
Chapitre 4

Fonctions continues

4.1 Introduction

On a vu que la valeur qu’une fonction f prend un un point x0 peut n’avoir aucun lien avec
la valeur de sa limite limx→x0 f(x).

Pour certaines fonctions, pourtant, la limite limx→x0 f(x) est égale à la valeur f(x0) de f en
x0. Ces fonctions sont dites continues.

Définition 4.1. Si f est définie en x0 ∈ R et dans son voisinage, et si

lim
x→x0

f(x) = f(x0) ,

on dit que f est continue en x0. Sinon, f est dite discontinue en x0.

La définition de continuité comporte implicitement trois exigences :

• f(x0) existe, c’est-à-dire x0 ∈ Df ,
• limx→x0 f(x) existe, limx→x0 f(x) = L ∈ R, et
• cette limite L = f(x0).

Exemple 4.2. La fonction f(x) = x2 est continue en 2, puisque limx→2 f(x) = 4 (voir section
précédente), et f(2) = 22 = 4, donc limx→2 f(x) = f(2). ⋄

On remarque qu’il est donc très facile de calculer les limites des fonctions continues : pour
trouver limx→x0 f(x), on doit simplement évaluer la fonction f en x0.

Considérons quelques exemples de fonctions discontinues :

• Discontinuité de type “trou” : limx→x0 f(x) existe mais f n’est pas définie en x0. Par
exemple, f(x) = sin(x)

x
en x0 = 0.
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4.1. Introduction

• Discontinuité de type “trou-saut” : f(x0) existe, limx→x0 f(x) existe aussi, mais f(x0) ̸=
limx→x0 f(x). Par exemple, si

f(x) =

{
x si x ̸= 5,

6 si x = 5 ,

alors avec x0 = 5 on a f(x0) = 6 mais limx→x0 f(x) = 5 :

• Discontinuité de type “saut” : limx→x+
0
f(x) et limx→x−

0
f(x) existent mais ne sont pas

égales (et donc limx→x0 f(x) n’existe pas). Par exemple,

f(x) =

{
x
2

si x < 2,

2 si x ⩾ 2

en x0 = 2 :
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4.1. Introduction

• Discontinuité de type infini : Au moins une des limites limx→x−
0
f(x), limx→x+

0
f(x) ou

limx→x0 f(x) est ±∞.

Par exemple, f(x) = 1
x−2

est discontinue en x0 = 2.

On peut expliciter la définition de la continuité en remplaçant la limite par sa définition : f
est continue en x0 si ∀ε > 0, ∃δ > 0 tel que

|x− x0| ⩽ δ =⇒ |f(x)− f(x0)| ⩽ ε .

Remarquons que pour la continuité, on s’intéresse justement à ce qui se passe en x0, et on
remplace donc la condition “0 < |x−x0| ⩽ δ”, dans la définition de limite, par “|x−x0| ⩽ δ”.

Définition 4.3. Soit I un intervalle ouvert. Une fonction f est dite continue sur I si elle est
continue en x0 pour tout x0 ∈ I .

L’ensemble de toutes les fonctions continues sur I est noté C0(I).

Intuitivement, une fonction est continue sur I si on peut y tracer son graphe “sans lever le
crayon”.
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4.1. Introduction

Exemple 4.4. Montrons que f(x) = x2 est continue en tout x0. Soit ε > 0. On cherche δ > 0
tel que |x− x0| ⩽ δ =⇒ |f(x)− f(x0)| ⩽ ε. On a

|f(x)− f(x0)| = |x2 − x2
0|

= |(x− x0) · (x+ x0)|
= |x− x0| · |x+ x0|
= |x− x0| · |x− x0 + x0 + x0|
⩽ |x− x0| · (|x− x0|+ |2x0|)
= |x− x0|2 + |2x0| · |x− x0|.

On doit donc choisir δ > 0 tel que

|x− x0| ⩽ δ =⇒ |x− x0|2 + |2x0| · |x− x0| ⩽ ε .

On a
|x− x0| ⩽ δ =⇒ |x− x0|2 + |2x0| · |x− x0| ⩽ δ2 + |2x0| · δ .

On peut donc prendre δ > 0 tel que δ2+ |2x0| ·δ ⩽ ε. En exigeant que δ ⩽ 1, on a δ2+ |2x0| ·δ =
δ(δ+ |2x0|) ⩽ δ(1+2|x0|), et donc il suffit de prendre δ > 0 tel que δ(1+2|x0|) ⩽ ε, c’est-à-dire
δ ⩽ ε

1+2|x0| .

