Chapitre 3

Trigonométrie circulaire

3.1 Le cercle trigonométrique

Le cercle trigonométrique est le cercle de rayon 1 centré en 'origine O(0, 0) du plan R?.

IT I

bE IV

Il est partagé en quatre quadrants, notés I, I1,111,1V.

Un angle trigonométrique a € R positif se dessine dans le cercle trigonométrique dans
le sens contraire des aiguilles d’une montre; un angle négatif se dessine dans le sens des
aiguilles d"une montre.

Dans ce cours, les angles seront mesurés en radians. La mesure d"un angle en radians cor-
respond a la longueur de l'arc de cercle (sur le cercle trigonométrique) sous-tendu par cet

angle. Une ouverture maximale correspond donc a 2.

A chaque angle o on peut associer un unique point P(«) sur le cercle.
Angle trigonométrique positif a > 0 :

NumChap: chap-trigo, Derniére compilation: 2025-05-18 23:51:26+02:00. (Version Web:botafogo.saitis.net/analyse-2) 57


botafogo.saitis.net/analyse-A

3.1. Le cercle trigonométrique

P(«)

o

-

8

)

Angle trigonométrique négatif o < 0:

N

Représentons quelques angles importants et leurs points associés :

4Ry
\

/.
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(SE
el

SE

On constate que le point associé a 'angle o 4- 27 ou a I’angle a — 2 est le méme que le point
associé o, on a donc P(«) = P(a + 27) = P(a — 27). Plus généralement,

P(a+ k27) = P(a),Vk € Z.

Remarque 3.1. e Attention : si P(«) = P(f3), i.e. deux points associés sont les mémes,
cela nimplique pas forcément que les angles sont identiques, mais qu’ils peuvent
différer d’un multiple entier de tours :

P(a) = P(f) = o = B+ k27, pour un certain k € Z.

* Ces relations entre angles et points associés auront un impact déterminant sur la na-
ture des fonctions trigonométriques.
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3.2 Les fonctions trigonométriques

3.2.1 Sinus, cosinus

Définition 3.2. Soient & € R un angle trigonométrique, et soit P(a) son point associé, de
coordonnées (z,y).

1. On définit le cosinus de «, noté cos(«), comme l'abcisse de P(«) :
cos(a) = x.
2. On définit le sinus de a, noté sin(«), comme 1'ordonnée de P(«) :

sin(a) = y.

L’animation ci-dessous permet d’illustrer ces fonctions, pour des angles a € [0, 27 :

tan ()
sin(a)

rA
Ld

Animation disponible sur botafogo.saitis.net/analyse-1

Les propriétés suivantes sont conséquences directes des définitions du sinus et du cosinus.
Pour tout o € R,
cos(a) € [—1,1],sin(«) € [—1,1]
+ sin?(a) = 1

() € 1, cos(a) = 0, sin(a) = 0.
Si P(a) € I1, cos(a) < 0,sin(a) > 0.
Si P(a) € I11, cos(ar) <0, sin(a) < 0.
Si P(a) € IV, cos(a) = 0,sin(a) < 0.
Comme P(«a + k27) = P(«) Vk € Z, on a que pour tout k € Z,

—_
~—

cos?(a
Si P(a

NS DN
— N

cos(a + k27) = cos(a)
sin(a + k27) = sin(«) .
On dit que ces fonctions sont périodiques, de période 27. Elles ne sont donc ni mo-

notones, ni injectives.
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De plus, les propriétés et les symétries du cercle trigonométrique impliquent les relations
suivantes :

1. Angles opposés (symétrie axiale d’axe Ox) :

P(a) = (z,y)

—O/P(_a) = (z,—y)

cos(—a) = cos(a) sin(—a) = — sin(«)

En d’autres termes : x — cos(x) est une fonction paire, et © — sin(z) est une fonction
impaire.

2. Angles supplémentaires (symétrie axiale d’axe Oy) :

Pr—a)= (e~ | N\ IP@) = ()

cos(m — a) = — cos(a) sin(m — a) = sin(«)

3. Angles diamétralement opposés (symétrie centrale) :

P(a) = (2,9)

Pla+7)=(—z,—y

cos(a + ) = — cos(a) sin(a + 7) = —sin(«)

4. Angles complémentaires (symétrie axiale d’axe x = y) :
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~

cos <g — a> = sin(a) sin (g — a> = cos(a)

3.2.2 Tangente et cotangente

Définition 3.3. Soit ¢ la droite perpendiculaire a ’axe Oz en (1,0), soit & un angle trigono-
métrique et P(a) son point associé sur le cercle. Soit T'(a) = (1, y) le point d’intersection de
t avec la droite OP(«). La tangente de I'angle «, notée tan(a), est définie comme 1’ordonnée
du point T'(«v).

Définition 3.4. Soit ¢’ la droite perpendulaire a 'axe Oy en (0, 1), soit o un angle trigonomé-
trique et P(a) son point associé sur le cercle. Soit 7"(«v) = (, 1) le point d’interesection de ¢’
avec la droite OP(«). La cotangente de 1’angle a, notée cotg(a), est définie comme 1’abcisse
du point 7" ().

62 NumChap: chap-trigo, Derniére compilation: 2025-05-18 23:51:26+02:00. (Version Web:botafogo.saitis.net/analyse-2)


botafogo.saitis.net/analyse-A

3.2. Les fonctions trigonométriques

Tla) = (cotg(of‘),,,l)

/
> t

On a les propriétés suivantes :

1. Latangente n’est pas définie pour o = 5 +km, Vk € Z. Donc son domaine de définition
est Dyan = R\ {5 + kn, k € Z}.

2. La cotangente n’est pas définie pour o = km, Yk € Z. Donc son domaine de définition
est Doty = R\ {km, k € Z}.

3. Pour tout k € Z,

tan(a + km) = tan(a) Vo € Dian
cotg(a + km) = cotg(a) Va € Deotyg -

Ces fonctions sont périodiques, de période 7.

