Chapitre 4

Nombres complexes

4.1 Forme cartésienne

4.1.1 Définition

Nous avons vu, dans la section sur les équations du deuxiéme degré, que I'équation 22 +1 =
0 ne possede pas de solutions puisque le discriminant de z? + 1 est A = —4. En d’autres
termes : le réel —1 n’a pas de racines carrées, puisqu’il n’existe aucun réel x tel que z? = —1.

Les nombres complexes fournissent une extension du corps des réels R permettant de ré-
soudre ce type d’équation. Pour cela,
* nous introduisons un « nombre »i (nombre « imaginaire ») tel que

i2 = —1

* nous imposons que tout calcul se fait selon les regles établies sur les réels.

Remarque 4.1. Tout comme i* = —1, (—i)? = (=1)%? = i? = —1: 4 et —i sont les racines de
—1. o
Pour I'équation en z? = —1, 'ensemble solution est S = {—i,i}. On obtient ainsi la factori-

sation
2?2+ 1= (z+1i)(r—1).
En effet, (v +i)(z — i) = 2° — iz + iz — i = 22 + 1.
Exemple 4.2. Résoudre I'équation en = : 2% + z + 1 = 0. Le discriminant vaut A = 1 — 4 =
—3 = (—1) - 3 et 'ensemble solution est

S:{—l—i\/?—l%—i\/g}.

2 2

Nous allons donc devoir manipuler des nombres de la forme
z=a-+1b, a,beR.

Définition 4.3. L'ensemble
C={z=a+1ib|a,beR}

est appelé I'ensemble des nombres complexes.
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Définition 4.4. Soit z = a+ib € C, a,b € R.
e L'écriture z = a + ib est appelé forme cartésienne ou forme algébrique.
* q estla partie réelle de z, que 'on note

Re(z) = a.
* b estla partie imaginaire de z, que I'on note
Im(z) =b.

Ainsi, z = Re(z) 4+ ¢ Im(2) pour tout z € C.

Remarque 4.5. iR = {ib | b € R} est 'ensemble des nombres imaginaires. o

4.1.2 Identification entre C et R?

Tout nombre complexe z = a + ib peut étre associé au point de coordonnées (a, b) dans le
plan R?, et réciproquement, a tout point (a,b) € R?, on associe I'unique nombre complexe
z = a+1b.

Lorsque les points du plan R? sont interprétés comme représentant des nombres complexes,
on parle du plan complexe ou encore du plan de Gauss.

Représentation graphique :

iR

it *24+1=2—3

I
f—
S
— .

— S

Quelques éléments de géométrie en écriture complexe :

1. Si z = a+1b, a,b € R, le nombre complexe a — ib représente le symétrique de z par
rapport a I'axe réel. On note z = a — ib que l'on appelle le conjugué de z.

2. Equation d’une droite verticale dans le repere Ozy de R? :
r=a.
Equation de la méme droite, en écriture complexe :

Re(z) =a <& 2z+4+z=2a€R.
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3. Equation d'une droite horizontale dans le repere Ozy de R? :
y=>.
Equation de la méme droite, en écriture complexe :

Im(z) =b < z—Zz=2ibeciR.

4.1.3 Opérations sur les nombres complexes
Soientz =a+1b, 2 =d +i € C,a,b,d',t/ € R.
1. Egalité

/

o Re(Z):Re(ZI) . g
Z_Z@{Im(z)zlm(z) <—a=aetb=".

2. Addition +
z+2 = (a+ib)+ (' +ib) = (a+d)+i(b+V)

C’est-a-dire,
Re(z + 2') = Re(z) + Re(?) et Im(z + 2') = Im(z) + Im(2').

En particulier,
Re(z + z) = 2Re(z) et Im(z + z) = 2Im(z).

3. Multiplication -

zz' = (a+ib)(a" + ib)
= aa’ + iab’ + iba' + i*bb
= (aa’ = 0V') +i(ab' + ba’)

c’est-a-dire

Re(zz') = Re(z) Re(2') — Im(2) Im(2')
Im(zz") = Re(z) Im(2") + Im(2) Re(2) .

