
Chapitre 3

Trigonométrie circulaire

3.1 Le cercle trigonométrique

Le cercle trigonométrique est le cercle de rayon 1 centré en l’origine O(0, 0) du plan R2.

Il est partagé en quatre quadrants, notés I, II, III, IV .

Un angle trigonométrique α ∈ R positif se dessine dans le cercle trigonométrique dans
le sens contraire des aiguilles d’une montre ; un angle négatif se dessine dans le sens des
aiguilles d’une montre.

Dans ce cours, les angles seront mesurés en radians. La mesure d’un angle en radians cor-
respond à la longueur de l’arc de cercle (sur le cercle trigonométrique) sous-tendu par cet
angle. Une ouverture maximale correspond donc à 2π.

A chaque angle α on peut associer un unique point P (α) sur le cercle.
Angle trigonométrique positif α > 0 :
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3.1. Le cercle trigonométrique

Angle trigonométrique négatif α < 0 :

Représentons quelques angles importants et leurs points associés :
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3.1. Le cercle trigonométrique

On constate que le point associé à l’angle α+2π ou à l’angle α− 2π est le même que le point
associé α, on a donc P (α) = P (α + 2π) = P (α− 2π). Plus généralement,

P (α + k2π) = P (α),∀k ∈ Z.

Remarque 3.1. • Attention : si P (α) = P (β), i.e. deux points associés sont les mêmes,
cela n’implique pas forcément que les angles sont identiques, mais qu’ils peuvent
différer d’un multiple entier de tours :

P (α) = P (β) ⇒ α = β + k2π, pour un certain k ∈ Z.

• Ces relations entre angles et points associés auront un impact déterminant sur la na-
ture des fonctions trigonométriques.

⋄
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3.2. Les fonctions trigonométriques

3.2 Les fonctions trigonométriques

3.2.1 Sinus, cosinus

Définition 3.2. Soient α ∈ R un angle trigonométrique, et soit P (α) son point associé, de
coordonnées (x, y).

1. On définit le cosinus de α, noté cos(α), comme l’abcisse de P (α) :

cos(α) = x.

2. On définit le sinus de α, noté sin(α), comme l’ordonnée de P (α) :

sin(α) = y.

L’animation ci-dessous permet d’illustrer ces fonctions, pour des angles α ∈ [0, 2π[ :

Animation disponible sur botafogo.saitis.net/analyse-1

Les propriétés suivantes sont conséquences directes des définitions du sinus et du cosinus.
Pour tout α ∈ R,

1. cos(α) ∈ [−1, 1], sin(α) ∈ [−1, 1]

2. cos2(α) + sin2(α) = 1

3. Si P (α) ∈ I , cos(α) ⩾ 0, sin(α) ⩾ 0.
4. Si P (α) ∈ II , cos(α) ⩽ 0, sin(α) ⩾ 0.
5. Si P (α) ∈ III , cos(α) ⩽ 0, sin(α) ⩽ 0.
6. Si P (α) ∈ IV , cos(α) ⩾ 0, sin(α) ⩽ 0.
7. Comme P (α + k2π) = P (α) ∀k ∈ Z, on a que pour tout k ∈ Z,

cos(α + k2π) = cos(α) ,

sin(α + k2π) = sin(α) .

On dit que ces fonctions sont périodiques, de période 2π. Elles ne sont donc ni mo-
notones, ni injectives.
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3.2. Les fonctions trigonométriques

De plus, les propriétés et les symétries du cercle trigonométrique impliquent les relations
suivantes :

1. Angles opposés (symétrie axiale d’axe Ox) :

cos(−α) = cos(α) sin(−α) = − sin(α)

En d’autres termes : x 7→ cos(x) est une fonction paire, et x 7→ sin(x) est une fonction
impaire.

2. Angles supplémentaires (symétrie axiale d’axe Oy) :

cos(π − α) = − cos(α) sin(π − α) = sin(α)

3. Angles diamétralement opposés (symétrie centrale) :

cos(α + π) = − cos(α) sin(α + π) = − sin(α)

4. Angles complémentaires (symétrie axiale d’axe x = y) :
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3.2. Les fonctions trigonométriques

cos
(π
2
− α

)
= sin(α) sin

(π
2
− α

)
= cos(α)

3.2.2 Tangente et cotangente

Définition 3.3. Soit t la droite perpendiculaire à l’axe Ox en (1, 0), soit α un angle trigono-
métrique et P (α) son point associé sur le cercle. Soit T (α) = (1, y) le point d’intersection de
t avec la droite OP (α). La tangente de l’angle α, notée tan(α), est définie comme l’ordonnée
du point T (α).

Définition 3.4. Soit t′ la droite perpendulaire à l’axe Oy en (0, 1), soit α un angle trigonomé-
trique et P (α) son point associé sur le cercle. Soit T ′(α) = (x, 1) le point d’interesection de t′

avec la droite OP (α). La cotangente de l’angle α, notée cotg(α), est définie comme l’abcisse
du point T ′(α).
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3.2. Les fonctions trigonométriques

On a les propriétés suivantes :

1. La tangente n’est pas définie pour α = π
2
+kπ, ∀k ∈ Z. Donc son domaine de définition

est Dtan = R \
{

π
2
+ kπ, k ∈ Z

}
.

2. La cotangente n’est pas définie pour α = kπ, ∀k ∈ Z. Donc son domaine de définition
est Dcotg = R \ {kπ, k ∈ Z}.

3. Pour tout k ∈ Z,

tan(α + kπ) = tan(α) ∀α ∈ Dtan

cotg(α + kπ) = cotg(α) ∀α ∈ Dcotg .

Ces fonctions sont périodiques, de période π.

4. Sur Dtan,

tan(α) =
sin(α)

cos(α)
.

5. Sur Dcotg,

cotg(α) =
cos(α)

sin(α)
=

1

tan(α)
.

6. Ces fonctions sont impaires :

tan(−α) = − tan(α) , cotg(−α) = − cotg(α) .

On a aussi les symétries suivantes :

1. tan(π − α) = − tan(α), cotg(π − α) = − cotg(α).
2. tan

(
π
2
− α

)
= cotg(α) et cotg

(
π
2
− α

)
= tan(α).
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3.2. Les fonctions trigonométriques

3.2.3 Fonctions trigonométriques pour des angles remarquables

Les fonctions trigonométriques, à l’origine, sont faites pour résoudres des problèmes de
géométrie élémentaire.

