
Chapitre 6

Courbes paramétrées dans le plan

6.1 Introduction

Définition 6.1. Soit D ⊂ R. Une courbe paramétrée (ou arc paramétré) est une fonction

M : D −→ R2

t 7−→ M(t) = (x(t), y(t)) .

On pensera souvent à une courbe paramétrée comme à la description de la position d’une
particule en fonction du temps ; on interprétera alors M(t) ∈ R2 comme étant la position de la
particule au temps t.

La position M(t) peut également se décrire à l’aide du rayon vecteur, défini par

r⃗(t) =
−−−−→
OM(t) =

(
x(t)
y(t)

)

L’ensemble de tous les points visités par la particule sera noté

Γ := {M(t) : t ∈ D} .

On appelle Γ le tracé de la courbe.

Exemple 6.2. La courbe paramétrée

M : [0, 2π] −→ R2

t 7−→ M(t) = (cos(t), sin(t))

décrit un point se déplaçant sur le cercle unité centré à l’origine.
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6.1. Introduction

Animation disponible sur botafogo.saitis.net/analyse-B

⋄
Remarquons que deux courbes paramétrées distinctes peuvent avoir le même tracé.
Exemple 6.3. La courbe

M̃ : [−π, π] −→ R2

t 7−→ M̃(t) = (sin(t), cos(t))

est n’est pas la même que celle de l’exemple précédent ; par exemple, M(0) = (0, 0) alors que
M̃(0) = (0, 1). Pourtant, son tracé est le même :

Animation disponible sur botafogo.saitis.net/analyse-B

⋄
On voit sur ces deux premiers exemples qu’en général, le tracé d’une courbe paramétrée
n’est pas le graphe d’une fonction (il peut y avoir une droite verticale qui intersecte le tracé
plus qu’une fois).
Exemple 6.4.

M : R −→ R2

t 7−→ M(t) =
(
t2, t
)
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6.2. Vecteur tangent

Animation disponible sur botafogo.saitis.net/analyse-B

⋄
Exemple 6.5.

M : [0, 2] −→ R2

t 7−→ M(t) =
(
t(t− 1)(t− 2), t(t− 1

2
)(t− 1)(t− 3

2
)(t− 2)

)

Animation disponible sur botafogo.saitis.net/analyse-B

⋄
L’étude des courbes paramétrées s’annonce donc plus dificile que celle des simples fonctions
f(x) d’une variable.

6.2 Vecteur tangent

L’utilisation du rayon-vecteur permet de comparer les positions en deux instants t0 < t0+∆t,
à l’aide du déplacement r⃗(t0 +∆t)− r⃗(t0) :

On s’attend à ce que si les instants t0 et t0+∆t sont très rapprochés, le déplacement devienne
aussi petit. Si on divise ce vecteur par la durée de l’intervalle [t0, t0 +∆t], le quotient

r⃗(t0 +∆t)− r⃗(t0)

∆t
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6.2. Vecteur tangent

doit être interprété comme une vitesse sur cet intervalle.

Dans la limite où ∆t → 0, on fait ainsi apparaître les dérivées des fonctions x(t) et y(t) par
rapport au temps :

lim
∆t→0

r⃗(t0 +∆t)− r⃗(t0)

∆t
=


lim
∆t→0

x(t0 +∆t)− x(t0)

∆t

lim
∆t→0

y(t0 +∆t)− y(t0)

∆t

 =

(
ẋ(t0)
ẏ(t0)

)

Remarque 6.6. Dans ce chapitre, on utilise le “point” ẋ au lieu du “prime” x′. C’est une
convention souvent adoptée dans les ouvrages traitant de cinématique, où le “point” in-
dique une dérivée par rapport au temps. ⋄

Définition 6.7. Lorsque x(t0) et y(t0) sont dérivables au temps t0, le vecteur

˙⃗r(t0) :=

(
ẋ(t0)
ẏ(t0)

)
est appelé le vecteur tangent de la courbe paramétrée M au temps t0.