J=(0,1) o | ,;
Tla) = 1, tan(a sl
) P(Z: (a) = ( () Bl O o)
o Al1=@0 -
+ 1
4. Sur Dy, ()
sin(«
tan(a) = cos(a)
5. Sur Dy,
cota(a) = cos(a) 1

sin(a)  tan(a)’
6. Ces fonctions sont impaires :
tan(—a) = — tan(«) , cotg(—a) = — cotg(a) .
On a aussi les symétries suivantes :
1. tan(m — a) = —tan(«), cotg(m — a) = — cotg(a).

2. tan (3 — o) = cotg(a) et cotg (5 — a) = tan(a).
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3.2.3 Fonctions trigonométriques pour des angles remarquables

Les fonctions trigonométriques, a 1'origine, sont faites pour résoudres des problemes de
géométrie élémentaire.

C

A B

Si on considere un triangle rectangle, on remarque que les fonctions trigonométriques re-
présentent la proportionnalité constante existant entre les longueurs de certaines paires de
cOtés :

cOté adjacent  AB

cos(a) = hypothénuse ~ AC
, _ cOté opposé  BC
sin(@) = hypothénuse ~ AC
Oté ¢ BC

tan(a) = coté oppose

coté adjacent  AB

Ceci permet de calculer les valeurs des fonctions trigonométriques, pour des angles particu-
liers, dits remarquables.
* Pour l'angle 7, considérons un carré de coté 1:

i
1

Par le Théoreme de Pythagore, la diagonale de ce carré vaut v/2, et donc

™ . T V2
cos (Z) :sm<z> :%:72

(Dans la derniere égalité, on a multiplié la fraction par 1 = %.) Aussi,

T
¢ (—) ~1.
an 4
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* Pour I'angle 3, considérons un triangle équilatéral de coté 1 :

1

T
3

1/2

V3

La hauteur de ce triangle est de longueur %5°, et elle intersecte le c6té horizontal en

son milieu. On a donc

T Loy V3 T V3
cos(3) =5 sm(5) = tan(@)i%f:ﬁ-

On peut obtenir les valeurs des fonctions trigonométriques pour I'angle ¢ de la méme fagon.
Résumons ce qu’on a obtenu jusqu’a présent dans le tableau suivant.

N ENEAREE
cos(a) | 1 @ g s 10
sinfa) | 0 | 1 |2 221
tan(a) | O % 1 | V3|//
cotg(a) | // | V3| 1| 5|0

Représentation et construction géométrique des angles remarquables dans le premier qua-
drant :

1//3

=)
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3.3

Les 4 équations élémentaires

On va présenter la résolution de chacune des quatre équations trigonométriques élémen-

taires,

3.3.1

Exemple 3.5. Résoudre pour z € R : cos(z) =

qui sont :
cos(x) =a, sin(x)=a, tan(z)=a, cotg(z)= a.

A T'avenir quand nous traiterons des équations plus complexes, la stratégie sera tou-
jours de se ramener a I'une de ces équations élémentaires.

La résolution est basée sur la nature du cercle trigonométrique qui implique que des
angles différents peuvent avoir des cosinus et sinus identiques. (Par exemple, deux
angles supplémentaires ont le méme sinus, deux angles opposés ont le méme cosi-
nus.)

L'équation cos(z) = a

. L’équation possede des solutions si a € [—1, 1].
. L’équation est bien définie pour tout z € R.

. On cherche un angle « tel que cos(a) = a (par exemple parmi les valeurs remar-

quables).

. On doit donc résoudre cos(z) = cos(a). Deux cosinus sont égaux si les angles sont les

mémes ou sont opposés, le tout a 27 pres.

Solution :

cos(x) =cos(a) & zx=a+k2r ou x=-a+k2r, kel

P(—O:)

1 : Ty 1 A4
5. On sait que cos (3) = 3. On résout donc

cos(z) = cos (%) et on a deux familles de solutions :

x:g+k27r ou x:—g—i-k:%r, keZ.

Et donc

66

S:{ig+k2w,kez}.
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o

Exemple 3.6. Résoudre pour z € R : cos(2z) = 1. On pose y = 2z et on commence par
1

résoudre cos(y) = 5. On trouve deux familles de solutions

ylzg—l—k%r ou ygz—%+k2ﬂ', kelZ.

Chaque famille génere un point associé sur le cercle.

Wi

En repassant dans la variable z, on trouve donc

2m:g+k27r ou 2x=—§+k2w, keZ

et donc

xlzg—i—kﬂ ou x2:—g+lm, kel

Afin de visualiser, représentons certaines solutions sur le cercle. On peut par exemple prendre
les solutions x; et x5, pour k =0, 1, 2.
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= lk=1) 2=z (k=0)ouz; =L aveck =2

™

T=alk=1) Lr—uy(k=2)ouzs=—Zaveck=0

On voit que les deux familles de solutions génerent ici 4 points associés, et non plus seule-
ment deux. Chaque famille génere en fait un couple de points diamétralement opposés (a
cause du k7, qui représente des demi-tours supplémentaires). o

Exemple 3.7. Résoudre pour = € [0,27] : cos(2z) = 1. L'équation est la méme qu’avant,
mais la contrainte “z € [0, 27]” impose de garder seulement les solutions appartenant a cet
intervalle.

1. On résout tout d’abord le probleme pour x € R. Par ce qui précede, on a trouvé que

a:lzg—f—knr, ou ZEQZ—%—f—k?T, keZ.

2. On résout maintenant sur l'intervalle [0, 2x]. Il faut chercher k pour que z; et =, ap-
partiennent a cet intervalle. On procede en s’aidant de la représentation : on se place
en zéro et on tourne dans le sens trigonométrique jusqu’a atteindre 27 et on capture
au passage tous les angles qui nous intéressent.