Remarque 4.6. Observer la similitude avec cos(a + ) et sin(a + f3). o

En particulier, pour z = a + ib, a,b € R,
* Az = Aa+ 1A\, A € R (amplification par un réel)
* iz =ia+i*b = —b+ ia (amplification par un imaginaire)
® 22 =2%=a®—?+i2ab (carré).
Définition 4.7. Soit z = a + ib € C, a,b € R. Le nombre complexe conjugué de z, noté z, est
le nombre
Z=a—1b.

Propriété Soient z, 2’ € C.
z+z zZ—Z
1. = I =
Re(z) 5 m(z) 5
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. 272 = Re’(2) + Im*(2)

2
3
4. 242 =72+ 72
5
6
7.Z2=z&Im(z) =0 z€Retz=—2< Re(z) =0< 2z €iR.

Les preuves se font par vérification directe.

Définition 4.8. Soit z = a + ib € C, a,b € R. Le module de z, noté |z|, est le nombre réel
positif ou nul

2| = V2Z = Va2 + b2 = \/Re2(z) + Im?(2).

En particulier on a
22 = (a +1ib) + (a — ib) = a® + b* = |2|?

Représentation graphique :

Im(z)

z=a+1b+ (a,b)
A

2|

o - Re(z)

2|

|
I
|
|
|
I
|
i

z=a—1b+ (a,—b)

On observe que le module représente la distance entre le point (a, b), identifé avec le nombre
z = a + 1b, et l'origine O = (0, 0) identifié avec le nombre z = 0. Le conjugué représente le
symétrique de (a, b) par symétrie d’axe horizontal.

Propriété
* |Re(2)| < |2|, [ Im(2)| < |2| VzeC
¢ |z|=|z|VzeC
2=z
° —:ineC*
z |22
VA zZ
o  mml=lallnl 12 = G 20y vamec
2| e

|21 4+ 22| < |z1| 4 |22] V 21, 22 € C.

Remarque 4.9. (C, +, -) est un corps (cf Chapitre 0). On a effet I’existence

de I’élément neutre pour 'addition : 0 = 0 + 0

de l'opposé de z = a +ib, a,b € R pour I'addition: —z = —(a +ib) = —a —ib
de I’élément neutre pour la multiplication : 1 = 1 + 0

de l'inverse de z = a + ib # 0, a, b € R pour la multiplication :

1 a—1b

z az+ b’
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En effet,

z 22 |z|2 a4 b

1 z a—ib_a—z'b

L’existence de l'inverse permet de définir la division dans C. Soient z;, 2, € C avec

29 # 0. Alors
21 1 1
— =21 =—21.
Z9 Z9 Z9

4.1.4 Puissances et racines

Définition 4.10. Soient z € C et n € N*. Comme pour les réels, « z puissance n »signifie

Z =22 ... 2.

n facteurs

De plus, si z # 0, nous avons les exposants négatifs ou nul
ZO = 1 Zil = — z = — .

Définition 4.11. Soient z € C et n € N*. Un nombre w € C est une racine n° complexe de z
si w vérifie w" = z.

Exemple 4.12. Les racines carrées de —1 sont 7 et —. o

—1

ou
Exemple 4.13. Les racines cubiques de —1 sont données par w® = —1.Onaw = %ﬁ

ou

1-iv/3

\ 2

En effet, (—1)® = (H”f) 1(1+£i3v3 = 9F i3v/3) = —1. On peut le trouver en résolvant
I'équation z° = -1 < 2° + 1= (2 + 1)(2? — 2 + 1) = 0 dont on connait les solutions. o

Cas particulier : trouver la racine carrée de z = a + ib sous forme algébrique.

Pour z = a +ib, a,b € R, on résout w? = z avec w = « + i/3. Nous cherchons donc «, 8 € R

tels que
a?—p3?=a
(a+iB)? =a® - B> +i2af =a +ib <
208 =0.

Plutot que la relation 2a3 = b, utilisons le carré du module

o’ + 3 =la+if]* = ’\/a+z‘ V]a+ib]2 = Va2 + 2.

Alors
a? — 3% =a = Re(z)

(a+iB)* =a+ib & o+ B2 =Va?+1? = |z
sgn(af) = sgn(b) = sgn(Im(z)).
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Exemple 4.14. Calculer les racines de i. On pose w = « + i3 et on résout w? = i. On a

a2_62:Re(i):0 B - |
(a+if)=0+i-1& qa?+p2 =i =1 @{az_/f:% | ew=lll
Sgn(aﬁ) = Sgn(lm(z)) =11 Sgn<Oéﬁ) = 4+

4.2 Représentation polaire et transformations

4.2.1 Définition

Tout point du plan, et donc aussi tout nombre complexe, peut étre représenté sous forme
polaire.