S’il ne s’annule pas, le vecteur tangent donne en particulier la direction de la tangente à la
courbe en au point M(t0) :

Mais il donne plus d’informations que ça, puisqu’il doit être interprété comme le vecteur de
vitesse instantanée de la particule à l’instant t0 ; il donne aussi le sens du déplacement.

L’étude des signes de ẋ(t) et ẏ(t) renseigne donc sur la direction et le sens de déplacement
de la particule à l’instant t :

En particulier,
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6.2. Vecteur tangent

• si ẋ(t) ̸= 0 et ẏ(t) = 0, la courbe possède un point de tangence horizontale en M(t),
• si ẋ(t) = 0 et ẏ(t) ̸= 0, la courbe possède un point de tangence verticale en M(t).

Exemple 6.8. Considérons la courbe

M : R −→ R2

t 7−→ M(t) =
(
t2, t
)
.

L’étude des signes de x(t) = t2 et y(t) = t nous dit déjà à quel quadrant appartient M(t), en
fonction du temps t :

Ensuite,

r⃗(t) =

(
t2

t

)
, ˙⃗r(t) =

(
2t
1

)
.

Les signes de ẋ(t) et ẏ(t) donnent la direction dans laquelle pointe ˙⃗r(t) :

Le point M(0) = (0, 0) est un point de tangence verticale puisque

˙⃗r(0) =

(
0
1

)
.

On peut maintenant tracer la courbe :

Animation disponible sur botafogo.saitis.net/analyse-B
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6.2. Vecteur tangent

⋄
Exemple 6.9. Si on reprend la courbe paramétrée décrivant un cercle, on a

r⃗(t) =

(
cos(t)
sin(t)

)
, ˙⃗r(t) =

(
− sin(t)
cos(t)

)
.

Animation disponible sur botafogo.saitis.net/analyse-B

(On remarque que r⃗(t) ⊥ ˙⃗r(t) pour tout t, une caractéristique spécifique au mouvement
circulaire.) ⋄

6.2.1 Points stationnaires

Considérons un cas où le vecteur tangent peut s’annuler.
Exemple 6.10. Pour t ∈ R, considérons la courbe décrite par

r⃗(t) =

(
t3

t6/2

)
, ˙⃗r(t) =

(
3t2

3t5

)
.

Puisque

˙⃗r(0) =

(
0
0

)
,

le vecteur tangent à l’instant t = 0 ne donne aucune information sur l’allure de la courbe
au voisinage de ce point (tangence, sens de déplacement, etc.). Comment faire, donc, pour
étudier la courbe au voisinage de M(0) = (0, 0)?
Ce qu’il faut remarquer c’est que t = 0 est l’unique instant où ˙⃗r(t) s’annule. Or tant qu’il
n’est pas nul, même très petit, il contient quand même de l’information.

On peut par exemple considérer la pente du vecteur tangent en un temps t ̸= 0, donnée par

ẏ(t)

ẋ(t)
=

3t5

3t2
= t3 .

Au voisinage de t = 0, le vecteur tangent a donc une pente qui est négative si t < 0, positive
si t > 0, et dans la limite t → 0 tend vers

lim
t→0

ẏ(t)

ẋ(t)
= lim

t→0
t3 = 0 .
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6.2. Vecteur tangent

Ceci signifie que la courbe doit possèder en t = 0 une tangente horizontale.

Animation disponible sur botafogo.saitis.net/analyse-B

Remarquons qu’on aurait pu obtenir la même information en remarquant que t6 = (t3)2, et
donc y(t) = x(t)2/2, ce qui signifie que tous les points M(t) = (x(t), y(t)) de la courbe sont
sur la parabole y = x2/2. En particulier, le point M(0) = (0, 0) est forcément un point de
tangence horizontale.

⋄

Définition 6.11. M(t0) est un point stationnaire de Γ si ˙⃗r(t0) =

(
0
0

)
.

Pour étudier Γ au voisinage d’un point stationnaire, on pourra procéder comme dans l’exemple
précédent :

• en étudiant les signes de ẋ(t) et ẏ(t) pour t < t0 et t > t0,
• étudier la pente de ˙⃗r(t), donnée par ẏ(t)

ẋ(t)
lorsque t → t±0 .