Si on considère un triangle rectangle, on remarque que les fonctions trigonométriques re-
présentent la proportionnalité constante existant entre les longueurs de certaines paires de
côtés :

cos(α) =
côté adjacent
hypothénuse

=
AB

AC

sin(α) =
côté opposé

hypothénuse
=

BC

AC

tan(α) =
côté opposé
côté adjacent

=
BC

AB

Ceci permet de calculer les valeurs des fonctions trigonométriques, pour des angles particu-
liers, dits remarquables.

• Pour l’angle π
4
, considérons un carré de côté 1 :

Par le Théorème de Pythagore, la diagonale de ce carré vaut
√
2, et donc

cos
(π
4

)
= sin

(π
4

)
=

1√
2
=

√
2

2

(Dans la dernière égalité, on a multiplié la fraction par 1 =
√
2√
2
.) Aussi,

tan
(π
4

)
= 1 .
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3.2. Les fonctions trigonométriques

• Pour l’angle π
3
, considérons un triangle équilatéral de côté 1 :

La hauteur de ce triangle est de longueur
√
3
2

, et elle intersecte le côté horizontal en
son milieu. On a donc

cos
(π
3

)
=

1

2
, sin

(π
3

)
=

√
3

2
, tan

(π
3

)
=

√
3/2

1/2
=

√
3 .

On peut obtenir les valeurs des fonctions trigonométriques pour l’angle π
6

de la même façon.
Résumons ce qu’on a obtenu jusqu’à présent dans le tableau suivant.

Représentation et construction géométrique des angles remarquables dans le premier qua-
drant :
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3.3. Les 4 équations élémentaires

3.3 Les 4 équations élémentaires

On va présenter la résolution de chacune des quatre équations trigonométriques élémen-
taires, qui sont :

cos(x) = a, sin(x) = a, tan(x) = a, cotg(x) = a.

• A l’avenir quand nous traiterons des équations plus complexes, la stratégie sera tou-
jours de se ramener à l’une de ces équations élémentaires.

• La résolution est basée sur la nature du cercle trigonométrique qui implique que des
angles différents peuvent avoir des cosinus et sinus identiques. (Par exemple, deux
angles supplémentaires ont le même sinus, deux angles opposés ont le même cosi-
nus.)

3.3.1 L’équation cos(x) = a

1. L’équation possède des solutions si a ∈ [−1, 1].

2. L’équation est bien définie pour tout x ∈ R.

3. On cherche un angle α tel que cos(α) = a (par exemple parmi les valeurs remar-
quables).

4. On doit donc résoudre cos(x) = cos(α). Deux cosinus sont égaux si les angles sont les
mêmes ou sont opposés, le tout à 2π près.

5. Solution :

cos(x) = cos(α) ⇔ x = α + k2π ou x = −α + k2π, k ∈ Z.

Exemple 3.5. Résoudre pour x ∈ R : cos(x) = 1
2
. On sait que cos

(
π
3

)
= 1

2
. On résout donc

cos(x) = cos
(
π
3

)
et on a deux familles de solutions :

x =
π

3
+ k2π ou x = −π

3
+ k2π, k ∈ Z .

Et donc
S =

{
±π

3
+ k2π, k ∈ Z

}
.
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3.3. Les 4 équations élémentaires

⋄
Exemple 3.6. Résoudre pour x ∈ R : cos(2x) = 1

2
. On pose y = 2x et on commence par

résoudre cos(y) = 1
2
. On trouve deux familles de solutions

y1 =
π

3
+ k2π ou y2 = −π

3
+ k2π, k ∈ Z .

Chaque famille génère un point associé sur le cercle.

En repassant dans la variable x, on trouve donc

2x =
π

3
+ k2π ou 2x = −π

3
+ k2π, k ∈ Z

et donc

x1 =
π

6
+ kπ ou x2 = −π

6
+ kπ, k ∈ Z.

Afin de visualiser, représentons certaines solutions sur le cercle. On peut par exemple prendre
les solutions x1 et x2, pour k = 0, 1, 2.
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3.3. Les 4 équations élémentaires

On voit que les deux familles de solutions génèrent ici 4 points associés, et non plus seule-
ment deux. Chaque famille génère en fait un couple de points diamétralement opposés (à
cause du kπ, qui représente des demi-tours supplémentaires). ⋄
Exemple 3.7. Résoudre pour x ∈ [0, 2π] : cos(2x) = 1

2
. L’équation est la même qu’avant,

mais la contrainte “x ∈ [0, 2π]” impose de garder seulement les solutions appartenant à cet
intervalle.

1. On résout tout d’abord le problème pour x ∈ R. Par ce qui précède, on a trouvé que

x1 =
π

6
+ kπ, ou x2 = −π

6
+ kπ, k ∈ Z .

2. On résout maintenant sur l’intervalle [0, 2π]. Il faut chercher k pour que x1 et x2 ap-
partiennent à cet intervalle. On procède en s’aidant de la représentation : on se place
en zéro et on tourne dans le sens trigonométrique jusqu’à atteindre 2π et on capture
au passage tous les angles qui nous intéressent.

On peut donc choisir x1 avec k = 0, 1 et x2 avec k = 1, 2. Pour les autres k, on sort de
l’intervalle [0, 2π].

On conclut donc que S =
{

π
6
, 5π

6
, 7π

6
, 11π

6

}
. ⋄

Exemple 3.8. Résoudre pour x ∈
[
−π

2
, π
2

]
: cos(2x) = 1

2
. Comme avant on résout tout d’abord

le problème pour x ∈ R et on trouve

x1 =
π

6
+ kπ, ou x2 = −π

6
+ kπ, k ∈ Z .

Cette fois, on ne garde que les angles compris dans l’intervalle
[
−π

2
,
π

2

]
. On procède par

visualisation
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3.3. Les 4 équations élémentaires

• La solution x = π
6

et la solution x = −π
6

sont dans le bon intervalle (k = 0)
• L’intervalle

[
−π

2
, π
2

]
est l’union des quadrants IV et I . Des angles dont les points

associés seront dans II ∪ III seront à exclure.
• L’ensemble des angles solutions de l’équation donnent 4 points associés sur le cercle.