== walk =T) \F =21 (k=0)ouz; = =% avec k =2

ot

=11 (k=1) 7 '% =3 (k =2)ouzs = —Faveck=1D

On peut donc choisir z; avec k = 0, 1 et x5 avec k = 1, 2. Pour les autres k, on sort de
l'intervalle [0, 27].

On conclut donc que § = {%,3r = Lx1. o
Exemple 3.8. Résoudre pour z € [—%, 2] : cos(2z) = 1. Comme avant on résout tout d’abord

le probléme pour = € R et on trouve

xlzg—irkm, ou x2:—%+k7r, ke.

Cette fois, on ne garde que les angles compris dans l'intervalle [—g, g} On procede par
visualisation
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* Lasolution z = § et la solution z = —¢ sont dans le bon intervalle (k = 0)
e Lintervalle [-%, %] est I'union des quadrants IV et . Des angles dont les points

associés seront dans /1 U I11 seront a exclure.

* L'ensemble des angles solutions de 1’équation donnent 4 points associés sur le cercle.
Tous les angles qui géneérent les deux points associés dans le demi-cercle de gauche
sont a exclure. Par conséquent, on doit juste s’intéresser aux solutions dans le demi-
cercle de droite. Comme on a déja les deux solutions x = % et x = —% qui sont dans
le bon intervalle, tous les autres angles qui envoient sur ces mémes points seront soit
strictement plus petit que =" soit strictement plus grand que 7.

On conclut donc que S = {Z, -2} o

Exemple 3.9. Résoudre pour z € [—4m, —37] : cos(2z) = 1. Méme exemple que le précédent
mais cette fois on cherche les + dans un autre intervalle. On voit que cette fois on doit prendre
des points dans le quadrant I ou /I. Pour s’aider, on représente les points sur un tour de
cercle entre —27 et 0. On rappelle les solutions

xlzg—i—lm, Ouazgz—%—i-/mr,kez.

I1 faut choisir le bon nombre de demi-tours/tours a faire pour étre dans le bon intervalle. Ici
on peut prendre x; avec k = —4 et vy avec k = —3. En effet, T € [0, 7] et donc en faisant 2
tours dans le sens anti-trigonométrique (i.e —47) on arrive dans l'intervalle [—47, —3x]. De
méme, <* € [, 0]. En faisant trois demi-tours dans le sens horaire (i.e —37), on arrive dans
le bon intervalle. Comme on a trouvé deux angles dans [—4m, —37] qui génerent les deux
points du demi-supérieur, on les a tous trouvé.

On prend alors comme solution ¥ — 47 = —2T et =% — 37 = — 7 etdonc § = {17, -2},

<

3.3.2 L’équationsin(z) =a
1. L'équation possede des solutions si a € [—1, 1].

2. L’équation est bien définie pour tout z € R.

3. On cherche un angle « tel que sin(a) = a (par exemple parmi les valeurs remar-
quables).

4. On doit donc résoudre sin(x) = sin(a). Deux sinus sont égaux si les angles sont les
mémes ou sont supplémentaires, le tout a 27 pres.
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5. Solution :

sin(z) =sin(a) < z=a+k2r ou z=wm—a+k2r, k€EZ.

Y

P(a) a —¢ P(m — a)

Exemple 3.10. Résoudre pour x € R : sin(z) >

N |

On cherche « tel sin(a) = 3. On peut choisir par exemple v = Z. On doit donc résoudre

sin(x) > sin (g) :

™

L'erreur serait de dire que z > & mais attention, les fonctions trigonométriques ne sont
pas monotones. Il est utile de considérer ce qui se passe sur le cercle trigonométrique. On
représente dans le cercle des angles supplémentaires pour lequel le sinus vaut 3.

Les points situés sur la partie verte du cercle ont des ordonnées plus grandes que 3, donc les
angles associés ont leur sinus plus grand que ;. On doit donc choisir

5
%+k2w<x<%—l—k2ﬂ,kez.

OnadoncS:UE—l—ka%erk%r . o

k€EZ
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3.3.3 L'équation tan(z) = a

1.
2.
3.

L’équation possede des solutions Va € R.

Le domain de définition est Dy, = R\ {g +km k€ Z} .

On cherche un angle « tel que tan(a) = a (par exemple parmi les valeurs remar-
quables).

On doit donc résoudre tan(x) = tan(a). Deux tangentes sont égales si les angles sont
les mémes ou different d’un demi-tour.

5. Solution :
tan(x) = tan(a) & zr=a+km, keZ.
4 e
Pla)
@) X
P(m+ «)
Exemple 3.11. 1. Résoudre pour z € R : tan(3z) < 1. Considérons encore une fois le

cercle trigonométrique. On pose d’abord y = 3z et on résout tan(y) < 1.

Les angles associés aux points situés sur les portions rouges auront des tangentes
inférieures a 1. On a donc
™ (s
—§—|—k7r<y< Z+k7r.

Notez que le +k7 permet de considérer les deux zones rouges d'un coup (I'une étant
la rotation d"un demi-tour de l’autre) ainsi que tous les demi-tours supplémentaires.
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Notez aussi 1'inégalité stricte a gauche car
définition de la tangente.

On a donc finalement

=~ + km n’est pas dans le domaine de

T T
Tt < — + k=
6 i3 sTS TRy
et
v T
S ) A A k—]
5 } 6 31 TS

37/2

—7/6 oullw/6

Iﬁ,"'l

Résoudre pour z € [0, 27] : tan(3z) < 1. On prend les solutions obtenues précédem-

ment, et on "filtre" les intervalles pour qu’ils appartiennent tous a [0, 27]. On réfléchit
géométriquement. On se place en 0 dans le cercle trigonométrique et on tourne jus-

qu’a 2m. On a donc
W]U T 57 U T 3T U
12 6’12 27 4

On doit faire attention au fait que l'intervalle

om 137

S:[O 6’ 12

37T7_7TU
27 4

—, 27| .