Exemple 6.12. Considérons, pour t ∈ R, la courbe

r⃗(t) =

(
t2

t3

)
, ˙⃗r(t) =

(
2t
3t2

)
.

Puisque ˙⃗r(0) =

(
0
0

)
, M(0) = (0, 0) est un point stationnaire. Etudions l’allure de la courbe

au voisinage de ce point.

Les signes de x(t) et y(t) renseignent sur le quadrant :

Puis, les signes de ẋ(t) et ẏ(t) renseignent sur la direction dans laquelle pointe ˙⃗r(t) :
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6.3. Branches infinies

De plus, à l’approche du point stationnaire, la pente de ˙⃗r(t) tend vers

lim
t→0

ẏ(t)

ẋ(t)
= lim

t→0

3t2

2t
= lim

t→0

3t

2
= 0 .

On en déduit que le point stationnaire M(0) = (0, 0) est un “point de rebroussement”,
puisque la particule arrive depuis IV , avec la pente du vecteur tangent proche de zéro,
puis repart dans I , avec la pente du vecteur tangent toujours proche de zéro.

Animation disponible sur botafogo.saitis.net/analyse-B

⋄

6.3 Branches infinies

Comme pour les fonctions, l’étude d’une courbe pourra inclure l’analyse des branches infi-
nies, à savoir les parties de la courbe (s’il y en a) qui contiennent des points situés arbitraire-
ment loin de l’origine.

Une cours paramétrée

M : D −→ R2

t 7−→ M(t) = (x(t), y(t)) .

possède une branche infinie s’il existe une région du domaine D dans laquelle au moins une
des fonctions, (x(t) ou y(t)) prend des valeurs arbitrairement grandes. Cette région sera soit
au voisinage d’un point, soit lorsque t → ±∞ lorsque c’est possible.

• Si x(t) → ±∞ et y(t) → L, alors la droite horizontale y = L est une asymptote
horizontale.
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6.4. Exemples

• Si x(t) → L et y(t) → ±∞, alors la droite verticale d’équation x = L est une asymptote
verticale.

• Si x(t) → ±∞ et y(t) → ±∞, et si

m := lim
y(t)

x(t)
∈ R , et

h := lim(y(t)−m · x(t)) ∈ R,

alors la droite d’équation y = mx+ h est une asymptote oblique.

Si lim[y(t)−m · x(t)] = ±∞, il s’agit d’une branche parabolique de pente m.

6.4 Exemples

Exemple 6.13. Sur D = R \ {1}, considérons la courbe paramétrée M(t) = (x(t), y(t)), où

x(t) =
1

1− t
, y(t) =

t2

1− t
.

Etude des branches infinies : La courbe peut admettre des branches infinies aux bornes de
son domaine : en ±∞ et en 1.

• Lorsque t → −∞,
lim

t→−∞
x(t) = 0 , lim

t→−∞
y(t) = +∞ .
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La courbe admet donc une asymptote verticale d’équation x = 0. Remarquons que
x(t) > 0 pour t < 1 et en particulier au voisinage de −∞ ; la courbe reste donc à droite
de son asymptote lorsque t → −∞.

• Lorsque t → +∞,

lim
t→−∞

x(t) = 0 , lim
t→−∞

y(t) = −∞ .

La courbe admet donc la même asymptote verticale d’équation x = 0, avec x(t) < 0 au
voisinage de +∞ ; la courbe reste donc à gauche de son asymptote lorsque t → +∞.

• Lorsque t → −1−,

lim
t→−1−

x(t) = lim
t→−1−

y(t) = +∞ .

Pour détecter une potentielle asymptote oblique lorsque t tend vers −1 par la gauche,
on calcule

lim
t→−1−

y(t)

x(t)
= lim

t→−1−
t2 = 1, lim

t→−1−
y(t)− 1 · x(t) = lim

t→−1−
−(t+ 1) = −2 .

La courbe admet donc une asymptote oblique d’équation y = x− 2 lorsque t → −1−.