Tous les angles qui génèrent les deux points associés dans le demi-cercle de gauche
sont à exclure. Par conséquent, on doit juste s’intéresser aux solutions dans le demi-
cercle de droite. Comme on a déjà les deux solutions x = π

6
et x = −π

6
qui sont dans

le bon intervalle, tous les autres angles qui envoient sur ces mêmes points seront soit
strictement plus petit que −π

2
soit strictement plus grand que π

2
.

On conclut donc que S =
{

π
6
,−π

6

}
. ⋄

Exemple 3.9. Résoudre pour x ∈ [−4π,−3π] : cos(2x) = 1
2
. Même exemple que le précédent

mais cette fois on cherche les x dans un autre intervalle. On voit que cette fois on doit prendre
des points dans le quadrant I ou II . Pour s’aider, on représente les points sur un tour de
cercle entre −2π et 0. On rappelle les solutions

x1 =
π

6
+ kπ, ou x2 = −π

6
+ kπ, k ∈ Z.

Il faut choisir le bon nombre de demi-tours/tours à faire pour être dans le bon intervalle. Ici
on peut prendre x1 avec k = −4 et x2 avec k = −3. En effet, π

6
∈ [0, π] et donc en faisant 2

tours dans le sens anti-trigonométrique (i.e −4π) on arrive dans l’intervalle [−4π,−3π]. De
même, −π

6
∈ [−π, 0]. En faisant trois demi-tours dans le sens horaire (i.e −3π), on arrive dans

le bon intervalle. Comme on a trouvé deux angles dans [−4π,−3π] qui génèrent les deux
points du demi-supérieur, on les a tous trouvé.

On prend alors comme solution π
6
−4π = −23π

6
et −π

6
−3π = −19π

6
, et donc S =

{
−19π

6
,−23π

6

}
.
⋄

3.3.2 L’équation sin(x) = a

1. L’équation possède des solutions si a ∈ [−1, 1].

2. L’équation est bien définie pour tout x ∈ R.

3. On cherche un angle α tel que sin(α) = a (par exemple parmi les valeurs remar-
quables).

4. On doit donc résoudre sin(x) = sin(α). Deux sinus sont égaux si les angles sont les
mêmes ou sont supplémentaires, le tout à 2π près.
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3.3. Les 4 équations élémentaires

5. Solution :

sin(x) = sin(α) ⇔ x = α + k2π ou x = π − α + k2π, k ∈ Z.

Exemple 3.10. Résoudre pour x ∈ R : sin(x) ⩾ 1
2
.

On cherche α tel sin(α) = 1
2
. On peut choisir par exemple α = π

6
. On doit donc résoudre

sin(x) ⩾ sin
(π
6

)
.

L’erreur serait de dire que x ⩾ π
6

mais attention, les fonctions trigonométriques ne sont
pas monotones. Il est utile de considérer ce qui se passe sur le cercle trigonométrique. On
représente dans le cercle des angles supplémentaires pour lequel le sinus vaut 1

2
.

Les points situés sur la partie verte du cercle ont des ordonnées plus grandes que 1
2
, donc les

angles associés ont leur sinus plus grand que 1
2
. On doit donc choisir

π

6
+ k2π ⩽ x ⩽

5π

6
+ k2π, k ∈ Z.

On a donc S =
⋃
k∈Z

[
π

6
+ k2π,

5π

6
+ k2π

]
. ⋄
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3.3. Les 4 équations élémentaires

3.3.3 L’équation tan(x) = a

1. L’équation possède des solutions ∀a ∈ R.

2. Le domain de définition est Dtan = R \
{π
2
+ kπ, k ∈ Z

}
.

3. On cherche un angle α tel que tan(α) = a (par exemple parmi les valeurs remar-
quables).

4. On doit donc résoudre tan(x) = tan(α). Deux tangentes sont égales si les angles sont
les mêmes ou diffèrent d’un demi-tour.

5. Solution :
tan(x) = tan(α) ⇔ x = α + kπ, k ∈ Z.

Exemple 3.11. 1. Résoudre pour x ∈ R : tan(3x) ⩽ 1. Considérons encore une fois le
cercle trigonométrique. On pose d’abord y = 3x et on résout tan(y) ⩽ 1.

Les angles associés aux points situés sur les portions rouges auront des tangentes
inférieures à 1. On a donc

−π

2
+ kπ < y ⩽

π

4
+ kπ.

Notez que le +kπ permet de considérer les deux zones rouges d’un coup (l’une étant
la rotation d’un demi-tour de l’autre) ainsi que tous les demi-tours supplémentaires.
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3.3. Les 4 équations élémentaires

Notez aussi l’inégalité stricte à gauche car −π
2

+ kπ n’est pas dans le domaine de
définition de la tangente.
On a donc finalement

−π

6
+ k

π

3
< x ⩽

π

12
+ k

π

3

et
S =

⋃
k∈Z

]
−π

6
+ k

π

3
,
π

12
+ k

π

3

]
.

Représentons certains de ces angles (par exemple pour k = 0, 1, 2, 3, 4, 5)) :

2. Résoudre pour x ∈ [0, 2π] : tan(3x) ⩽ 1. On prend les solutions obtenues précédem-
ment, et on "filtre" les intervalles pour qu’ils appartiennent tous à [0, 2π]. On réfléchit
géométriquement. On se place en 0 dans le cercle trigonométrique et on tourne jus-
qu’à 2π. On a donc

S =
[
0,

π

12

]
∪
]
π

6
,
5π

12

]
∪
]
π

2
,
3π

4

]
∪
]
5π

6
,
13π

12

]
∪
]
7π

6
,
17π

12

]
∪
]
3π

2
,
7π

4

]
∪
]
11π

6
, 2π

]
.

On doit faire attention au fait que l’intervalle
]
−π

6
,
π

12

]
n’est pas entièrement contenu

dans [0, 2π]. Il faut donc "exploser" l’intervalle en prenant chaque partie dans le bon
tour du cercle trigonométrique.