Ainsi, en prenant 0 < δ ⩽ min{1, ε
1+2|x0|}, on a

|x− x0| ⩽ δ =⇒ |f(x)− f(x0)| ⩽ ε .

⋄
Exemples 4.5. • Soit f(x) = sin(x), et soit x0 ∈ R un point fixé. Montrons que f est

continue en x0. Soit ε > 0. On cherche δ > 0 tel que |x−x0| ⩽ δ =⇒ |f(x)− f(x0)| ⩽ ε.
On remarque pour commencer que

|f(x)− f(x0)| = | sin(x)− sin(x0)|

=

∣∣∣∣2 cos(x+ x0

2

)
sin

(
x− x0

2

)∣∣∣∣
= 2

∣∣∣∣cos(x+ x0

2

)∣∣∣∣ · ∣∣∣∣sin(x− x0

2

)∣∣∣∣
⩽ 2

∣∣∣∣sin(x− x0

2

)∣∣∣∣
⩽ 2

|x− x0|
2

= |x− x0|.

Prenons maintenant un δ tel que 0 < δ ⩽ ε. On a alors, pour ce δ, que

|x− x0| ⩽ δ =⇒ |f(x)− f(x0)| ⩽ |x− x0|
⩽ δ

⩽ ε .

Ceci montre que f est continue en x0. On a donc montré que f ∈ C0(R).
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4.1. Introduction

• En utilisant l’identité

cos(x)− cos(x0) = −2 sin

(
x+ x0

2

)
sin

(
x− x0

2

)
,

on prouve de même que cos(x) est continue en tout x0 ∈ R.
⋄

Proposition 4. Soient f et g continues en x0. Alors les fonctions suivantes sont aussi continues en
x0 :

• λf pour λ ∈ R,
• |f |,
• f ± g,
• f · g,
• f

g
(si g(x0) ̸= 0).

Ces propriétés sont conséquences des propriétés des limites. Par exemple, f et g sont conti-
nues en x0 ⇐⇒ limx→x0 f(x) = f(x0) et limx→x0 g(x) = g(x0). On a donc limx→x0(f(x) +
g(x)) = f(x0) + g(x0), et donc limx→x0(f + g)(x) = (f + g)(x0), d’où f + g est continue en x0.
Exemples 4.6. • En utilisant ces propriétés, la preuve de la continuité de f(x) = x2

devient immédiate : comme la fonction identité g(x) = x est continue (puisque pour
tout x0, on a limx→x0 g(x) = limx→x0 x = x0 = g(x0)), on a que f(x) = g(x)2 = g(x)g(x)
est continue en x0, étant donné que c’est un produit de fonctions continues en x0.

• De même, comme les fonctions constantes sont continues, on en déduit que les po-
lynômes sont des fonctions continues en tout x0, puisque ce sont des sommes de
produits de fonctions continues.

• Il en découle aussi que les fonctions rationnelles (de la forme f(x) = P (x)
Q(x)

, où P et Q
sont des polynômes) sont continues sur leur domaine.

• tan(x) = sin(x)
cos(x)

est continue sur son domaine puisqu’elle est donnée par le quotient de
deux fonctions continues.

• exp(x) et log(x) sont continues sur leurs domaines de définitions respectifs (on ne le
démontre pas).

⋄
Théorème 4.7. Soit f définie sur un voisinage épointé de x0 telle que limx→x0 f(x) = L ∈ R, et soit
g continue au point L. Alors

lim
x→x0

g(f(x)) = g( lim
x→x0

f(x)) = g(L).

Le théorème ci-dessus dit qu’on peut “passer les limites à l’intérieur d’une fonction conti-
nue”.
Exemple 4.8. Considérons la limite

lim
x→0

√
1 + sin(x) .

On peut écrire
√

1 + sin(x) = g(f(x)), où g(x) =
√
x, f(x) = 1 + sin(x). On sait que

limx→0 f(x) = 1, et puisque g est continue en 1, on peut “rentrer la limite dans g” :

lim
x→0

√
1 + sin(x) =

√
lim
x→0

(1 + sin(x)) =
√
1 = 1 .

