m = f'(x1) = 224

m = ¢g'(xg) = —2x9 + 6.

Onadonc2x; = 225 +6 < 21 = —x5 + 3.
— (1, f(x1)) se trouve sur la tangente commune y = mz + c:

f(x1) =mzy + ¢
22+ 2= (2x)z +c
c=—x7+2.

— (22, g(z2)) se trouve sur la tangente commune y = mz + ¢

g(xg) = mxy + ¢
—25 4 629 — 7= (=219 + 6)23 + C

c=umx3—17.
— Les inconnues x1, x5, ¢ doivent donc satisfaire

$1:—$2+3
c=—a3+2

— 2
c=a5—17
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On peut commencer par égaler la deuxieme et la troisieme équation, puis insérer la
premiere :

—1i4+2=a5-7 < — (—12+3)*+2=a; -7
<= 2x9(xe — 3) = 0.

On a donc deux solutions :
513'2:0,.1’1:3 et 1'2:3,.1’1:[).

Les deux tangentes communes sont donc

t1:y=6x—7
t22y22.

; > X

5.5 Théoréme de Rolle

Définition 5.27. Une fonction f : [a,b] — R possede
e un maximum global en z si pour tout z € [a,b], ona f(z) < f(zo); on dit alors que
son maximum est atteint en x.
e un minimum global en z; si pour tout z € [a,b], ona f(z) > f(zo); on dit alors que
son minimum est atteint en z..

Théoreme 5.28. Soit f : [a,b] — R continue. Alors f atteint son maximum et son minimum sur
[a, b].
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5.5. Théoréme de Rolle

¥ x € [G,L-J :
Pix) € Qixpmax)

ﬂl‘) £lellm)

P LRI

@

Combiné avec le Théoréme des valeurs intermédiaires, ce résultat implique que I'image d'un
intervalle fermé et borné, par une fonction continue, est aussi un intervalle fermé et borné.

La recherche des max/min globaux peut parfois se faire a I'aide de 1’'étude de la dérivée
de la fonction, lorsque celle-ci existe. Mais puisque la dérivée est une propriété locale des
fonctions, on a aussi besoin d’une notion local de max/min.

Définition 5.29. Une fonction f possede
¢ un maximum local en z si il existe un voisinage de z, sur lequel f(z) <
e un minimum local en z si il existe un voisinage de x, sur lequel f(z) >

f(l'o)
f(CEO)

Théoreme 5.30. Soit f dérivable sur |a,b[. Si f posséde un minimum ou maximum local en x, €
la, b], alors f'(xq) = 0.

Démonstration. Supposons que f admet un maximum local en z, €]a,b[ (on a une preuve
analogue dans le cas d"un minimum). Puisque f est dérivable en z, elle est en particulier a
gauche et a droite en z, ce qui implique

Plan) = i 100 = Sl
h—0+
:hm<m+m flao)

Mais, puisque f(x() est un maximum local, on a f(zo+h) < f(zo) pour tout h suffisamment
petit. On a donc d’une part que

f(wo +h) — f(o)

li <0,
hoor h 0
et d’autre part que
o 0+ W) = f)
h—0~ h
Ceci implique que 0 < f'(x¢) < 0, d’ott f'(zo) = 0. o
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Remarquons que I'implication inverse n’est pas vraie. Par exemple, la dérivée de la fonction
f(z) = 2® s’annule en 0 mais la fonction n’y posséde pas de maximum ni de minimum.

Théoreme 5.31 (Théoreme de Rolle). Soit f continue sur |a, b] et dérivable sur |a,b[. Si f(a) =
f(b), alors il existe xy €|a, b] tel que f'(zo) = 0.

On remarque qu’il peut bien s{ir v avoir plusieurs points ot f’ s’annule.
y

Démonstration. Comme f y est continue, f atteint son maximum et son minimum global sur
[a, b].
e Si un maximum ou un minimum se trouve en un point intérieur z, €|a, b|, alors par
le résultat précédent, on a f'(z) = 0.
e Siil n’y a pas de maximum ou de minimum en un point intérieur, alors la valeur
f(a) = f(b) est a la fois le maximum et le minimum de f sur [a, b]. Ceci implique que
f est constante sur [a, b] et donc f'(x) = 0 pour tout = €|a, b].
O

5.6 Théoréeme des accroissements finis

Théoreme 5.32 (Théoreme des accroissements finis (TAF)). Soit f continue sur [a, b] et dérivable
sur |a, b[. Alors il existe xo €]a, b| tel que

F(b) = fa)

f'(wo) = b—a

Démonstration. L'équation de la sécante d passant par (a, f(a)) et (b, f(b)) est

v= (1= -0+ st

/' y

>

{t)

3 M
T I

O b

Y
>

On définit la fonction de la différence entre d et f(z) :

o) = 0 - [(LO=2) o0y 4 100
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g est continue sur [a, b] et dérivable sur |a, b[, car f l'est, et on a g(a) = g(b) = 0. Les hypo-
theses du Théoreme de Rolle sont alors vérifiées, et on a donc un zy €la, b tel que ¢'(xy) = 0.