De plus, on peut vérifier que y(t) − (x(t) − 2) = −t + 1 est positif pour t < 1, en
particulier pour t tendant vers 1 par la gauche ; donc on sait que la courbe reste au-
dessus de la droite y = x− 2 lorsque t → −1−.

• Lorsque t → −1+, un calcul similaire nous permet d’obtenir la même asymptote
oblique d’équation y = x − 2 et de vérifier que la courbe reste au-dessous de cette
asymptote.
Etudions ensuite le vecteur tangent. On a

˙⃗r(t) =


1

(1− t)2

2t− t2

(1− t)2

 .

ẋ(t) > 0 pour tout t ∈ D, et

ẏ(t) = 0 ⇐⇒ 2t− t2 = 0 ⇐⇒ t = 0 ou t = 2 .

La courbe admet donc deux points à tangente horizontale : M(0) = (1, 0) et M(2) =
(−1,−4). De plus :

En mettant ensemble toutes ces informations, on peut esquisser le tracé de la courbe dans le
plan :
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6.4. Exemples

Animation disponible sur botafogo.saitis.net/analyse-B

⋄
Exemple 6.14. Sur D = R \ {±1}, considérons la courbe M(t) = (x(t), y(t)), où

x(t) =
1

t2 − 1
, y(t) =

t2

t− 1
.

Il y a a priori six régions de D dans lesquelles au moins une des fonctions prend des valeurs
grandes : proche de ±∞ et proche de t = ±1 (à gauche ou à droite dans chaque cas). On va
donc séparer l’analyse en considérant les six limites suivantes :

1. Lorsque t → −∞,
lim

t→−∞
x(t) = 0 , lim

t→−∞
y(t) = −∞ ,

et donc la droite x = 0 est une asymptote verticale. (Se souvenir pour plus tard : pour
des temps t très éloignés dans le passé, x(t) est proche de zéro, y(t) est grand, négatif.)

2. Lorsque t → −1−,

lim
t→−1−

x(t) = +∞ , lim
t→−1−

y(t) = −1

2
,

et donc la droite y = −1
2

est asymptote horizontale. (Se souvenir pour plus tard : pour
des temps t peu avant t = −1, x(t) est très grand, positif, et y(t) est proche de −1

2
.)
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3. Lorsque t → −1+,

lim
t→−1+

x(t) = −∞ , lim
t→−1+

y(t) = −1

2
,

et donc la droite y = −1
2

est asymptote horizontale. (Se souvenir pour plus tard : pour
des temps t peu après t = −1, x(t) est très grand, négatif, et y(t) est proche de −1

2
.)

4. Lorsque t → 1−,

lim
t→1−

x(t) = −∞ , lim
t→1−

y(t) = −∞ .

On peut donc tester l’existence d’une asymptote oblique. Commençons par

m = lim
t→1−

y(t)

x(t)
= lim

t→1−

t2(t2 − 1)

t− 1

= lim
t→1−

t2(t− 1)(t+ 1)

t− 1
= 2 .

Ensuite,

h = lim
t→1−

(y(t)− 2x(t)) = lim
t→1−

(
t2

t− 1
− 2

1

t2 − 1

)
= lim

t→1−

t3 + t2 − 2

t2 − 1
=

5

2
.

Ainsi, la droite d’équation y = 2x + 5
2

est asymptote oblique. (Se souvenir pour plus
tard : pour des temps t peu avant t = 1, x(t) et y(t) sont tous deux grands, négatifs, et
M(t) est proche de cette asymptote.)

5. Lorsque t → 1+,

lim
t→1+

x(t) = ∞ , lim
t→1+

y(t) = ∞ .

Les mêmes calculs que ceux du point précédent montrent que la même droite y =
2x + 5

2
est asymptote oblique. (Se souvenir pour plus tard : pour des temps t peu

après t = 1, x(t) et y(t) sont tous deux grands, positifs, et M(t) est proche de cette
asymptote.)

6. Lorsque t → +∞,

lim
t→+∞

x(t) = 0 , lim
t→+∞

y(t) = +∞ ,

et donc x = 0 est asymptote verticale. (Se souvenir pour plus tard : pour des temps t
très éloignés dans le futur, x(t) est proche de zéro, y(t) est grand, positif.)