⋄
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4.1. Introduction

Une conséquence du théorème :

Corollaire 2. Si f est continue en x0 et g est continue en f(x0), alors la composition g ◦ f est
continue en x0.

La caractérisation par les suites implique la caractérisation suivante de la continuité.

Théorème 4.9. f est continue en x0 ⇐⇒ pour toute suite (xn) telle que xn → x0, on a
limn→∞ f(xn) = f(x0).

On peut utiliser ce théorème pour montrer qu’une fonction n’est pas continue.

Définition 4.10. • Si limx→x+
0
f(x) = f(x0), la fonction f est dite continue à droite.

• Si limx→x−
0
f(x) = f(x0), la fonction f est dite continue à gauche.

Exemples 4.11. • f(x) = E(x) est continue à droite et discontinue à gauche en tout
x0 ∈ Z. En effet, si x0 ∈ Z,

lim
x→x−

0

E(x) = E(x0)− 1 = x0 − 1 ̸= x0 = E(x0) .
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4.2. Théorème de la valeur intermédiaire

• Soit f : [−2,+∞[→ R définie par

f(x) =


√
2+x−2
x−2

si x < 2,
1
4

si x = 2

2x2 − 4 si x > 2.

Discutons de la continuité de f en x0 = 2. On a

lim
x→2−

f(x) = lim
x→2−

√
2 + x− 2

x− 2

= lim
x→2−

(√
2 + x− 2

) (√
2 + x+ 2

)
(x− 2)

(√
2 + x+ 2

)
= lim

x→2−

x− 2

(x− 2)
(√

2 + x+ 2
)

= lim
x→2−

1√
2 + x+ 2

=
1

4
, et

lim
x→2+

f(x) = lim
x→2+

2x2 − 4 = 4.

On a limx→2− f(x) = 1
4
= f(2) et la fonction est donc continue à gauche en 2. Par

contre, puisque limx→2+ f(x) ̸= f(2), la fonction n’est pas continue à droite.
⋄

4.2 Théorème de la valeur intermédiaire
Définition 4.12. Une fonction f : [a, b] → R est dite continue si

• f est continue en tout x0 ∈ ]a, b[,
• f est continue à droite en a, et
• f est continue à gauche en b.

Théorème 4.13 (Théorème de la valeur intermédiaire (TVI)). Soit f : [a, b] → R continue, telle
que f(a) < f(b). Alors pour tout h ∈ ]f(a), f(b)[, il existe c ∈ ]a, b[ tel que f(c) = h.
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4.2. Théorème de la valeur intermédiaire

Démonstration. Soit f : [a, b] → R continue, telle que f(a) < f(b), et soit h ∈ ]f(a), f(b)[. On
va utiliser un algorithme de bissection pour construire c ∈ ]a, b[ tel que f(c) = h comme une
limite de suites. On procède par étapes :

Etape 1 : Soit a0 = a et b0 = b. On considère le milieu a0+b0
2

de [a0, b0].
• Si f

(
a0+b0

2

)
= h, on a trouvé c ∈ ]a, b[ tel que f(c) = h. Sinon,

• si f
(
a0+b0

2

)
< h, on pose a1 =

a0+b0
2

et b0 = b

• si f
(
a0+b0

2

)
> h, on pose a1 = a0 et b1 = a0+b0

2
.

Dans les deux derniers cas, on s’est ramené à un intervalle [a1, b1] de longueur b−a
2

, avec
f(a1) < h et f(b1) > h.

Etape 2 : On considère le milieu de l’intervalle [a1, b1] : soit on obtient un c ∈ ]a, b[ tel que
f(c) = h, soit on se ramène à un intervalle [a2, b2] de longueur b−a

4
, avec f(a2) < h et f(b2) >

h.

On répète cette procédure de telle sorte qu’à l’issue de l’étape n, si on n’a pas encore trouvé
un c ∈ ]a, b[ tel que f(c) = h, on a défini un intervalle [an, bn] ⊂ [a, b], de longueur b−a

2n
, avec

f(an) < h et f(bn) > h.

On obtient ainsi :
• Une suite (an) croissante et majorée par b
• Une suite bn décroissante et minorée par a.

Ces deux suites convergent, et on a de plus que

lim
n→∞

(bn − an) = lim
n→∞

b− a

2n
= 0 ,

donc limn→∞ bn = limn→∞ an. On définit

c = lim
n→∞

an = lim
n→∞

bn.