117
6

|V]

1 —m

T 17
6 12

™ N
5 E] n’est pas entierement contenu

dans [0, 27]. Il faut donc "exploser" I'intervalle en prenant chaque partie dans le bon

tour du cercle trigonométrique.

3.3.4 L’équation cotg(z) =a

72

1. L’équation possede des solutions Va € R.
2. Le domain de définition est Dot = R \ {km, k

3. On cherche un angle « tel que cotg(e) = a
quables).

o

€Z}.

(par exemple parmi les valeurs remar-

4. On doit donc résoudre cotg(z) = cotg(a). Deux cotangentes sont égales si les angles

sont les mémes ou different d’un demi-tour.

5. Solution :

cotg(x) = cotg(a) &

r=a+kr, ke

NumChap: chap-trigo, Derniére compilation: 2025-05-18 23:51:26+02:00. (Version Web:botafogo.saitis.net/analyse-2)


botafogo.saitis.net/analyse-A

3.4. Formules trigonométriques

P(m + )

0 > X

3.4 Formules trigonométriques

3.4.1 Préparation : une rotation dans le plan

Considérons le cercle trigonométrique dans le repére orthonormé canonique (¢, €3) :

g
A

e
N

|
o
o

Si on fait tourner le repére d'un angle /3, on obtient deux nouveaux vecteurs f; et f5:
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T4+ 8 -
> T fi
3 P
€1
Ces derniers s’écrivent
f1 = cos(p)ér + sin(fH)és,
et

f2 = cos(§ + B)é1 +sin(F + B)ey = —sin(f)e + cos(f)és .

Prenons maintenant un angle a € R, et son point associé P(«) sur le cercle. Relativement au
repere (€1, é3),

OP(a) = cos(a)e; + sin(a)e; .
Apres une rotation d’angle 3, P(«) devient P(« + f3) :

P(a+ B) = (cos(a + B),sin(a + B))
P(a) = (cos(a),sin(a))

.
o
27

:‘/’/ @) jl
'

Relativement a (€}, &),

OP(a+ ) = cos(a + B)ér + sin(a + p)eé, .

—

Mais, relativement a ( fi, j‘z),

OP(a+ ﬁ; = cos(a)fl + sin(oz)fé ,
74
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et en utilisant les relations données plus haut, exprimant les vecteurs de ( f, f>) en fonction
de ceux de (€, €), et en réarrangeant, cette derniere devient

OP(a + ﬁ)
= cos(a) (cos(B)é; + sin(B)&) + sin(a) (— sin(B)é; + cos(B)é>)
) si

= (cos(a) cos(3) — sin(a) sin(B))é; + (sin(a) cos(B) + cos(a) sin(3))és.

Comme les composantes de OP(« + 6; relativement au repere (e7, €2) sont uniques, on en
déduit que

cos(a + ) = cos(a) cos(f) — sin(«) sin(f)
sin(a + ) = sin(a) cos(B) + cos(a) sin(f)

3.4.2 Conséquence : formules d’addition

L’argument algébrique/géométrique de la section précédente nous a amené aux formules
d’addition :

cos(z + y) = cos(x) cos(y) — sin(z) sin(y)
sin(z + y) = sin(x) cos(y) + cos(z) sin(y) .

Celles-ci impliquent aussi une formule d’addition pour la tangente, puisque

sin(z + y)
cos(z + y)
_ sin(x) cos(y) + cos(z) sin(y)
cos(z) cos(y) — sin(x) sin(y)
_ tan(z) + tan(y)
1 — tan(z) tan(y)

tan(x 4+ y) =

(Dans la troisieme ligne on a divisé numérateur et dénominateur par cos(z) cos(y).)

En remplagant y par —y dans les formules d’addition et en utilisant les propriétés de parité,
on obtient aussi

sin(z — y) = sin(x) cos(y) — cos(x) sin(y)
cos(xz — y) = cos(z) cos(y) + sin(x) sin(y)
tan(z) — tan(y)
1 + tan(x) tan(y)

tan(z —y) =

D’autres expressions utiles se déduisent des formules d’addition.
* Formules pour le double d"un angle ou Formules de duplication. En prenant z = y
dans les formules d’addition, on a d"une part que

sin(2x) = 2sin(z) cos(x) ,
et d’autre part que

cos(2z) = cos®(z) — sin®(x) = 1 — 2sin®*(z) = 2cos*(x) — 1
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* Formules de bissection. En remplacant = par x/2 dans les formules du double d'un

angle :

1—
sin’(Z) = —C208<x)
cos?(£) = 1+ czos(x)
fan?(2) 1 — cos(x)

277 1+ cos(z)

¢ Formules de transformation produit-somme.

cos(z) - cos(y) = [ cos(z + y) + cos(z — y) ]
sin(z) - sin(y) = —3[cos(z + y) — cos(z — y) ]
sin(z) - cos(y) = 3[sin(z +y) +sin(z — y) |

(On démontre ces formules en partant du terme de droite, auquel on applique les
formules du haut.)

* Formules de transformation somme-produit. En remplagant = par
dans les formules de produit-somme,

T4y

= ety par 5

cos(z) + cos(y) = 2 cos(ZFY) cos(FY)
cos(z) — cos(y) = —2sin(*¥) sin(5Y)

et

[\)

* Expressions des fonctions trigonométriques en fonction de tan(3). A partir des for-
mules de bissections et de double d’un arc,

. 2tan(5)

SIN T — PEECYZ Y
1 =+ tan (5)
1 — tan*(%)

COST = T oo
1+ tan*(%)

2tan(Z

tanx = (22):;;

1 — tan (5)

3.4.3 Application : dérivées des fonctions trigonométriques

Alaide des formules de transformation somme-produit, on peut obtenir les expressions des
dérivées des fonctions trigonométriques :

(sin(z))" = cos(x),
(cos(x))" = —sin(z),
1

(tan(x)) =1 + tan®(x) = o2(z)
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En effet,

sin(y) — sin(x)

o
(sin(r))’ = lim "2

2 cos (y;r—x) sin (y*x)

= (lim cos(%)) (hm @) = cos(xz) - 1 = cos(z).