⋄

3.3.4 L’équation cotg(x) = a

1. L’équation possède des solutions ∀a ∈ R.

2. Le domain de définition est Dcot = R \ {kπ, k ∈ Z} .

3. On cherche un angle α tel que cotg(α) = a (par exemple parmi les valeurs remar-
quables).

4. On doit donc résoudre cotg(x) = cotg(α). Deux cotangentes sont égales si les angles
sont les mêmes ou diffèrent d’un demi-tour.

5. Solution :
cotg(x) = cotg(α) ⇔ x = α + kπ, k ∈ Z.
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3.4. Formules trigonométriques

3.4 Formules trigonométriques

3.4.1 Préparation : une rotation dans le plan

Considérons le cercle trigonométrique dans le repère orthonormé canonique (e⃗1, e⃗2) :

Si on fait tourner le repère d’un angle β, on obtient deux nouveaux vecteurs f⃗1 et f⃗2 :
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3.4. Formules trigonométriques

Ces derniers s’écrivent
f⃗1 = cos(β)e⃗1 + sin(β)e⃗2 ,

et
f⃗2 = cos(π

2
+ β)e⃗1 + sin(π

2
+ β)e⃗2 = − sin(β)e⃗1 + cos(β)e⃗2 .

Prenons maintenant un angle α ∈ R, et son point associé P (α) sur le cercle. Relativement au
repère (e⃗1, e⃗2),

−−−−→
OP (α) = cos(α)e⃗1 + sin(α)e⃗2 .

Après une rotation d’angle β, P (α) devient P (α + β) :

Relativement à (e⃗1, e⃗2),

−−−−−−−→
OP (α + β) = cos(α + β)e⃗1 + sin(α + β)e⃗2 .

Mais, relativement à (f⃗1, f⃗2),

−−−−−−−→
OP (α + β) = cos(α)f⃗1 + sin(α)f⃗2 ,

74 NumChap: chap-trigo, Dernière compilation: 2025-05-18 23:51:26+02:00. (Version Web:botafogo.saitis.net/analyse-A)

botafogo.saitis.net/analyse-A


3.4. Formules trigonométriques

et en utilisant les relations données plus haut, exprimant les vecteurs de (f⃗1, f⃗2) en fonction
de ceux de (e⃗1, e⃗2), et en réarrangeant, cette dernière devient

−−−−−−−→
OP (α + β)

= cos(α)
(
cos(β)e⃗1 + sin(β)e⃗2

)
+ sin(α)

(
− sin(β)e⃗1 + cos(β)e⃗2

)
=
(
cos(α) cos(β)− sin(α) sin(β)

)
e⃗1 +

(
sin(α) cos(β) + cos(α) sin(β)

)
e⃗2.

Comme les composantes de
−−−−−−−→
OP (α + β) relativement au repère (e⃗1, e⃗2) sont uniques, on en

déduit que

cos(α + β) = cos(α) cos(β)− sin(α) sin(β)

sin(α + β) = sin(α) cos(β) + cos(α) sin(β)

3.4.2 Conséquence : formules d’addition

L’argument algébrique/géométrique de la section précédente nous a amené aux formules
d’addition :

cos(x+ y) = cos(x) cos(y)− sin(x) sin(y)

sin(x+ y) = sin(x) cos(y) + cos(x) sin(y) .

Celles-ci impliquent aussi une formule d’addition pour la tangente, puisque

tan(x+ y) =
sin(x+ y)

cos(x+ y)

=
sin(x) cos(y) + cos(x) sin(y)

cos(x) cos(y)− sin(x) sin(y)

=
tan(x) + tan(y)

1− tan(x) tan(y)
.

(Dans la troisième ligne on a divisé numérateur et dénominateur par cos(x) cos(y).)

En remplaçant y par −y dans les formules d’addition et en utilisant les propriétés de parité,
on obtient aussi

sin(x− y) = sin(x) cos(y)− cos(x) sin(y)

cos(x− y) = cos(x) cos(y) + sin(x) sin(y)

tan(x− y) =
tan(x)− tan(y)

1 + tan(x) tan(y)

D’autres expressions utiles se déduisent des formules d’addition.
• Formules pour le double d’un angle ou Formules de duplication. En prenant x = y

dans les formules d’addition, on a d’une part que

sin(2x) = 2 sin(x) cos(x) ,

et d’autre part que

cos(2x) = cos2(x)− sin2(x) = 1− 2 sin2(x) = 2 cos2(x)− 1
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• Formules de bissection. En remplaçant x par x/2 dans les formules du double d’un
angle :

sin2(x
2
) =

1− cos(x)

2

cos2(x
2
) =

1 + cos(x)

2

tan2(x
2
) =

1− cos(x)

1 + cos(x)

• Formules de transformation produit-somme.

cos(x) · cos(y) = 1
2
[ cos(x+ y) + cos(x− y) ]

sin(x) · sin(y) = −1
2
[ cos(x+ y)− cos(x− y) ]

sin(x) · cos(y) = 1
2
[ sin(x+ y) + sin(x− y) ]

(On démontre ces formules en partant du terme de droite, auquel on applique les
formules du haut.)

• Formules de transformation somme-produit. En remplaçant x par x+y
2

et y par x−y
2

dans les formules de produit-somme,

cos(x) + cos(y) = 2 cos(x+y
2
) cos(x−y

2
)

cos(x)− cos(y) = −2 sin(x+y
2
) sin(x−y

2
)

et

sin(x) + sin(y) = 2 sin(x+y
2
) cos(x−y

2
)

sin(x)− sin(y) = 2 cos(x+y
2
) sin(x−y

2
)

• Expressions des fonctions trigonométriques en fonction de tan(x
2
). À partir des for-

mules de bissections et de double d’un arc,

sinx =
2 tan(x

2
)

1 + tan2(x
2
)

cosx =
1− tan2(x

2
)

1 + tan2(x
2
)

tanx =
2 tan(x

2
)

1− tan2(x
2
)

3.4.3 Application : dérivées des fonctions trigonométriques

A l’aide des formules de transformation somme-produit, on peut obtenir les expressions des
dérivées des fonctions trigonométriques :

(sin(x))′ = cos(x),

(cos(x))′ = − sin(x),

(tan(x))′ = 1 + tan2(x) =
1

cos2(x)
.
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En effet,

(sin(x))′ = lim
y→x

sin(y)− sin(x)

y − x

= lim
y→x

2 cos
(
y+x
2

)
sin
(
y−x
2

)
y − x

=

(
lim
y→x

cos
(
y+x
2

))(
lim
y→x

sin
(
y−x
2

)
y−x
2

)
= cos(x) · 1 = cos(x) .