Définition 4.15. Soit z = = + iy € C. La forme polaire de z est la donnée
e du module r = |z|, qui représente la distance de z a O,
* del'angle ¢ entre 'axe réel et le rayon-vecteur pointant vers z, appelé argument de =
noté arg(z).
On écrit alors z = [r, ¢].

Bien-stir, I'argument n’est pas unique, mais déterminé a un multiple de 27 pres. On appelle
argument principal de z I'unique argument tel que

arg(z) €] —m, 7].

Sur I'animation ci-dessous, on a représenté 1’argument principal § = arg(z) :

r=1434...
6 =0.739... ,

rA
Ld

Animation disponible sur botafogo.saitis.net/analyse-1

Ce dont il faudra se souvenir lorsqu’on voudra résoudre des équations avec des nombres
complexes :

Propriété Soit z = [r, ] et 2/ = [, ¢']. Alors

!/

2=7 & r=retp=¢ +k2r kel
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Remarquons que si z = [r, ¢] € C, alors
e Z=1[r,—y| et
e pour A > 0,0na Az = A[r,¢] = [Ar, ¢].

® siz#0,
L_z_ = _ 1. l. 4 n
—:—_: = —=2Z = 7”7—%0—[—7—}
z 2z |z]2 r? 2 r
rma
LdJd
Animation disponible sur botafogo.saitis.net/analyse-A

4.2.2 Passage d'une forme a l’autre

Si on a un complexe donné sous forme polaire, z = [r, ¢|, alors Re(z) = rcosp et Im(z) =
rsin ¢ et donc sa forme cartésienne est

z=r(cosp +isiny).

Inversément, si un complexe z est donné sous forme cartésienne, z = a + ib € C, alors on
peut le mettre sous forme polaire, z = [r, @] en prenant r = |z| = Va? + b?, et ¢ un angle
quelconque satisfaisant

a b
COSY = —F/——— et sinp = ——.
v va? + b? i va? + b?

Remarquons que la recherche d'un argument nécessite que les deux conditions (sur cos ¢ et
sin ¢) soient satisfaites simultanément. Si on n’en considere qu'une seule, on pourra trouver
un argument en localisant bien z pour en extraire I'information nécessaire pour conclure.

Exemple 4.16. Trouvons une représentation polaire pour z = —/3 — i.

Pour commencer, r = |z| = /3 + 1 = 2. Ensuite, cherchons un angle ¢ tel que

V3

COS @ = —7,

Toutes les solutions de cette équation sont

5 -5
90:%+k27r,k:€Z ou @z%%—k%r,keZ.
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Comme notre complexe z appartient au quadrant /71, on ne peut garder que les angles ¢
du deuxiéme ensemble de solutions, puisque tous satisfont sin(¢) = —1. Par exemple, avec
k=0,¢=—2, etdonc

z= [2, *TE’“] .
(On pourrait aussi prendre k = 1 et obtenir z = [2, ¥}, etc.)

iR

4.2.3 Produit complexe en représentation polaire
Multiplions deux complexes z; = [r1, ¢1] et 2o = [r2, @o]. Puisque
21 = r1(cos 1 +isinpy),
29 = 19(C0OS g + i sin pg) ,
nous avons

2129 = 1T112(C08 (1 + i 8in 1) (Cos g + i sin o)
= 1Ty ((cos 1 COS (g — Sin 1 Sin pg) + (oS 1 sin Yy + sin ¢y cos @2))
= r1ra(cos(p1 4 p2) +isin(pr + ¢2)) -

On a donc montré que

2172y = [r1,01] - [r2, 02] = [r172, 01 4 2] -

Donc multiplier, en représentation polaire, revient a multiplier les modules et additionner les
arguments.