Mais
/o) = o) - (15=1),

et donc ¢'(zo) = f'(x0) — <W) = 0 implique que

fb) = f(a)
/ =
f'(wo) b—a
O
Remarques
* Le Théoréme des accroissements finis est une généralisation du Théoreme de
Rolle.

* Si f décrivait la distance parcourue en fonction du temps, le TAF dirait qu’il y a
un moment auquel la vitesse instantanée est égale a la vitesse moyenne entre le
temps a et le temps b. Par exemple, si on réalise un trajet a une vitesse moyenne
de 100 km/h, alors il doit y avoir un moment du trajet ott on roule a 100 km/h!

* Géométriquement, ce théoréme dit qu’il y a au moins un point z, entre a et b tel
que la tangente en z, est parallele a la droite sécante entre (a, f(a)) et (b, f(b)).

¢ Ce résultat est essentiel pour déduire des conséquences géométriques de la déri-
vée, comme on va Voir.

—1 six <1,

Exemples 5.33. e Soit f(z) = et soit I' le graphe de f. Déterminons

r?—2r siz>1.
zo €]0,4] tel que la tangente a I en z, est parallele a la sécante passant par (0, f(0)) =

(0,—1) et (4, f(4)) = (4,8).

4 p 1)

7

Pour pouvoir appliquer le TAF sur |0, 4], il nous faut vérifier les hypotheses
— f continue sur [0, 4], et
— [ dérivable sur |0, 4][.
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En effet, f est continue sur [0, 4], puisque f est clairement continue en z # 1, eten 1
onalim, ,;- f(z) = —1 = lim, ,;+ f(x), donc f y est continue aussi.

f est clairement dérivableen z # 1,eten 1 on a

lim f+h) = f) — lim _1_—(_1):07 et
h—0~ h h—0~ h
_ 2 _(_ 2
o JOED =) (P =2 ) = (21 e
h—0+ h h—0+ h h—0t h

d’ot f est dérivable en 1 aussi. Alors le TAF s’applique et implique que z, existe. On
peut le trouver explicitement.

. §—(-1) _
La pente de la sécante passant par (0, —1) et (4,8) est =7> = .

La pente de la tangente en z est

0 sixg < 1,
f/(xo) _ { 0

o2mg — 2 sizg> 1.

Pour que les deux droites soient paralleles, il nous faut f’(z¢) = 4, c’est-a-dire 2z, —
2 =4%.0Onadoncz, =¥ €]0,4].

e Soit f(z) = |z|. La pente de la sécante passant par (—1, f(—1)) et (1, f(1)) est 0. Mais
ilny a pasde zy €] — 1, 1] tel que f'(zo) = 0, et donc pas de tangente parallele a cette
sécante. En effet, f ne vérifie pas les hypotheses du TAF car f n’est pas dérivable en

0€]—1,1].
j/

e

)

o

On va maintenant parler de quelques conséquences du TAF. Comme on a mentionné, ce
résultat nous aide a déduire des conséquences géométriques de la dérivée. Si on a des infor-
mations sur f, on peut pendre la limite du rapport du Newton pour trouver f’ et déduire
des informations sur la variation de la fonction. Mais si on a des informations sur la déri-
vée, comment avoir de l'information sur f? On ne peut pas “défaire” la limite, mais on peut
justement utiliser le TAFE.
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5.6. Théoréme des accroissements finis

On sait que pour une fonction constante, la dérivée s’annule. Le TAF nous permet de mon-
trer que l'implication inverse est vraie aussi.

Corollaire 4. Soit f dérivable sur un intervalle ouvert I, telle que f'(x) = 0 pour tout x € I. Alors
f(z) = c pour tout x € I, oit ¢ € R est une constante.

Démonstration. Pour n'importe quels a,b € I avec a < b, il existe zy €]a, 0] tel que f'(xy) =
W par le TAF. Or f'(xy) = 0, donc w = Oetalors f(b) = f(a). Comme ceci est vrai
pour n'importe quels a,b € I, f prend donc la méme valeur partout sur /, donc f(z) = ¢

pour une certaine constante c € R. [

Corollaire 5. Soient f, g dérivables sur un intervalle ouvert I, telles que f'(x) = ¢'(x) pour tout
x € I. Alors il existe ¢ € R tel que f(x) = g(z) + ¢ pour tout x € I.

Démonstration. Laissée en exercice. O]

Corollaire 6. Soit I un intervalle ouvert, et f une fonction dérivable sur I.
o f'(x) > 0surl <= f estcroissante sur I.
o f'(x) < Osurl <= f estdécroissante sur I.

Démonstration. On montre la premiere équivalence, la deuxieme est laissée en exercice.