On en déduit, par la formule de la dérivation d’une composée, que

(cos(x))′ =
(
sin(π

2
− x)

)′
= cos(π

2
− x) · (−1) = − sin(x) ,

et par la formule de dérivation d’un quotient,

(tan(x))′ =

(
sin(x)

cos(x)

)′

=
cos(x) cos(x)− sin(x)(− sin(x))

cos2(x)

=
1

cos2(x)
= 1 + tan2(x) .

De même on peut calculer que

(cotg(x))′ =
−1

sin2(x)
= −1− cotg2(x) .

3.4.4 Application : calcul de valeurs remarquables supplémentaires

Exemple 3.12. 1. Calculons cos( π
12
). Par la formule de bissection,

cos2
(

π
12

)
=

1 + cos(π/6)

2
=

1 +
√
3/2

2
=

2 +
√
3

4
,

ce qui implique que cos( π
12
) est soit +

√
2+

√
3

2
, soit −

√
2+

√
3

2
.

Comme π
12

se situe dans le premier quadrant, son cosinus est positif et donc

cos
(

π
12

)
=

√
2 +

√
3

2
.

2. Calculons sin(− π
12
). Par la formule de bissection,

sin2
(
− π

12

)
=

1− cos(−π/6)

2
=

2−
√
3

4
.

Comme −π
6

se situe dans le quatrième quadrant son sinus est négatif et donc

sin
(
− π

12

)
= −

√
2−

√
3

2
.

⋄
De manière générale, on peut calculer à présent les cosinus et sinus de tout angle de la forme
α
2n
, n ∈ N pour α une valeur remarquable dans le premier quadrant. On pourra obtenir

les cosinus et sinus de ces angles dans les autres quadrants en utilisant les propriétés des
cosinus et sinus (symétriques par rapport aux axes et par rapport à l’origine).
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3.4.5 Application : factorisation en équations/inéquations plus simples

Exemple 3.13. Résolvons l’équation

sin(5x)− sin(x) = cos(3x) , x ∈ R .

En utilisant une des formules de transformation somme-produit, on peut écrire

sin(5x)− sin(x) = 2 cos
(
6x
2

)
sin
(
4x
2

)
= 2 cos(3x) sin(2x) ,

et donc l’équation peut s’écrire sous la forme

2 cos(3x) sin(2x) = cos(3x) ,

c’est-à-dire

cos(3x) (2 sin(2x)− 1) = 0 ⇔ cos(3x) = 0 ou sin(2x) =
1

2
.

Or on a d’une part que

cos(3x) = 0 ⇔ x ∈ S1 =
{

π
6
+ k π

3
, k ∈ Z

}
,

et d’autre part que

sin(2x) = 1
2

⇔ x ∈ S2 =
{

π
12

+ kπ, 5π
12

+ kπ, k ∈ Z
}
.

Finalement, on a donc comme ensemble solution :

S = S1 ∪ S2 =
{

π
6
+ k π

3
, π
12

+ kπ, 5π
12

+ kπ, k ∈ Z
}
.

⋄

3.4.6 Equations et inéquations trigonométriques linéaires

Exemple 3.14. Résolvons l’équation

1
2
cos(x) +

√
3
2
sin(x) =

√
2
2
, x ∈ R

L’idée est d’utiliser une formule trigonométrique pour récrire le membre de gauche.

Or si on remarque que 1
2
= sin(π

6
) et

√
3
2

= cos(π
6
), on peut récrire l’équation comme

sin
(
π
6

)
cos(x) + cos

(
π
6

)
sin(x) =

√
2

2
.

Par la formule d’addition pour sin(x+ y), le membre de gauche est simplement

sin
(
π
6

)
cos(x) + cos

(
π
6

)
sin(x) = sin

(
π
6
+ x
)
.

Notre équation se réduit donc à

sin
(
π
6
+ x
)
= sin

(
π
4

)
,

dont les solutions sont
π
6
+ x = π

4
+ k2π ou π

6
+ x = 3π

4
+ k2π, k ∈ Z.

Donc
S =

{
π
12

+ k2π, 7π
12

+ k2π, k ∈ Z
}
.

⋄
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Remarque 3.15. Dans ce dernier exemple, on aurait aussi pu décider d’écrire 1
2
= cos(π

3
) et

√
3
2

= sin(π
3
), pour avoir

cos
(
π
3

)
cos(x) + sin

(
π
3

)
sin(x) =

√
2
2
,

qui par la formule pour cos(x− y) devient

cos
(π
3
− x
)
= cos

(π
4

)
,

qui a le même ensemble solution S. ⋄
Exemple 3.16. Résolvons l’inéquation

cos(x) + sin(x) > 1, x ∈]− 4π,−π[ .

On commence par résoudre le problème sans contrainte (pour x ∈ R). La stratégie est la
même que précédemment. Idéalement, on aimerait un angle α tel que sin(α) = cos(α) = 1
afin d’écrire le membre de droite comme une seule fonction trigonométrique. On observe
cependant qu’un tel angle n’existe pas car le point (1, 1) n’appartient pas au cercle trigono-
métrique.

En considérant le vecteur reliant l’origine à (1, 1) et en divisant par sa norme qui vaut
√
2,

on obtient un nouveau vecteur de norme 1 dont l’extrémité est le point (1/
√
2, 1/

√
2) =

(
√
2/2,

√
2/2) se trouve sur le cercle trigonométrique et dont les coordonnées peuvent être

exprimées comme le cosinus et le sinus d’un angle. On a donc fait une normalisation.

En divisant chaque côté de l’inéquation par
√
2, elle devient

√
2
2
cos(x) +

√
2
2
sin(x) >

√
2
2

qui puisque
√
2
2

= sin(π
4
) = cos(π

4
) se simplifie encore en

sin
(
π
4
+ x
)
> sin(π/4) .