On en déduit, par la formule de la dérivation d"une composée, que

(cos(z))" = (sin(3 — x))/ =cos(§ — ) - (—1) = —sin(z),

et par la formule de dérivation d"un quotient,

(tan(z))’ = (Sin(rﬂ)>’

cos(x)

cos(x) cos(x) — sin(z)(— sin(x))

cos?(x)
1
= =1+ tan®*(z).
cos?(x) + tan’()
De méme on peut calculer que
-1
(cotg(z)) = —5— = —1 — cotg®(z).

sin”(x)

3.4.4 Application : calcul de valeurs remarquables supplémentaires

Exemple 3.12. 1. Calculons cos(5). Par la formule de bissection,
cos> (1) _ 1 + cos(7/6) _ 1++/3/2 _ 2++3
12 5 5 YR
ce qui implique que cos(5) est soit + V 2;\/??, soit — \/2;\/3.

Comme 75 se situe dans le premier quadrant, son cosinus est positif et donc

2+3

cos (1“—2) =5
2. Calculons sin(—15). Par la formule de bissection,

1 —cos(—7/6) _2- V3

12 s
Sin (—E) = B 1
Comme — ¢ se situe dans le quatriéme quadrant son sinus est négatif et donc
_ 23
sin (—%) = — 5 .

o

De maniére générale, on peut calculer a présent les cosinus et sinus de tout angle de la forme
3w,n € N pour o une valeur remarquable dans le premier quadrant. On pourra obtenir
les cosinus et sinus de ces angles dans les autres quadrants en utilisant les propriétés des

cosinus et sinus (symétriques par rapport aux axes et par rapport a 1’origine).
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3.4.5 Application : factorisation en équations/inéquations plus simples
Exemple 3.13. Résolvons I'équation
sin(5x) — sin(z) = cos(3z), reR.

En utilisant une des formules de transformation somme-produit, on peut écrire

sin(5z) — sin(z) = 2 cos (%) sin (%) = 2 cos(3z) sin(2z)
et donc I'équation peut s’écrire sous la forme

2 cos(3x) sin(2z) = cos(3z),
c’est-a-dire
cos(3z) (2sin(2z) — 1) =0 < cos(3z) =0ou sin(2z) = =
Or on a d"une part que
cos(3z) =0 & ze€S={Z+kikeZ},

et d’autre part que

sin(2e) =3 & we€Sy={5+km, % +km keZ}.

Finalement, on a donc comme ensemble solution :

5251U52:{6—|—k37r T +km 57r+/{377' ]{JEZ}

3712 712

3.4.6 Equations et inéquations trigonométriques linéaires
Exemple 3.14. Résolvons I'équation
3 cos(z) + \/75 sin(z) = ‘/75 : reR
L’idée est d’utiliser une formule trigonométrique pour récrire le membre de gauche.

Or si on remarque que £ = sin(%) et f = cos(g ), on peut récrire I'équation comme

sin () cos(z) + cos (%) sin(z) = —- .
Par la formule d’addition pour sin(z + y), le membre de gauche est simplement
sin (Z) cos(z) + cos (%) sin(z) = sin (£ + z) .
Notre équation se réduit donc a
sin (% + :zc) = sin (%) ,
dont les solutions sont
stx=7+k2r ou %—i—x:?jf—f—kQW,kEZ.

Donc

S:{%+/€27T +/<:27Tk€Z}

112
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Remarque 3.15. Dans ce dernier exemple, on aurait aussi pu décider d’écrire § = cos(5) et

N .
¥ = sin(3), pour avoir

cos () cos(z) + sin (3 ) sin(z) = ‘/75 :
qui par la formule pour cos(z — y) devient
(5=7) = (§)
cos(g—x)=cos{, ),
qui a le méme ensemble solution S. o
Exemple 3.16. Résolvons l'inéquation
cos(z) + sin(z) > 1, x €] —dm, —m7].

On commence par résoudre le probleme sans contrainte (pour z € R). La stratégie est la
méme que précédemment. Idéalement, on aimerait un angle « tel que sin(a) = cos(a) =1
afin d’écrire le membre de droite comme une seule fonction trigonométrique. On observe
cependant qu’un tel angle n’existe pas car le point (1, 1) n"appartient pas au cercle trigono-
meétrique.

(1,1)

En considérant le vecteur reliant 1'origine a (1, 1) et en divisant par sa norme qui vaut v/2,
on obtient un nouveau vecteur de norme 1 dont I'extrémité est le point (1/v/2,1/v/2) =
(v/2/2,4/2/2) se trouve sur le cercle trigonométrique et dont les coordonnées peuvent étre
exprimées comme le cosinus et le sinus d’un angle. On a donc fait une normalisation.

En divisant chaque coté de I'inéquation par /2, elle devient

\/75 cos(x) + \/75 sin(z) > ‘/75

S

qui puisque %* = sin(7§) = cos(7) se simplifie encore en
sin (I 4 z) > sin(7/4) .
On visualise dans le cercle trigonométrique,
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T/4+

B A - 4B m e Uk

pour trouver
T+k2r<I+a<3Z k2, kel

et donc I'ensemble solution sans contrainte est
E = U]k27r,§+k27r[ .
keZ

Finalement, on ne garde que les = € E qui satisfont la contrainte z €] — 47, —7[, pour obtenir

S:}—47r,—77”[u}—27r,—37”[.