Supposons d’abord que f est croissante sur I. Prenons zy € [ et h > 0 tel que zy + h € I.
Alorsona f(zg+ h) > f(zo), et donc M > 0,dou

fi(zo) = lim f@oth) = Jlxo) o

=
h—0t h

Mais puisque f est dérivable en x, f'(zo) = f(z0), et doncona f'(zy) > 0.

Supposons maintenant que f/(x) > 0 pour tout x € I. Soient a,b € [ tels que a < b. Par le
TAF appliqué a l'intervalle [a, b], il existe ¢ €]a, 1] tel ue

f(b) = f(a)

(R

Puisque b — @ > 0, on a donc que f(b) — f(a) > 0,d’ou f(a) < f(b). O

On remarque qu’on a aussi

e f'(x) > 0sur [ = f est strictement croissante sur /,

e f'(z) < 0sur ] = f est strictement décroissante sur /.
Par contre, une fonction strictement croissante ou strictement décroissante peut avoir une
dérivée nulle, par exemple f(x) = 23 en 0.

Corollaire 7. Soit f une fonction continue en x, et dérivable sur un voisinage épointé de x,. Si
lim, ., f'(z) existe, alors f est dérivable en xq et f'(xo) = lim,_,,, f'(2).
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5.6. Théoréme des accroissements finis

Démonstration. La fonction f est continue en z, et dérivable sur un voisinage épointé de x.
Donc pour tout h tel que zy + h appartient a ce voisinage, on peut appliquer le TAF sur
I'intervalle [z, zo + h] sih > 0, ou [xg + h, 2] sih < 0:

f(wo + 1) = flxo)
h

3t €]0, 1] tel que = f(xo+1t-h).

Lorsque h — 0,
lim
h—0

Par hypothese, la limite lim,_,,, f'(z) existe. Elle est donc unique et ne dépend pas de la
facon dont x tend vers zy. On a alors

Pt 1= JE0) i gy 41 )

lim f'(z) = flLlir(l) f'(xo+1t-h).

T—TQ

Alors f'(x) existe et

f'(x9) = lim

h—0

ﬂm+2—ﬂ%tﬁgfm+tm=Hmf@-

Tr—xQ

O

Attention : ce résultat ne dit pas que la dérivée est continue! Il dit juste que la seule fagon de
ne pas étre continue pour une fonction dérivée est une limite lim,_,,, f'(x) non existante.

Ce corollaire est utile si par exemple on a une fonction qui est clairement dérivable a gauche
et a droite de x(, et on voudrait montrer qu’elle l'est aussi en z,. Au lieu de calculer et
comparer les dérivées a gauche et a droite, grace a ce corollaire, on peut simplement montrer
que lim,_,,, f'(x) existe (en calculant cette limite a gauche et a droite, par exemple) et ainsi
on aura que f'(zg) = lim,_,,, f'(z).

—1 siz <1,

r?—2r siz>1.

On peut montrer que f est dérivable en 1 en calculant

f(+h) = f(1) —1-(=1

Exemple 5.34. Soit f(x) =

lim = lim =0,
h—0~ h h—0~ h
_ 2 _ _(_ 2
o SO —F@) QR -2 - () Lk
h—0+ h h—0+ h h—0t+ h

Mais grace au corollaire ci-dessus, on peut simplement constater que f est continue, on a

f’(:c):{o siz <1,

20 —2 six > 1,

et lim, ,; f'(z) existe et vaut 0. On a donc que f/(1) = 0. o
Le théoreme suivant sera utilisé dans la preuve de la Régle de Bernoulli-de 1"'Hopital.

Théoreme 5.35 (TAF généralisé). Soient f et g continues sur [a, b et dérivables sur |a, b|, tel que
g () # 0 pour tout x €)a, b]. Alors il existe t €|a, b| tel que
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5.7. Regle de Bernoulli-de I'Hopital

Démonstration. 1dée : On applique le TAF a la fonction h(x) := (f(b) — f(a))g(z) — (9(b) —
9(a)f(x). 0

On remarque qu’en prenant g(z) = x, on retrouve le TAF.

5.7 Regle de Bernoulli-de 1"'Hopital

On a utilisé les limites pour calculer les dérivées a partir de la définition. On va voir main-
tenant que les dérivées peuvent nous aider a calculer les limites.
Prenons I’exemple d’une indétermination du type “2”,
. sin(z) —
li S0 =@
z—0 x
On ne peut pas utiliser 1'IPE sin(x) ~ x ici, car ce n’est pas une expression factorisée. Pour
calculer cette limite, on introduit I’outil suivant.