On visualise dans le cercle trigonométrique,
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pour trouver
π
4
+ k2π < π

4
+ x < 3π

4
+ k2π, k ∈ Z

et donc l’ensemble solution sans contrainte est

E =
⋃
k∈Z

]
k2π, π

2
+ k2π

[
.

Finalement, on ne garde que les x ∈ E qui satisfont la contrainte x ∈]−4π,−π[, pour obtenir

S =
]
−4π,−7π

2

[
∪
]
−2π,−3π

2

[
.

⋄
Dans un cadre plus général, la méthode utilisée dans l’exemple précédent suggère que pour
résoudre une équation de la forme

a cos(x) + b sin(x) = c ,

où a, b, c ∈ R, on pourra procéder comme suit :

1. On normalise l’équation en divisant par
√
a2 + b2 (la norme de

−→
OP , avec P = (a, b)) :

a√
a2 + b2

cos(x) +
b√

a2 + b2
sin(x) =

c√
a2 + b2

.

2. Si c√
a2+b2

∈ [−1, 1], on peut résoudre le problème (il faut que ce nombre soit le sinus
ou le cosinus d’un angle, un critère simple est de vérifier si a2 + b2 ⩽ c2 ⇔ −1 ⩽

c√
a2+b2

⩽ 1).

3. On choisit un α tel que (par exemple) sin(α) = a√
a2+b2

et cos(α) = b√
a2+b2

.

4. On utilise la formule

sin(α) cos(x) + cos(α) sin(x) = sin(α + x).

5. On cherche β tel que (ici on choisit le sinus) sin(β) = c√
a2+b2

6. Finalement on résout
sin(α + x) = sin(β).

La démarche est la même pour une inéquation.
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3.5. Fonctions trigonométriques réciproques

3.5 Fonctions trigonométriques réciproques

On définit ici les fonctions réciproques des fonctions trigonométriques, on énonce certaines
de leurs propriétés, en particulier on calcule leurs dérivées.

3.5.1 Fonction réciproque du sinus

La fonction sinus, vue comme définie sur tout R,

sin : R → [−1, 1]

x 7→ sin(x) ,

est surjective mais pas injective, puisque par exemple des angles supplémentaires ont le
même sinus.

Animation disponible sur botafogo.saitis.net/analyse-1

On peut par contre la rendre injective en restreignant son domaine.

En effet, si on se restreint à prendre des angles qui sont dans IV ∪ I ou II ∪ III (demi-cercle
de gauche ou de droite), c’est à dire dans un intervalle du type

[−π
2
+ kπ, π

2
+ kπ

]
pour un

k ∈ Z, alors la fonction

sin :
[
−π

2
+ kπ, π

2
+ kπ

]
→ [−1, 1]

x 7→ sin(x)

est

1. injective puisque des angles distincts dans son domaine ont des images distinctes,

2. surjective puisque pour tout y ∈ [−1, 1] il existe un x ∈
[
−π

2
+ kπ, π

2
+ kπ

]
tel que

sin(x) = y.

Définition 3.17. 1. Un intervalle du type
[
−π

2
+ kπ, π

2
+ kπ

]
s’appelle une détermina-

tion du sinus. Le sinus y est à la fois injectif et surjectif dans [−1, 1], et donc bijectif.

2. L’intervalle pour k = 0,
[
−π

2
, π
2

]
, s’appelle la détermination principale du sinus.

Une détermination est donc un intervalle sur lequel la fonction sin possède une réciproque.
La convention est de choisir la détermination principale pour définir une fois pour toute une
réciproque :
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3.5. Fonctions trigonométriques réciproques

Animation disponible sur botafogo.saitis.net/analyse-1

Définition 3.18. On définit l’arc sinus comme la réciproque de

sin :
[
−π

2
, π
2

]
→ [−1, 1]

x 7→ y = sin(x) .

On la note

arcsin : [−1, 1] →
[−π

2
, π
2

]
y 7→ x = arcsin(y) ,

où x est l’unique x ∈ [−π
2
, π
2
] tel que sin(y) = x.

Comme on sait, le graphe d’une fonction réciproque s’obtient en réfléchissant celui de la
fonction à travers la diagonale y = x :

Animation disponible sur botafogo.saitis.net/analyse-1

Par définition,

arcsin(sin(x)) = x ∀x ∈ [−π
2
, π
2
] ,

sin(arcsin(y)) = y ∀y ∈ [−1, 1] .
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3.5. Fonctions trigonométriques réciproques

Exemples 3.19. 1. sin(arcsin(2
3
)) = 2

3

2. arcsin(sin(−π
7
)) = −π

7

3. arcsin(sin(7π
6
)) =? Puisque 7π

6
/∈
[−π

2
, π
2

]
, on doit d’abord trouver l’unique x ∈ [−π

2
, π
2
]

tel que
sin
(
7π
6

)
= sin(x) .

Cet angle est x = −π
6
. Donc

arcsin
(
sin
(
7π
6

))
= arcsin

(
sin
(
−π

6

))
= −π

6

⋄
Avoir une réciproque bien définie pour le sinus permet maintenant de résoudre plus d’équa-
tions.

Pour tout a ∈ [−1, 1], on a

sin(x) = a ⇔ x =


arcsin(a) + k2π, k ∈ Z ,
ou
π − arcsin(a) + k2π, k ∈ Z .

Exemple 3.20. Résolvons
sin(x) = −3

4
, x ∈ [π, 2π]

1. On résout d’abord sur R (sans contrainte). Puisque −2
3
∈ [−1, 1], on sait que l’angle

α = arcsin(−3
4
) permet de récrire l’équation :

sin(x) = sin(α)

On a donc comme solutions

x1 = arcsin
(
−3

4

)
+ k2π ou x2 = π − arcsin

(
−3

4

)
+ k2π .

Plaçons ces solutions sur le cercle trigonométrique.

2. L’arcsinus d’un nombre négatif est négatif, donc arcsin(−3
4
) ∈

[
−π

2
, 0
]
. Pour sélection-

ner la solution x1 qui appartient à [π, 2π], on doit donc prendre k = 1, à savoir

x1 = arcsin
(
−3

4

)
+ 2π .