<

Dans un cadre plus général, la méthode utilisée dans I'exemple précédent suggere que pour
résoudre une équation de la forme

acos(z) + bsin(z) = ¢,

ol a,b, c € R, on pourra procéder comme suit :

1. On normalise I’équation en divisant par v/a? + b2 (la norme de ﬁ’, avec P = (a,b)):

a b c
————cos(x) + ——=sin(z) = ——.
va?+b? (@) Va? + b? (@) Va? +b?
2. Si == € [~1,1], on peut résoudre le probleme (il faut que ce nombre soit le sinus
ou le cosinus d’un angle, un critere simple est de vérifier si a® + b* < ¢ & —1 <
vaE S -

b
VT

3. On choisit un « tel que (par exemple) sin(a) = T et cos(a) =

4. On utilise la formule
sin(«) cos(z) + cos(a) sin(z) = sin(a + ).

C

5. On cherche S tel que (ici on choisit le sinus) sin(f) = T

6. Finalement on résout
sin(a + x) = sin(f).

La démarche est la méme pour une inéquation.
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3.5 Fonctions trigonométriques réciproques

On définit ici les fonctions réciproques des fonctions trigonométriques, on énonce certaines
de leurs propriétés, en particulier on calcule leurs dérivées.

3.5.1 Fonction réciproque du sinus

La fonction sinus, vue comme définie sur tout R,

sin: R — [—1,1]

x +— sin(x),

est surjective mais pas injective, puisque par exemple des angles supplémentaires ont le
méme sinus.

sin(z) ®
_T
2 I
®
—T r T
2

rA
LJd

Animation disponible sur botafogo.saitis.net/analyse-1

On peut par contre la rendre injective en restreignant son domaine.

En effet, si on se restreint a prendre des angles qui sont dans /V U [ ou /1 U I1] (demi-cercle
de gauche ou de droite), c’est a dire dans un intervalle du type [=F + kn, Z + kx| pour un
k € 7, alors la fonction

sin: [—2 4+ km, 2+ kr] — [-1,1]
x > sin(x)

est
1. injective puisque des angles distincts dans son domaine ont des images distinctes,

2. surjective puisque pour tout y € [—1,1] il existe un = € [—Z + km, 2 + kx| tel que
sin(z) = y.

Définition 3.17. 1. Un intervalle du type [—% + k7, % + kx| s’appelle une détermina-
tion du sinus. Le sinus y est a la fois injectif et surjectif dans [—1, 1], et donc bijectif.
2. Lintervalle pour k = 0, [-%, 2], sappelle la détermination principale du sinus.
Une détermination est donc un intervalle sur lequel la fonction sin posséde une réciproque.
La convention est de choisir la détermination principale pour définir une fois pour toute une

réciproque :
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z — sin(z) +1
y — arcsin(y) -
2
® ™
—T T s
2
-1 rA
LJd
Animation disponible sur botafogo.saitis.net/analyse-1

Définition 3.18. On définit ’arc sinus comme la réciproque de

sin: [—Z,2] = [-1,1]
xr+— y = sin(x).

On la note

arcsin : [—1,1] — [_TW’ %}

y — x = arcsin(y) ,
ol z est 'unique z € [—7, 7] tel que sin(y) = .

Comme on sait, le graphe d’une fonction réciproque s’obtient en réfléchissant celui de la
fonction a travers la diagonale y = = :

+
L]

arcsin(z)

Se

+1

L]

Par définition,

arcsin(sin(x)) = x
sin(arcsin(y)) =y Vy € [-1,1].
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Exemples 3.19. 1. sin(arcsin(3)) = 2
2. arcsin(sin(—7%)) = =7
3. arcsin(sin(F)) =? Puisque I ¢ [=F, Z], on doit d’abord trouver l'unique z € [—%, 2]
tel que
sin () = sin(z)
Cet angle est z = —%. Donc

N

arcsin (sin (%)) = arcsin (Sin (—%)) = —

SAE]

&

Avoir une réciproque bien définie pour le sinus permet maintenant de résoudre plus d’équa-

tions.

Pour touta € [-1,1],0on a

arcsin(a) + k2w, k € Z,
sin(z) =a <& x=4¢ ou
7 — arcsin(a) + k27, k € Z.

Exemple 3.20. Résolvons

1.

sin(z) = -2, x € [, 2m|
On résout d’abord sur R (sans contrainte). Puisque —2 € [—1,1], on sait que I'angle

o = arcsin(—3) permet de récrire I'équation :
sin(z) = sin(«)
On a donc comme solutions
T = arcsin (—%) + k2mr  ou x9 = 7 — arcsin (—%) + k2.

Plagons ces solutions sur le cercle trigonométrique.

— arcsin(—3/4)

F

— arcsin(—3/4) + 7 - - S Zaresin(—3/4)

L’arcsinus d’un nombre négatif est négatif, donc arcsin(—2) € [—Z,0]. Pour sélection-

ner la solution x; qui appartient a [, 27, on doit donc prendre k£ = 1, a savoir

T, = arcsin (—%) + 27.
Aussi, puisque 7 — arcsin(—3) € [, 2¢] C [r,27], on peut doit prendre la solution z,
avec k = 0.

NumChap: chap-trigo, Derniére compilation: 2025-05-18 23:51:26+02:00. (Version Web:botafogo.saitis.net/analyse-2) 83


botafogo.saitis.net/analyse-A

3.5. Fonctions trigonométriques réciproques

En résumé, les solutions de 1’équation avec contrainte sont :

S = {arcsin (—%) + 27, ™ — arcsin (—%)} :

Lemme
1. Sur [—1, 1], arcsin(x) est une fonction impaire.
2. Pour tout = € [—1, 1], cos(arcsin(z)) = /1 — 22

Démonstration. 1. Siz € [-1,1], alors —z € [—1, 1], et donc
sin(arcsin(—x)) = —x = —sin(arcsin(z)) = sin(— arcsin(z)).