Théoréme 5.36 (Regle de BH). Soient f et g définies sur un voisinage épointé V de x, € R, telles
que f et g y sont dérivables et g(x), ¢'(x) # 0 sur V. Si

lim f(z) = lim g(z) € {0,400, —0c0}

T—rxT0 T—T0

et la limite lim, _,,, I'@) oyiste ou est égale 4 +o00 ou —oo, alors on a

g'(z)

s g@) v g(@)

Ce théoréme reste vrai si on remplace

¢ lim, ,,, parlim, Leg OU lim, ey s OU

* V par un voisinage de +oo et lim,_,,, par lim,_, ;.

Démonstration. Montrons le cas particulier ot

lim f(z) = lim g(z) =0, et lim Jx) =LeR.

T—T0 T—T0 Tr—T0 g (,]j)

On prolonge d’abord f et g par continuité en définissant

fla) sia# i g(x) siz o
(z) := : et g(x):= :

0 Sl x = xg, 0 six = xg.
Ces prolongées sont continues sur un voisinage de .

Soit z € V tel que zy < z. Alors f et § sont continues sur [z, z] et dérivables sur |z, z[. On
peut donc appliquer le TAF généralisé sur cet intervalle. Ainsi, il existe ¢ €|z, x| tel que

F@)  fl@) = flx)  fx)
g(x) = glwo)  glz)
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Lorsque z — x5, onat — z, et donc

f(z)

hm—:lim~—:lim~ =
a:—):vo g($) x—>xg g(l’) ;L’—>aca' g/( ) t—mg g/<t)

ILDe maniére analogue, on montre que lim S g(—zg = L.On peut donc conclure que lim, _,.,, % _
La Regle de BH s’applique seulement dans un cas d’indétermination du type ”0” ou ”%”_
Exemples 5.37. ° (/10//) hn,lx_>0 sm(:p) T

— f, g définies et derlvables sur un voisinage épointé de 0, par ex. | — 1, 1[\{0},

— g(x) #0, ¢'(x) = 32% # 0 sur ce voisinage épointé.

On calcule

Par BH, on a donc lim,_, M ==L

o (=) ilimy o 2
— [, g définies et dérivables sur |1, oo|,
— g(z) #0,9'(v) = e* # 0 sur |1, 0.

On calcule

lim, o0 g’g)) = lim, o0

L:(),

er

Par BH, on a donc lim, ., 2z = 0.

o
Généralisation : pour tout n € N*, on a lim,_, ’g—z
Démonstration. Preuve par récurrence :
Vérifié pour n = 1 ci-dessus. Si c’est vrai pour n, alors on a pour n + 1:
s . (n+ 1) .t
lim = hmgz(n—kl)-hm—zo
rz—o0 et T—00 er r—o00 €T
BH
=0 par hyp.
On déduit que pour tout polynéme P(z), on a lim,_, Pe(f ) = 0, et que pour tout n € N*,
In(z))" "
lim (In(x)) = lim — =0,
T—00 x y—oo eY
en utilisant le changement de variable y = In(z). O

Exemples 5.38. Voici quelques autres indéterminations.
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5.7. Regle de Bernoulli-de I'Hopital

® (“0-=+00”): lim, o+ (z - In(x))

—1
lim (x - In(z)) = — lim n(x)
z—07t z—07F 1/1[’
) —1
= _xlg(% Y (par BH, —)
=— lim z
z—0+t

e (“0°): limy_ o+ 2°

li T _ zIn(z) snéral g(z) _ ,9(x)In(f(x))
Tim 2" = lim e (en général, f(xz) e )
= exp( 1im+(x -In(z))) (car exp(x) est continue)
z—0

=exp(0) = 1.

o (“17°7) 1 limyyee (14 1)°

_ 1\* ) 1
Iim (1+4—) =lmexp|lax-In{1+—
T—00 T T—r00 €T

) 1
=exp|( lim (z-In(14+ —
T—00 €T

1

T—r00 1/1;

( ) 1+11/x ) (_1/5”2))
=exp | lim

s (~1/a?)

=exp(l) =e.

o

Exemples 5.39. Voici aussi quelques exemples o1 il ne faudrait pas utiliser la Regle de BH.
1

e lim, o Q;ﬁ - hmx—m% =3
Ceci n’est pas une forme indéterminée, la limite du dénominateur n’est pas 0. On a
lim,_, ﬁ = 0.

o lim, o222 =1,

Méme si BH s’applique, on connait déja cette limite apres notre travail sur les IPE.

Vz+1

z—1

e lim, o = lim, o0 y/1+ 255 = 1.

Ici, BH s’applique mais ne donne rien d’utile :

: v+l _ s 1/2vz4+1 _ s Va—1
lim, o0 N = lim, 00 eI = lim, o0 NESE
. 299941000 . _ 21000
* lim, 31000 ;1001 — lim, o — oot = 0.
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5.8 Extrema de fonctions

On a déja donné les définitions d’extrema, a savoir de maximum/minimum global/local
dans une section précédente.

g1

Remarque 5.40. Un extremum global est aussi un extremum local. Par contre, un extremum
local n’est pas forcément global. o

A titre d'illustration, voyons quelques cas “faciles” de fonctions pour lesquelles les extrema
peuvent étre trouvés sans difficulté.