L’étude des branches infinies permet déjà de faire une première esquisse :
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6.4. Exemples

Rendons l’analyse plus précise en étudiant le vecteur tangent.

r⃗(t) =

( 1
t2−1
t2

t−1

)
, ˙⃗r(t) =

(
−2t

(t2−1)2

t(t−2)
(t−1)2

)
.

On a donc
• un point de tangence horizontale en t = 2, M(2) = (1

3
, 4),

• un point stationnaire en t = 0, M(0) = (−1, 0)

L’étude des signes révèle le comportement du vecteur tangent sur le reste du domaine :

Regardons ce qui se passe au voisinage du point stationnaire :

lim
t→0

ẏ(t)

ẋ(t)
= lim

t→0

t(t− 2)(t2 − 1)2

(t− 1)2(−2t)
= 1 .

Le point stationnaire est donc un “point de rebroussement”, proche duquel la courbe a une
pente proche de 1, indiquée en traitillé sur l’animation ci-dessous.
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Animation disponible sur botafogo.saitis.net/analyse-B

⋄

Exemple 6.15. Considérons la courbe de Lissajous définie par

r⃗(t) =

(
sin(t)
sin(2t)

)
, t ∈ [−π, π] .

Avant de commencer, deux remarques :

• x(t) et y(t) sont des fonctions impaires, donc la partie de la courbe pour t ∈ [−π, 0]
s’obtient à partir de la partie de la courbe pour t ∈ [0, π], par une rotation de 180◦

autour de l’origine.
• De plus, on peut remarquer que pour tout s ∈ R,

x(π
2
− s) = x(s+ π

2
) , y(π

2
− s) = −y(π

2
+ s) ,

et donc la partie de la courbe avec t ∈ [π
2
, π] s’obtient à partir de la partie avec t ∈ [0, π

2
],

par une réflexion à travers Ox.

On peut donc se concentrer sur t ∈ [0, π
2
]. Sur cet intervalle, on a x(t) ⩾ 0, y(t) ⩾ 0, et les

signes des dérivées ẋ(t) = cos(t), ẏ(2) = 2 cos(2t) sont donnés par :
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Remarquons aussi que M(0) = (0, 0), M(π
4
) = ( 1√

2
, 1), M(π

2
) = (1, 0), et

˙⃗r(t) =

(
1
2

)
.

Ces informations permettent d’esquisser le tracé pour t ∈ [0, π
2
], de le réfléchir à travers Ox,

puis d’effectuer une rotation du tout, de 180◦ autour de l’origine :

⋄
La courbe de ce dernier exemple est un cas particulier d’un type de courbe plus général,

r⃗(t) =

(
sin(kt)
sin(ℓt)

)
, t ∈ [−π, π]

où k, ℓ ∈ N sont des paramètres :
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Animation disponible sur botafogo.saitis.net/analyse-B

Exemple 6.16. Le Folium de Descartes est défini comme

Γ = {(x, y) ∈ R2 : x3 − 3xy + y3 = 0} .

Remarquons que si (x, y) ∈ Γ, alors (y, x) ∈ Γ.

Cherchons des points (x, y) ∈ Γ, de la forme y = tx. En injectant dans la condition qui définit
Γ, on obtient x3 − 3x(tx) + (tx)3 = 0, c’est-à-dire

x2(x− 3t+ t3x) = 0 .

On a donc deux possibilités :
• x = 0, qui entraîne y = t0 = 0, ou
• x = 3t

1+t3
, qui entraîne y = tx = 3t2

1+t3
.

On peut donc étudier Γ à l’aide de la paramétrisation

x(t) =
3t

1 + t3
, y(t) =

3t2

1 + t3
, t ∈ R \ {−1} .