Dans la derniere égalité on a utilisé le fait que le sinus est impair. Or sur [, Z], sin(z)
est injective, et donc

sin(arcsin(—z)) = sin(— arcsin(z)) = arcsin(—z) = — arcsin(z) .

2. Par la relation sin®(«) + cos?(a) = 1, on a que

cos?(arcsin(x)) = 1 — sin?(arcsin(z)) = 1 — 2

Or arcsin(x) est un angle dans le quadrant I ou IV, et donc son cosinus est positif, ce
qui implique

cos(arcsin(z)) = +vV'1 — z2.

Lemme L’arc sinus est dérivable sur | — 1, 1], etVz €] — 1,1],
1
V1—a?

Démonstration. On ne montrera pas que arcsin(z) est dérivable. Mais pour savoir ce qu’est
sa dérivée, on peut partir de

(arcsin(x)) =

sin(arcsin(z)) = x Vo €] —1,1],

et dériver des deux codtés de 1’'équation, et utiliser la regle de dérivation pour une fonction
réciproque,
cos(arcsin(z)) - (arcsin(z)) =1,

qui donne

(arcsin(z)) = ! _ !

cos(arcsin(x)) /1 — 22

]

Ce qui vient d’étre fait pour le sinus peut étre adapté pour les autres fonctions trigonomé-
triques.
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3.5.2 Fonction réciproque du cosinus

Vue comme définie sur tout R,
cos: R — [—1,1]
x + cos(x),

est surjective mais pas injective, puisque par exemple des angles opposés ont le méme cosi-

nus.

vl

L
T

saitis.net/analyse-1

bl

Animation disponible sur botafogo.

Définition 3.21. 1. Un intervalle du type [k, (k + 1)7] pour k € Z s’appelle une déter-
mination du cosinus. Les cosinus y est a la fois injectif et surjectif dans [—1, 1], et donc

bijectif.
2. L'intervalle pour k = 0, [0, 7], s’appelle la détermination principale du cosinus.

x — cos(z) +1
y — arccos(y)
® ®
- T s
2
71 rA
Ld
b.saitis.net/analyse-1

Animation disponible sur botafc

Définition 3.22. On définit ’arc cosinus comme la réciproque de

cos : [0,m] = [—1,1]
x>y = cos(x).

On la note
arccos : [—1,1] — [0, 7]
y — x = arccos(y) ,

ou z est l'unique élément de [0, 7] tel que cos(x) = y.

Son graphe :
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e

arccos(z)

L]
_]_ T _|_1 Ld

Animation disponible sur botafogo.saitis.net/analyse-

Par définition,

arccos(cos(x)) = Vr e [0,7],

x
cos(arccos(y)) =y Yy € [-1,1].

Pour touta € [-1,1],0on a

arccos(a) + k2w, ke Z
cos(x) =a <& x=4( ou

—arccos(a) + k27, ke Z.

Exemple 3.23. Résolvons

cos(z) > —

o

, xe[ﬁi]

1. Commengons par étudier le probléme sans contrainte, z € R. En posant a = arccos(—2),
I'inéquation devient

cos(z) = cos(a),

donc les solutions sont

— arccos(—2) + k2m < x < arccos(—2) + k2, ke Z.
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arccos(—3

=]

e

— arccos(

2. On doit maintenant choisir les solutions dans l'intervalle [’Tg’”, ’7”} Sur le cercle cela
laisse les zones dans les quadrants II et III :

! o~ -
3

garccos(—3/4)
| 5l \

—qT

—3/4

¥— arccos(—3/4

1\\
«,%b —T

— arccos(—3/4) € [-m, 5] C [, 5F], donc I'angle est bien placé. arccos(—3/4) €

[Z, 7], il faut donc faire un tour du cercle dans le sens anti-trigonométrique pour

'amener dans [—2F, —7| C [=2%, =%]. On garde donc les intervalles

S = [-% arccos(—2) — 2rr] U [—arccos(—2), —%] .

Lemme
1. Pour tout z € [—1, 1], arccos(—xz) = m — arccos(z).
2. Pour tout = € [—1, 1], sin(arccos(z)) = V1 — 22

Démonstration. 1. Eneffet, siz € [—1,1], alors —z € [—1, 1], et donc
cos(arccos(—x)) = —x = — cos(arccos(z)) = cos(m — arccos(x)).
Or sur [0, 7], le cosinus est injectif et donc
cos(arccos(—x)) = cos(m — arccos(z)) =  arccos(—z) = m — arccos(x) .
2. Par la relation sin?(a) + cos?(a) = 1,

sin®(arccos(r)) = 1 — cos®(arccos(z)) = 1 — z?.
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Or arccos(z) est un angle dans le quadrant I ou II, et donc son sinus est positif, ce qui
implique

sin(arccos(x)) = +V1 —22.

Lemme L’arc cosinus est dérivablesur | — 1,1, etVz €] — 1,1],

1
V1—2a?

(arccos(z)) = —
Démonstration. On ne montrera pas que arccos(z) est dérivable. Mais pour savoir ce qu’est
sa dérivée, on peut partir de

cos(arccos(z)) =2  Vre]—1,1],

et dériver des deux cdtés de 1'équation, et utiliser la régle de dérivation pour une fonction
réciproque,
— sin(arccos(z)) - (arccos(z)) =1,

qui donne

(arcsin(z))" = ! S

cos(arcsin(z)) /1 — a2

Exemple 3.24. Pour = € [—1, 1], donner la valeur de o = arcsin(z) + arccos(z).

Pour commencer, on remarque que

o arcsin(z) € [, 2], et
e arccos(z) € [0, 7).
Par conséquent, o = arcsin(z) + arccos(z) € [F, 2.

Calculons sin(«). Les formules d’addition donnent

sin(arcsin(z) + arccos(z))
= sin(arcsin(x)) cos(arccos(x)) + cos(arcsin(x)) sin(arccos(z))

:$2+\/1—x22

=1.