Exemple 5.41. Soit f : [0,3] — R, définie par f(z) = 2* — 2z.

-

g / >
&
glo&i

AN
/ local

1 2 _“5 >><
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Puisque f(z) = (z — 1)* — 1, on peut représenter la parabole précisément, et en déduire que

f possede :
e un minimum globalen z =1,
* un maximum globalen z = 3,
e un maximum local en x = 0.

Exemple 5.42. Soit f : R — R, définie par f(z) = sin(z).

Q.
5
)

un (occwhc

f possede
* une infinité de maximums globaux, en § + 27k, k € Z,
* une infinité de minimums globaux, en —5 + 27k, k € Z.

Exemple 5.43. Soit f : [0, 2] — R, définie par

{1—\x—1| siz # 1,

—1 siz=1.

fx) =

2,\

W
x

1 2
o & Mmin JC"L"&
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Alors f
* posséde un minimum globalen z = 1,
¢ possede deux minimums locauxenz =0 etenz = 2,
* ne possede pas de maximum (ni local ni global).

5.8.1 Recherche analytique d’extrema

Comment peut-on trouver les extrema d’une fonction donnée, par des méthodes analy-
tiques?

Avant de chercher des extrema, il faudrait déja étre stir que la fonction en posséde. Et rap-
pelons que si la fonction est continue, et définie sur un intervalle fermé et borné, f : [a,b] — R,

alors l’existence des extrema globaux est garantie, ce qui est un bon point de départ, méme
si on a besoin d"un algorithme plus précis qui mene a leur détermination.

Ensuite, on a aussi vu le résultat suivant : pour une fonction dérivable f sur |a, b|, si f pos-
sede un minimum/maximum local en z, €]a,b|, alors f'(z;) = 0. On a aussi noté que sa
réciproque n’est pas vraie.

Donc si f'(xg) = 0, alors z est un candidat a étre un minimum/maximum local.

Mais si f n’est pas dérivable en z(, f peut y posséder un minimum/maximum local, ou
pas:

d1 d1
e T
%, X X X
T T
X, X )'< X

Pour trouver les candidats a étre extrema locaux il faut

e trouver les points xz tels que f'(zo) =0,

* trouver les points ou f n’est pas dérivable,

* regarder les points sur le bord du domaine, s’il y en a.
Ensuite on étudie la dérivée au voisinage du point, lorsque c’est possible, pour déterminer
lesquels de ces candidats sont des extrema locaux.

Théoreme 5.44. Soit f continue en x, et dérivable dans un voisinage épointé de x,. Si f' change de
signe en x, alors f possede un extremum local en x.
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Par “change de signe en z,”, on veut dire qu'il existe § > 0 tel que
e f'(z) = 0 pour tout z € [xg— 0, z¢[ et f'(z) < 0 pour tout z €]z, xo + 0] (dans ce cas, il
y a un max local en ), ou
e f'(x) <0 pourtout x € [xg— 6, xo[ et f'(z) > 0 pour tout = €|xg, x¢ + 6] (dans ce cas, il
y a un min local en ).

" ) \/
i >x : >x
's0 f'so freo {0

Remarques

e Il faut vérifier la continuité de f en z,! Sinon, 'assertion du théoreme pourrait
étre fausse. Par exemple, reprenons I'exemple précédent

1l—|x—1] siz#1,
f:[o,z]w,f@):{ ot

-1 siz=1.
f n’est pas continue en z, = 1, et malgré le changement de signe de f’ en z,iln’y
a pas de max en .

¢ La réciproque du théoreme est fausse : si f possede un extremum local en z,, f’
ne change pas forcément de signe en xy.

/4

]
]
X, X

Pour les extrema globaux, en vu du fait que les extrema globaux sont aussi des extrema
locaux, il faut juste évaluer la fonction aux points qu’on a trouvés ci-dessus comme extrema
locaux, et trouver parmi eux les plus grandes et les plus petites valeurs.

Rappel : une fonction continue atteint ses bornes sur un intervalle fermé.

Exemples 5.45. e [R—R, f(z)=2*—u
l _ _ - |
f'(xz) =32 — letdonc f'(z) =0 <= x= =
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|
Sl
ol

o - 0 +

Signt £ +
~ t > X - may .
T‘i— Vanalion / local \ {::2(_ /

-

IIn’y a pas d’extrema globaux.
o f:[-m 7w =R, f(z)=sin|z|

sin(x) si0<z <

sin(—z) si —7w <2 <0,

Ona f(z) —{

. ' ' cos(x) si0<zx<m
t donc, —r)=- fiw) =
et donc, puisque sin(—x) sin(z), f'(z) {_ cos(z) si —m<z<O.