Les dérivées sont

ẋ(t) = 3
1− 2t3

(1 + t3)2
, ẏ(t) = 3

t(2− t3)

(1 + t3)2
,

et l’étude des signes :
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On a donc

1. un point de tangence horizontale en M(0) = (0, 0),

2. un point de tangence verticale en M( 1
3√2
) = (22/3,

√
2),

3. un point de tangence horizontale en M( 3
√
2) = (

√
2, 22/3) (le symétrique de M( 1

3√2
) à

travers la diagonale),

4. aucun point stationnaire.

Etudions les branches infinies.

Lorsque t → −1,

lim
t→−1∓

x(t) = ±∞, lim
t→−1∓

y(t) = ∓∞

On peut alors regarder

m = lim
t→−1∓

y(t)

x(t)
= lim

t→−1∓

3t2

1 + t3
· 1 + t3

3t
= −1 ,

puis

h = lim
t→−1∓

[y(t)− (−1)x(t)]

= lim
t→−1∓

(
3t2

1 + t3
+

3t

1 + t3

)
= lim

t→−1∓

3t(t+ 1)

1 + t3

= lim
t→−1∓

3t(t+ 1)

(t+ 1)(t2 − t+ 1)

=
−3

3
= −1.

et donc y = −x− 1 est une asymptote oblique lorsque t → −1∓.

On remarque que limt→±∞ x(t) = limt→±∞ y(t) = 0.

Tracé :
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Animation disponible sur botafogo.saitis.net/analyse-B

(On a aussi représenté la droite y = tx.) ⋄
Exemple 6.17. Soient

• γ le cercle de rayon 1 centré à l’origine,
• A = (2, 0),
• T ∈ γ (un point qui va bouger)
• d la tangente à γ en T ,
• p la droite perpendiculaire à d passant par A,
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• M le point d’intersection de p avec d.
La trajectoire de M , lorsque T se déplace sur γ, est appelée le Limaçon de Pascal :

Animation disponible sur botafogo.saitis.net/analyse-B

Introduisons le paramètre t ∈ [−π, π] pour localiser T sur le cercle :

−−−→
OT (t) =

(
cos(t)
sin(t)

)
.

Puisque la tangente d est perpendiculaire à
−−−→
OT (t), elle est dirigée par le vecteur(

− sin(t)
cos(t)

)
.

Pour une valeur fixée de t, les expressions paramétriques de d et p sont

d :

(
x
y

)
=

(
cos(t)
sin(t)

)
+ λ

(
− sin(t)
cos(t)

)
, λ ∈ R,

p :

(
x
y

)
=

(
2
0

)
+ µ

(
cos(t)
sin(t)

)
, µ ∈ R.

Puisque M(t) est le point d’intersection de ces deux droites, on pose(
cos(t)
sin(t)

)
+ λ

(
− sin(t)
cos(t)

)
=

(
2
0

)
+ µ

(
cos(t)
sin(t)

)
,

que l’on résout pour trouver

λ = −2 sin(t)

µ = 1− 2 cos(t).
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On a donc le point d’intersection M(t) = (x(t), y(t)), où

x(t) = cos(t) + 2 sin2(t),

y(t) =
(
1− 2 cos(t)

)
sin(t).

On étudie le Limaçon ainsi paramétré, pour t ∈ [−π, π].

Les dérivées sont

ẋ(t) = − sin(t)
(
1− 4 cos(t)

)
,

ẏ(t) = −4 cos2(t) + cos(t) + 2,

et on a
• ẋ(t) = 0 si et seulement si sin(t) = 0 ou cos(t) = 1

4
, ce qui implique t = 0, t = ±π, ou

t = ±s2, où

s2 := arccos

(
1

4

)
≈ 75.6◦

• ẏ(t) = 0 si et seulement si cos(t) = 1±
√
33

8
ce qui implique t = s1 ou s3, où

s1 := arccos

(
1−

√
33

8

)
≈ 32◦ ,

s3 := arccos

(
1 +

√
33

8

)
≈ 126.3◦

On remarque que x(t) est paire et y(t) est impaire, donc la partie t ∈ [−π, 0] s’obtient à partir
de la partie t ∈ [0, π] par réflexion à travers Ox.
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Animation disponible sur botafogo.saitis.net/analyse-B

⋄
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