On cherche donc un angle o [ =%, 22| tel que sin(«) = 1. Le seul angle avec cette propriété est
a = 7. Par conséquent,

arcsin(x) + arccos(z) = 5 Vo e [—-1,+1].

En d’autres termes : arccos(z) et arcsin(z) sont donc des angles complémentaires, ce qui est
évident d'un point de vue géométrique :
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3.5. Fonctions trigonométriques réciproques

a
2

arccos(x)

--7/<C- - A\ arcsin(x)

3.5.3 Fonction réciproque de la tangente

La fonction tangente, sur tout son domaine

tan : R\ {§ +km, k€ Z} - R
x — tan(x),

est surjective mais pas injective puisque périodique.

tan(z) e

raly
B8 e
3

bol3

Animation disponible sur botafogo.saitis.net/analyse-

Définition 3.25. 1. Un intervalle du type | —% + km, % + kx| pour k € Z est une déter-
mination de la tangente. La tangente y est a la fois injective et surjective, et donc
bijective.

2. Lintervalle | =, 2| s’appelle la détermination principale de la tangente.

NumChap: chap-trigo, Derniére compilation: 2025-05-18 23:51:26+02:00. (Version Web:botafogo.saitis.net/analyse-2) 89


botafogo.saitis.net/analyse-1
botafogo.saitis.net/analyse-A

3.5. Fonctions trigonométriques réciproques

Wz — tan(z)
y — arctan(y)

b2
Se
IR
e

rA
Ld
Animation disponible sur botafogo.saitis.net/analyse-1
Définition 3.26. On définit I’arc tangente comme
. T T
arctan : R =] — 7, 7|
y — x = arctan(y),
ot z est 'unique angle = € | =*, Z [ tel que tan(z) = v.
w
T3
arctan(z)
]
T
_r
2
rA
Ld
Animation disponible sur botafogo.saitis.net/analyse-1
Par définition,
arctan(tan(x)) = x vz €]3, 5[,
tan(arctan(z)) =z Vr e R.

Exemple 3.27. Calculer I'angle s = arctan(2) + arctan(3).

1. On localise s. Comme 2,3 > 0, on a arctan(2), arctan(3) € |0, Z[. Donc s €]0, 7.
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3.5. Fonctions trigonométriques réciproques

<o

2
2. On calcule tan(s) a I’aide de la formule d’addition
2
tan(s) = 2HS —1.
1—-2-3
On cherche donc les solutions de I'équation
tan(s) = —1, s €]0, 7]
dont I'unique solution est 2. On a donc
3m

arctan(2) + arctan(3) = T

Listons encore quelques propriétés.
1. Pour touta € R,on a

tan(z) = a < x = arctan(a) + km, kelZ
2. Pour tout z € R, arctan(—x) = — arctan(z).
3. Pour tout z € R,
1
t =
(arctan(z)) e

Démonstration. En effet pour tout z € R, on a tan(arctan(z)) = x. En dérivant des
deux cotés de I'équation,

(1 + tan®(arctan(z))) - (arctan(z)) = 1 < (1 + 2?)(arctan(x)) = 1.
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3.5.4 Fonction réciproque de la cotangente
Pareil pour la cotangente,

cotg : R\ {kr, k€ Z} - R

x +— cotg(x) .
cot(z) e
™
"5 T
]
—T €T T
2
rA
Ld
Animation disponible sur botafogo.saitis.net/analyse-A

Définition 3.28. 1. Un intervalle du type |k, (k + 1)7| pour k € Z s’appelle une déter-
mination de la cotangente. La cotangente y est a la fois injective et surjective, donc
bijective.

2. Lintervalle pour k = 0, |0, 7|, s’appelle la détermination principale de la cotangente.

z — cot(x)

y — arccot(y)

rol3
=)

L]

Animation disponible sur botafogo.saitis.net/analyse-A
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3.5. Fonctions trigonométriques réciproques

Définition 3.29. On définit I’arc cotangente comme

arccot : R — 10, 7|
y — x = arccot(y) ,

ou z est 'unique x € |0, 7| tel que cotg(z) = v.

T
ki
T3
arcot(z)
o
T
rA
Ld
Animation disponible sur botafogo.saitis.net/analyse-A
Par définition,
arccot(cotg(z)) = Va €]0, [,

T
cotg(arccot(x)) = x Vo e R.

Listons encore quelques propriétés.

1. Pour touta € R,on a

cotg(x) = a < x = arccot(a) + km, k € Z

2. Pour tout = € R, arccot(—z) = m — arccot(x).

3. Pour tout x € R,
1

(arccot(m))' = —m .

1
Exemple 3.30. A partir du graphe de arctan(z), déduire le graphe de arctan (5) . On pose

f(z) = arctan(z) + arctan (1> :

T

Le domaine de définition de f est R*. On calcule la dérivée de f :

1 1 -1 1 1
!
= _ = — :O
(@) 1+x2+1+ix2 14+22 1+ 22

2

Par conséquent, f est une constante sur chaque intervalle continu de son domaine de défi-
nition (c’est une conséquence du théoréme des accroissements finis). Donc on a

1 c1,x <0
arctan(z) + arctan (E) = { o > 0.
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3.5. Fonctions trigonométriques réciproques

Pour déterminer c; et c; on évalue la fonction. On a

—T —T ™
—1 = — _— = ——

s ™ ™

Par conséquent,onac; = —5 etcy =  eton conclut que

1 T
arctan (—) = sgn(x)§ — arctan(z).
x

Le graphe de arctan (1) se construit donc par translation de +7 de celui de — arctan(z).

T

Y
/2
arctan(x)
z
— arctan(z)
____________________________ Y
Y
/2
_________________________________ a\\_________________________________
x
— arctan(z)
________________________________ :\G_________________________________
—7/2
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