En0,ona
- f(z) = f(0) sin(z)
! = 1 - 1 - 1
er (O> xlgl* z—0 z—0t xT ’
£(0) = tim LW SOy msint)
z—0~ z—0 z—0~ T
et donc f n’est pas dérivable en 0.
Les candidats sont
— r=%£F (<= f'(z)=0),
— x =0, ou f n’est pas dérivable,
— x = £, les points du bord.
J -7 ::_[ 0 :;_ 7

sijw_%” + 0 —[p+0 —

. _‘ .‘l . . m
e 17; Z; (e vana:toh /me \ /m .
L) han

Ici, les extrema locaux sont aussi globaux.

5.9 Problemes d’optimisation

La recherche d’extrema de fonctions permet de résoudre des problémes d’optimisation concrets.
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Exemple 5.46. Trouver le rectangle inscrit entre la courbe y = 1 — z? et ’'axe Oz d’aire maxi-
male. (On suppose que les cotés du rectangle sont paralleles aux axes de coordonnées.)

/1

=

\Z
Dat

Paramétrisons tous les rectangles a 'aide de la variable = € [0, 1], visible sur I'image ci-
dessus. Pour un x fixé, 'aire du rectangle représenté est égale a

A(x) = base x hauteur =2z - (1 —2?).
On aimerait donc trouver le maximum global de la fonction

A:0,1] - R
r > Az) = 22(1 — %) .

Ona A'(x) = —62% + 2, et donc la variation de A est donnée par
L
0 A A
0 —

s'iju A’ +
vanidion / Z:::)Z \\

A s’annule sur le bord de [0, 1] bord, A(0) = A(1) = 0, et donc A possede un max local et
global en z = —=. En ce point, A (\%) =55 o

Exemple 5.47. Trouver, parmi tous les cylindres inscrits dans une sphere de rayon R, celui
dont le volume est maximal.
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)
2

Utilisons la variable = € [0, R] visible ci-dessus; x représente le rayon du cylindre inscrit.

Volume pour un x donné,
V(z) = aire de labase - hauteur = 72* - h(z).
h 2
Onaz®+ (2) = R?, d'ot h(x) = 2V/RZ = 27
On cherche donc le maximum global de

V:[0,R] » R
x> V(r) = 2n2*V R? — 12

RQ _ .’13'2
2 9.2
_ 27T:L'(2R 3z?)
RZ x2
On a dong, sur |0, R[, que
2
Vi(z)=0 <= =x= gR.
En ce point,
2 1 4
VI y/sR|=— -TR*>0,
3 /3 3

alors que sur le bord, V' (0) = V(R) = 0. On conclut donc que V' posséde un maximum global

enz = \/gR. Le cylindre correspondant a un volume égale a \/% = 0.577. .. fois celui de la
sphere. o

Exemple 5.48. Une fourmi au cinéma cherche a maximiser ’angle sous lequel elle voit I’écran :
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é'
5’m \\J \\
QU

3m AR S < VAN,
N

x€ J0, =

Repérons la position de la fourmi a l'aide de z € 0, 00|, la distance (en metres) entre la
fourmi et le mur.
Lorsqu’elle est a distance « du mur, elle voit I’écran sous un angle

0(x) = a(x) — f(x) = arctan (§) — arctan (ﬁ)

T x
On cherche donc le maximum global de
0 :]0,00[ — R,

x +— 0(x) = arctan <§> — arctan (é)
x T

Remarquons que sur les bords du domaine,

: T :
zliglﬂL@(m) —5—5—0, Igrfooﬁ(m) =0.
Ensuite, sur |0, +oo],
1 —8 1 -3
V(@)= — = 5 >3 =
L+ & 1+(E) 7
—8 3

% 4 64 * x2+9

—8z% — 72 + 37% + 192
(24 64)(x2+9)

120 5a?

(22 4+ 64)(22 +9)

Ainsi, #'(z) =0 <= z = V24, et

7~

2¥

3431@, O ~+ O —

widion 7 TN
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Puisque 6(+v/24) > 0, on a donc un maximum global en z = 1/24. Pour maximiser I'angle
sous lequel elle voit I'écran, la fourmi doit donc s’asseoir a v/24 métres de 'écran. o

5.10 Etudes de fonctions

Généralement, 1’étude d’une fonction f signifie décrire les principales caractéristiques de la
dépendence de f(x) en fonction de =, qu’elles soient locales ou globales, autant du point de
vue quantitatif que qualitatif.

Les sections précédentes ont montré comme la dérivée se présente comme un outil puissant
pour l’analyse locale.

Avant de passer en revue les principaux éléments que peuvent constituer une étude de fonc-
tion, introduisons certaines notions additionnelles.

5.10.1 Branches infinies

Parmi les propriétés globales caractéristiques d"une fonction, on peut considérer les portions
de son graphe, s’il y en a, qui contiennent des points arbitrairement éloignées de 'origine.
On parle alors de branches infinies.