Aussi, puisque π − arcsin(−3
4
) ∈

[
π, 3π

2

]
⊂ [π, 2π], on peut doit prendre la solution x2

avec k = 0.
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En résumé, les solutions de l’équation avec contrainte sont :

S =
{
arcsin

(
−3

4

)
+ 2π, π − arcsin

(
−3

4

)}
.

⋄

Lemme

1. Sur [−1, 1], arcsin(x) est une fonction impaire.

2. Pour tout x ∈ [−1, 1], cos(arcsin(x)) =
√
1− x2

Démonstration. 1. Si x ∈ [−1, 1], alors −x ∈ [−1, 1], et donc

sin(arcsin(−x)) = −x = − sin(arcsin(x)) = sin(− arcsin(x)).

Dans la dernière égalité on a utilisé le fait que le sinus est impair. Or sur
[−π

2
, π
2

]
, sin(x)

est injective, et donc

sin(arcsin(−x)) = sin(− arcsin(x)) ⇒ arcsin(−x) = − arcsin(x) .

2. Par la relation sin2(α) + cos2(α) = 1, on a que

cos2(arcsin(x)) = 1− sin2(arcsin(x)) = 1− x2

Or arcsin(x) est un angle dans le quadrant I ou IV, et donc son cosinus est positif, ce
qui implique

cos(arcsin(x)) = +
√
1− x2 .

Lemme L’arc sinus est dérivable sur ]− 1, 1[, et ∀x ∈]− 1, 1[,

(arcsin(x))′ =
1√

1− x2

Démonstration. On ne montrera pas que arcsin(x) est dérivable. Mais pour savoir ce qu’est
sa dérivée, on peut partir de

sin(arcsin(x)) = x ∀x ∈]− 1, 1[ ,

et dériver des deux côtés de l’équation, et utiliser la règle de dérivation pour une fonction
réciproque,

cos(arcsin(x)) · (arcsin(x))′ = 1 ,

qui donne

(arcsin(x))′ =
1

cos(arcsin(x))
=

1√
1− x2

Ce qui vient d’être fait pour le sinus peut être adapté pour les autres fonctions trigonomé-
triques.
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3.5.2 Fonction réciproque du cosinus

Vue comme définie sur tout R,

cos : R → [−1, 1]

x 7→ cos(x) ,

est surjective mais pas injective, puisque par exemple des angles opposés ont le même cosi-
nus.

Animation disponible sur botafogo.saitis.net/analyse-1

Définition 3.21. 1. Un intervalle du type [kπ, (k + 1)π] pour k ∈ Z s’appelle une déter-
mination du cosinus. Les cosinus y est à la fois injectif et surjectif dans [−1, 1], et donc
bijectif.

2. L’intervalle pour k = 0, [0, π], s’appelle la détermination principale du cosinus.

Animation disponible sur botafogo.saitis.net/analyse-1

Définition 3.22. On définit l’arc cosinus comme la réciproque de

cos : [0, π] → [−1, 1]

x 7→ y = cos(x) .

On la note

arccos : [−1, 1] → [0, π]

y 7→ x = arccos(y) ,

où x est l’unique élément de [0, π] tel que cos(x) = y.

Son graphe :
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Animation disponible sur botafogo.saitis.net/analyse-1

Par définition,

arccos(cos(x)) = x ∀x ∈ [0, π] ,

cos(arccos(y)) = y ∀y ∈ [−1, 1] .

Pour tout a ∈ [−1, 1], on a

cos(x) = a ⇔ x =


arccos(a) + k2π, k ∈ Z
ou
− arccos(a) + k2π, k ∈ Z.

Exemple 3.23. Résolvons

cos(x) ⩾ −3
4
, x ∈

[−3π
2
, −π

2

]
1. Commençons par étudier le problème sans contrainte, x ∈ R. En posant α = arccos(−3

4
),

l’inéquation devient

cos(x) ⩾ cos(α) ,

donc les solutions sont

− arccos(−3
4
) + k2π ⩽ x ⩽ arccos(−3

4
) + k2π, k ∈ Z.
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3.5. Fonctions trigonométriques réciproques

2. On doit maintenant choisir les solutions dans l’intervalle
[−3π

2
, −π

2

]
. Sur le cercle cela

laisse les zones dans les quadrants II et III :

− arccos(−3/4) ∈ [−π, −π
2
] ⊂

[−3π
2
, −π

2

]
, donc l’angle est bien placé. arccos(−3/4) ∈[

π
2
, π
]
, il faut donc faire un tour du cercle dans le sens anti-trigonométrique pour

l’amener dans
[
−3π

2
,−π

]
⊂
[−3π

2
, −π

2

]
. On garde donc les intervalles

S =
[
−3π

2
, arccos(−3

4
)− 2π

]
∪
[
− arccos(−3

4
),−π

2

]
.

⋄

Lemme
1. Pour tout x ∈ [−1, 1], arccos(−x) = π − arccos(x).

2. Pour tout x ∈ [−1, 1], sin(arccos(x)) =
√
1− x2

Démonstration. 1. En effet, si x ∈ [−1, 1], alors −x ∈ [−1, 1], et donc

cos(arccos(−x)) = −x = − cos(arccos(x)) = cos(π − arccos(x)).

Or sur [0, π], le cosinus est injectif et donc

cos(arccos(−x)) = cos(π − arccos(x)) ⇒ arccos(−x) = π − arccos(x) .

2. Par la relation sin2(α) + cos2(α) = 1,

sin2(arccos(x)) = 1− cos2(arccos(x)) = 1− x2 .
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3.5. Fonctions trigonométriques réciproques

Or arccos(x) est un angle dans le quadrant I ou II, et donc son sinus est positif, ce qui
implique

sin(arccos(x)) = +
√
1− x2 .

Lemme L’arc cosinus est dérivable sur ]− 1, 1[, et ∀x ∈]− 1, 1[,

(arccos(x))′ = − 1√
1− x2

.

Démonstration. On ne montrera pas que arccos(x) est dérivable. Mais pour savoir ce qu’est
sa dérivée, on peut partir de

cos(arccos(x)) = x ∀x ∈]− 1, 1[ ,

et dériver des deux côtés de l’équation, et utiliser la règle de dérivation pour une fonction
réciproque,

− sin(arccos(x)) · (arccos(x))′ = 1 ,

qui donne

(arcsin(x))′ =
−1

cos(arcsin(x))
=

−1√
1− x2

.