Il nous reste à prouver que f(c) = h. Par la continuité de f et puisque an → c, le théorème de
caractérisation de la continuité par les suites nous permet de dire que limn→∞ f(an) = f(c).
De même, limn→∞ f(bn) = f(c).

Or pour tout n, f(an) < h, donc limn→∞ f(an) ⩽ h. De même, pour tout n, f(bn) > h, donc
limn→∞ f(an) ⩾ h. Donc limn→∞ bn = limn→∞ an implique que

lim
n→∞

an = lim
n→∞

bn = h

et enfin que f(c) = h.

On remarque que sans l’hypothèse de continuité, le résultat n’est plus vrai en général.
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4.2. Théorème de la valeur intermédiaire

Exemple 4.14. On peut utiliser le TVI pour fournir une solution approximative d’une équa-
tion (et, en particulier, montrer qu’une solution existe). Considérons l’équation x5 = 1 − x.
On pose f(x) = x5 + x− 1, une fonction continue. Sur l’intervalle [0, 1], on a

f(0) = −1,

f(1) = 1.

On prend h := 0. Par le TVI, il existe c ∈ ]0, 1[ tel que f(c) = h = 0. Ce c satisfait f(c) =
c5 + c− 1 = 0, il est donc solution de f(x) = 0. On remarque que la longueur de l’intervalle
[0, 1] est 1.

Comme f
(
1
2

)
=
(
1
2

)5
+ 1

2
− 1 = −15

32
< 0, on peut maintenant considérer

[
1
2
, 1
]
, un intervalle

de longueur 1
2
. De nouveau par le TVI pour h = 0, il existe c ∈

]
1
2
, 1
[

tel que f(c) = h = 0.

On continue de cette manière pour réduire à chaque fois la longueur de l’intervalle dans
lequel se trouve la solution c. Ainsi, on obtient une bonne approximation de cette solution,
sans la connaître exactement. ⋄
La preuve du TVI utilise la même idée d’un algorithme de bissection.
On remarque qu’on peut utiliser le TVI pour localiser un point d’intersection de deux courbes
à un certain degré de précision. Si les deux courbes sont données par y = g(x) et y = h(x),
alors on considère la fonction f(x) = g(x)− h(x) et on étudie les points où f(x) s’annule en
utilisant le TVI.

Corollaire 3. Un polynôme de degré impair possède toujours une racine.

Démonstration. Considérons un polynôme de degré impair,

p(x) = a2n+1x
2n+1 + a2nx

2n + a2n−1x
2n−1 + · · ·+ a0 ,

avec a2n+1 ̸= 0.

Si a2n+1 > 0, alors limx→+∞ p(x) = +∞ et limx→−∞ p(x) = −∞. On a donc M > 0 tel que
p(M) > 0 et N < 0 tel que p(N) < 0. En appliquant le TVI sur l’intervalle [N,M ], on a qu’il
existe c ∈]N,M [ tel que p(c) = 0.
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4.2. Théorème de la valeur intermédiaire

Si a2n+1 < 0, alors limx→+∞ p(x) = −∞ et limx→−∞ p(x) = +∞, et on peut adapter le même
argument.

Théorème 4.15. Soit f : [a, b] → R une fonction continue.
• Si f est strictement croissante, alors Im(f) = [f(a), f(b)], et f : [a, b] → Im(f) est bijective.
• Si f est strictement décroissante, alors Im(f) = [f(b), f(a)], et f : [a, b] → Im(f) est

bijective.

Démonstration. Considérons le premier cas, dans lequel f est strictement croissante. Dans
ce cas, f(a) ⩽ f(x) ⩽ f(b) pour tout x ∈ [a, b], et donc Im(f) ⊂ [f(a), f(b)]. Puis, si on
fixe une valeur intermédiaire h, f(a) < h < f(b), le Théorème de la valeur intermédiaire
garantit l’existence d’un x ∈]a, b[ tel que f(x) = h, ce qui implique que h ∈ Im(f). Ainsi,
]f(a), f(b)[⊂ Im(f). Puisque f(a), f(b) ∈ Im(f), on a aussi [f(a), f(b)] ⊂ Im(f). On conclut
donc que Im(f) = [f(a), f(b)].

On sait maintenant que f : [a, b] → Im(f) est surjective. Mais étant strictement croissante,
elle est également injective. Elle est donc bijective.
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