Commencons par les branches infinies données par directement par 1'étude simple de li-

mites a 'infini, ou proche d"un point .

Définition 5.49. Si au moins une des limites lim,_, .+ f (x), lim, or S (x) est oo, on dit que
la droite verticale d’équation = z, est une asymptote verticale pour le graphe de f.

Si une fonction possede une asymptote verticale, cela signifie qu’il existe au moins une

portion de son graphe qui, infiniment loin de l'origine, s’approche de plus en plus de son
asymptote :

J A

\
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Définition 5.50. Si au moins une des limites lim, ., f(z), lim,_, -, f(z), existe et vaut L, on
dit que la droite horizontale d’équation y = L est une asymptote horizontale pour le graphe

de f.

,sur Dy =R\ {-2,1}.

1
2+ —2
— Puisque lim f(xz) =0, la droite y = 0 est asymptote horizontale.

T—r 00

Exemple 5.51. Etudions les asymptotes de f(z) =

— Puisque lim f(z) = Foo, la droite - = —2 est asymptote verticale.
r——2

— Puisque lim f(x) = £00, la droite z = 1 est asymptote verticale.
z—1

O

Si f(x) n’a pas de limite lorsque © — £o00, c’est qu’il n'y a pas d’asymptote horizontale. Mais
cela n’empéche pas que f possede des portions infiniment loin de l'origine, proches d"une
droite oblique (c’est-a-dire de pente non-nulle).

Définition 5.52. Si lim,_,, f(z) = +oo et s’il existe m, h € R tels que m # 0 et

lim |f(z) — (mz + h)| =0,

T—00

la droite d’équation y = ma + h est une asymptote oblique pour le graphe de f. (On a une
définition semblable si x — —o0.)
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-

Z/ J:m>(+L

- o

pd

Si on sait que y = mx + h est asymptote oblique, comment trouver m et h?

Remarquons que si on a a la fois
lim f(z) =400 et lim |[f(x)— (mx+h)|=0,
T—00

T—r00

avec m # 0, alors la limite lim, ., f(z) — (mz + h) représente une indétermination “oo — c0”.
Mais puisque cette limite est nulle, on peut réécrire

T—00

0= lim yf<x>—(mx+h)\:g}g§o\xy-‘@— (m+@)‘.

Puisque |z| — oo, on doit donc nécessairement avoir que

0 )

lim ’M—m‘—o

lim
r—r00

Mais comme % —0,ona

T—00 X
et donc
T
m = lim —f( ) ,
T—00 X

ce qui fixe la valeur de m.

En connaissant m on peut alors trouver h, puisque

lim |f(z) — (mz+h)|=0 = h= lim(f(x)—ma).

T—00 T—00

Exemple 5.53. Etudions les asymptotes du graphe de f(v) = /22 + z, définie sur D; =
[—1,0]. Remarquons que

1
lim Va?+2= lim |z|-1/14+ - = +o0,
r—Fo00 r—+o0 x
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donc il n'y a pas d’asymptotes horizontales. Pour voir s’il peut y en avoir des obliques,
étudions les limites

|z|y/1+ 2
m = lim f(@) =
r—+oco I r—300 X
+xy/1+ %
r—+o0 x

On peut donc passer a

h= lim (f(z)— (£1)z) = lim (Va?2+zFx)

r—+oo r—+oo
. T
= llm —_—
r—+oo ‘/Q32 +x :l: T
. T
= lim

TR L /141 £1

— 41
2

On a donc 'asymptote oblique y = z + 1 lorsque = — +oc et 'asymptote oblique y = —z — 1
lorsque x — —o0.

gﬁ\ (7_.—-: X«FEL

o

La procédure présentée ci-dessus a montré que l'existence d'une asymptote oblique y =
max + h procéde comme suit : on trouve la pente m (si la limite qui la définit existe), et
ensuite on trouve I'ordonnée a 1’origine A, si la limite qui la définit existe.

Or il se pourrait trés bien que m existe mais que f(z) — ma n’ait pas de limite.
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Exemple 5.54. Si f(x) = = + sin(z), alors
lim flz) i & sin(x)

m =
rx—+o00 I T——+00 €T

)

T—r—+00 €T

Y

mais h n’existe pas puisque f(z) — 1o = sin(x), qui n’a pas de limite lorsque z — co. Donc il
n’existe aucune droite y = x + h telle que

lim |f(z) = (z+h)[ =0,

r—r—+00

donc il n’y a pas d’asymptote oblique pour le graphe de f.

f(z)

. rA
T [}

Animation disponible sur botafogo.saitis.net/analyse-B

Que se passe-t-il, alors, dans le cas ot la limite qui définit h est infinie?

Définition 5.55. Si m = lir}rl @ existe mais
T—r+00 T

lim (f(x) —ma) = oo,

Tr——+00

on dit que f admet une branche parabolique (de direction de pente m). (On a une définition
semblable si v — —o0.)