Exemple 3.24. Pour x ∈ [−1, 1], donner la valeur de α = arcsin(x) + arccos(x).

Pour commencer, on remarque que
• arcsin(x) ∈

[−π
2
, π
2

]
, et

• arccos(x) ∈ [0, π].
Par conséquent, α = arcsin(x) + arccos(x) ∈

[−π
2
, 3π

2

]
.

Calculons sin(α). Les formules d’addition donnent

sin(arcsin(x) + arccos(x))

= sin(arcsin(x)) cos(arccos(x)) + cos(arcsin(x)) sin(arccos(x))

= x2 +
√
1− x2

2

= 1 .

On cherche donc un angle α
[−π

2
, 3π

2

]
tel que sin(α) = 1. Le seul angle avec cette propriété est

α = π
2
. Par conséquent,

arcsin(x) + arccos(x) = π
2

∀x ∈ [−1,+1] .

En d’autres termes : arccos(x) et arcsin(x) sont donc des angles complémentaires, ce qui est
évident d’un point de vue géométrique :
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3.5. Fonctions trigonométriques réciproques

⋄

3.5.3 Fonction réciproque de la tangente

La fonction tangente, sur tout son domaine

tan : R \ {π
2
+ kπ , k ∈ Z} → R

x 7→ tan(x) ,

est surjective mais pas injective puisque périodique.

Animation disponible sur botafogo.saitis.net/analyse-1

Définition 3.25. 1. Un intervalle du type
]
−π

2
+ kπ, π

2
+ kπ

[
pour k ∈ Z est une déter-

mination de la tangente. La tangente y est à la fois injective et surjective, et donc
bijective.

2. L’intervalle
]−π

2
, π
2

[
s’appelle la détermination principale de la tangente.
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3.5. Fonctions trigonométriques réciproques

Animation disponible sur botafogo.saitis.net/analyse-1

Définition 3.26. On définit l’arc tangente comme

arctan : R →]− π
2
, π
2
[

y 7→ x = arctan(y) ,

où x est l’unique angle x ∈
]−π

2
, π
2

[
tel que tan(x) = y.

Animation disponible sur botafogo.saitis.net/analyse-1

Par définition,

arctan(tan(x)) = x ∀x ∈]π
2
, π
2
[ ,

tan(arctan(x)) = x ∀x ∈ R .

Exemple 3.27. Calculer l’angle s = arctan(2) + arctan(3).

1. On localise s. Comme 2, 3 > 0, on a arctan(2), arctan(3) ∈
]
0, π

2

[
. Donc s ∈]0, π[.
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3.5. Fonctions trigonométriques réciproques

2. On calcule tan(s) à l’aide de la formule d’addition

tan(s) =
2 + 3

1− 2 · 3
= −1.

On cherche donc les solutions de l’équation

tan(s) = −1 , s ∈]0, π[

dont l’unique solution est 3π
4
. On a donc

arctan(2) + arctan(3) =
3π

4
.

⋄
Listons encore quelques propriétés.

1. Pour tout a ∈ R, on a

tan(x) = a ⇔ x = arctan(a) + kπ, k ∈ Z

2. Pour tout x ∈ R, arctan(−x) = − arctan(x).

3. Pour tout x ∈ R,

(arctan(x))′ =
1

1 + x2

Démonstration. En effet pour tout x ∈ R, on a tan(arctan(x)) = x. En dérivant des
deux côtés de l’équation,

(1 + tan2(arctan(x))) · (arctan(x))′ = 1 ⇔ (1 + x2)(arctan(x))′ = 1.
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3.5. Fonctions trigonométriques réciproques

3.5.4 Fonction réciproque de la cotangente

Pareil pour la cotangente,

cotg : R \ {kπ , k ∈ Z} → R
x 7→ cotg(x) .

Animation disponible sur botafogo.saitis.net/analyse-A

Définition 3.28. 1. Un intervalle du type ]kπ, (k + 1)π[ pour k ∈ Z s’appelle une déter-
mination de la cotangente. La cotangente y est à la fois injective et surjective, donc
bijective.

2. L’intervalle pour k = 0, ]0, π[, s’appelle la détermination principale de la cotangente.

Animation disponible sur botafogo.saitis.net/analyse-A
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3.5. Fonctions trigonométriques réciproques

Définition 3.29. On définit l’arc cotangente comme

arccot : R → ]0, π[

y 7→ x = arccot(y) ,

où x est l’unique x ∈ ]0, π[ tel que cotg(x) = y.

Animation disponible sur botafogo.saitis.net/analyse-A

Par définition,

arccot(cotg(x)) = x ∀x ∈]0, π[ ,
cotg(arccot(x)) = x ∀x ∈ R .

Listons encore quelques propriétés.

1. Pour tout a ∈ R, on a

cotg(x) = a ⇔ x = arccot(a) + kπ, k ∈ Z

2. Pour tout x ∈ R, arccot(−x) = π − arccot(x).

3. Pour tout x ∈ R,

(arccot(x))′ = − 1

1 + x2
.

Exemple 3.30. A partir du graphe de arctan(x), déduire le graphe de arctan

(
1

x

)
. On pose

f(x) = arctan(x) + arctan

(
1

x

)
.

Le domaine de définition de f est R∗. On calcule la dérivée de f :

f ′(x) =
1

1 + x2
+

1

1 + 1
x2

−1

x2
=

1

1 + x2
− 1

1 + x2
= 0.

Par conséquent, f est une constante sur chaque intervalle continu de son domaine de défi-
nition (c’est une conséquence du théorème des accroissements finis). Donc on a

arctan(x) + arctan

(
1

x

)
=

{
c1, x < 0
c2, x > 0.
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3.5. Fonctions trigonométriques réciproques

Pour déterminer c1 et c2 on évalue la fonction. On a

f(−1) =
−π

4
+

−π

4
= −π

2
,

f(1) =
π

4
+

π

4
=

π

2
.

Par conséquent, on a c1 = −π
2

et c2 = π
2

et on conclut que

arctan

(
1

x

)
= sgn(x)

π

2
− arctan(x).

Le graphe de arctan
(
1
x

)
se construit donc par translation de ±π

2
de celui de − arctan(x).

⋄
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