Expliquons le pourquoi de cette terminologie sur un exemple.
Exemple 5.56. Considérons f(z) = /z, sur R;. On a que

lim vz = +oo,
r——+00
et
m = lim M: lim @
Tr—+o0 r—+oo I
. 1
= lim — =0,
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alors que

donc le graphe de f possede une branche parabolique de direction horizontale m = 0. (Sans
pour autant posséder d’asymptote horizontale!)

Animation disponible sur botafogo.saitis.net/analyse-B

<

Dans certains cas ou m n’existe pas, on peut quand-méme avoir une information sur le
comportement de la fonction loin de 'origine :

Définition 5.57. (Le cas “m = +00”.) Si

lim @:ioo,

Tr—400 €T

on dit que f admet une branche parabolique de direction verticale. (On a une définition
semblable si z — —o0.)

Exemple 5.58. Si f(r) = x? — 3z, alors

2
-3
lim m: lim = = lim (x —3) = o0,
r—+oo I r—+o0 x r—+o00

donc le graphe de f posséde une branche parabolique verticale.
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Animation disponible sur botafogo.saitis.net/analyse-B

5.10.2 Elements de I’étude d’une fonction

Regroupons maintenant certaines des étapes que 1’on pourra, lorsque c’est possible, inclure
dans I’étude d'une fonction réelle f définie sur son domaine Dj.

Si Dy est symétrique (x € Dy & —x € Dy), il sera utile de tester la parité de f. Cas
échéant, cette parité devra se retrouver plus tard dans la représentation graphique de
I

Lorsque c’est possible, I'étude du signe de f pourra aussi renseigner sur la position
du graphe de f relativement a Oz.

La recherche des points de continuité/discontinuité de f.

Sur les parties de de D ou f est dérivable, ’analyse du signe de f’ renseignera sur la
variation de f, et menera dans certains cas a la détermination des extrema locaux de
f.Lorsqu’il y en a, on pourra déterminer les extrema globaux de f.

Si Dy le permet et sil y en a, étudier la nature des branches infinies de f (asymptotes
horizontales, verticales, obliques ou paraboliques).

Enfin, tracer un graphe contenant les principales informations obtenues dans 1’étude
analytique.

Remarquons qu’'une fonction peut présenter un comportement intéressant proche de cer-
tains points. Par exemple, lorsque f est dérivable dans un voisinage épointé de z, on dira
que f possede

108

un point de tangence verticale en z si lim,_,,, f'(x) = +00 ou —o0,
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d1

¢

s

4 }
t

7 X T —7 X
Xu Xo

* un point anguleux en z si lim,_, - f'(z) etlim__, + f'(x) existent et sont distinctes,

?/v_/ /1

t 7 X t
Xp XD

* un point de rebroussement en z; si

lim f'(z) = —o0 et

.’E—)IO

ou

lim f'(z) = +o0 et

I*)CITO

¢

lim f'(z) = +o0,

XQ Xp

Si la fonction est continue en ces points, ils correspondent donc a des extrema locaux.

Exemple 5.59. Sur D; = R, étudions

Le signe de f est régi par celuide z —1:

et
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Etant un produit de fonctions continues, f est continue sur R. Calculons ensuite
or — 4
S5/ (x—1)4

Ainsi, f n’est pas dérivable en z = Oetenz =1, et f'(3) = 0.

f@) = (@ —1)") =

o) %r {
s;jm/" FLE - o + [+

Donc f possede un minimum local en z = %, au point (3, f(3)).

Remarquons aussi que
® lim, .o+ f'(x) = %00, donc f possede un point de rebroussement en z = 0, qui im-
plique que (0, 0) est un maximum local
e lim, ,; f'(z) = +00, donc f possede un point de tangence verticale en x = 1.
Passons a ’étude des branches infinies. Pour commencer,

1
lim f(xr) = lim 1—— lim (/1 — — = 400,
r—300 r—300 zﬁioo xT

ce qui implique que f ne possede pas d’extrema globaux.
q phque q p p &

Ensuite,
m= li @_ lim {/1—==1,
r—t+oo I r—r+o00 x
et
h= lim (f(x)— (1)x) = lim [\S/x‘l(x —-1) - x}
r—+o0 r—+oo

En posant a = {/z%(z — 1) et b = z, on peut utiliser

a® — b’ = (a —b)(a* + b + a*b* + ab® + b*).
Ainsi, on obtient
lim [5 xt(r—1) — x}

r—+o0
=.pe—d)

a® — b’
= lim
z—+oo a* + a3b + a2b? + ab3 + b*
lim otz —1) —2°
= lim
a—too at + ad3b + a2b? + ab3 + b*

= lim —!
TSN D) DT ()
1

On a donc I'asymptote oblique y = 2 — £ lorsque z — +o0.

On peut maintenant tracer le graphe de f :
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i Y= x-F

&+
—

\4

<
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