On en conclut que lorsqu’on divise deux nombres complexes, on divise les modules et on
soustrait les argument. En effet,

21 1 1 T
—:,21'—:[7“1,901]'[5,—902}: —P1— P2 -
29 29 )

Exemple 4.17. Pour z; = (v/2, ) et z, = (v/6, —2T),

712 6

|2120] = V2V6 = 2V/3
T 57 97 3m
arg(z129) = B 6" 13- 1
Donc

Z1R9 = (2\/_, —%) .
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1R

217 /

2/.

o

On peut utiliser les propriétés de ’argument pour calculer des angles dans le plan. En effet,

pour deux complexes z; = 11, 1] et 20 = [r2, 2],

— z
¢ =20z = 1 — pp = arg(z) — arg(z) = arg <—1> :

zZ2
iR
21
¥1
©
R
@ ¥2
Z2

Plus généralement, 1’angle formé par trois complexes z1, 22, 23 (dans cet ordre) :

J— —— 23— %z
© = Z12923 = (21 — 22)O(23 — 22) = arg ( 5 2) :
Z1 — %9

iR 23 — 29
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4.2.4 Laformule de Moivre

Appliquons la formule du produit dans le cas ott z; = 20 = 2 = [r, ¢] :

P=zoz=r¢l[re] =20

Cette formule est un cas particulier de la formule de Moivre :
Théoreme 4.18. Soit z = [r, ¢|. Alors pour tout entier n > 2,
2" = [r", ng] = " (cos(ne) + isin(ne)) .
Démonstration. On a vu juste au-dessus que la formule est vraie pour n = 2.
Si on suppose que la formule est vraie pour n, 2" = [r", ny], alors
=" e =" ] ] = [rrone 4+ @] = " (n+ Dl

et donc elle est vraie aussi pour n + 1. O]

4.2.5 Géométrie et transformations dans le plan complexe
Soient z et z; deux points du plan complexe. La distance de z a z; est
dist(z, z9) = |z — 20| -
Equation d’un cercle centré a I'origine et de rayon 2 :
2> =22 = R,
Equation d’un cercle centré en z, et de rayon R :
|z — 2|* = R%.

iR

4

Considérons maintenant un complexe z, et interprétons géométriquement 1’effet qu’ont sur
z les opérations élémentaires d’addition et de multiplication.
Translation
Siw € C, alors l'opération
2zt w

correspond a faire une translation de z. On visualise cette opération comme la regle du
parallélogramme pour l'addition en géométrie vectorielle :
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Rotation
Dans C, la multiplication par un nombre complexe w de module 1,

Z = wz,

correspond a une rotation d’angle arg(w) autour de l'origine. En effet, si z = [r,¢| et w =
[1,0], alors

wz = [1,0] - [r, ¢]
= [r,p+ 0]

On pourra donc écrire wz = roty(z).

Sur ’animation ci-dessous, w est sur le cercle de rayon 1 centré a 1’origine :

wz

ra
LJ

Animation disponible sur botafogo.saitis.net/analyse-A

Homothétie
La multiplication de z par un réel A € R,

Z = Az

correspond a une homothétie.
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Az
—_—0— A —2.10 ,

rma
LJd

Animation disponible sur botafogo.saitis.net/analyse-A

On appelle A le rapport de I'homothétie.
* Si\ > 0,alors arg(\z) = arg(z), et Az représente un agrandissement (si A > 1) ou une

réduction (si 0 < A < 1) de z, de facteur A.
® Si A <0, alors arg(\z) = arg(z) + 7, et Az représente une rotation de +r, composée

avec un agrandissement ou une réduction de facteur |\|.
En particulier, la multiplication de z par A = —1 = [1, 7| donne —z, le symétrique de z par
rapport a 'origine O, et peut aussi se voir comme une rotation d'un angle 7 (ou —7) :

(—1)z = —z =rot,(z2).

Similitude
La multiplication de z par un complexe w quelconque,

2wz
correspond a une similitude, c’est-a-dire une rotation composée avec une homothétie. En ef-
fet, en travaillant en représentation polaire, w = [p, 8] = p[1, 8], on peut écrire wz = p([1, 0]z).
Comme [1,0]z = roty(z), z — wz est la composition de deux transformations,

z > 1oty(2) > p(roty(2)) = wz,

la premiere étape étant une rotation d’angle § = arg(w), la deuxieme une homothétie de
rapport p = |w| :
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F4
wz
rotg(z)
rma
LJd
Animation disponible sur botafogo.saitis.net/analyse-A

Une remarque a propos de I'équation d"une droite dans C :

Considérons 1'équation générale d"une droite dans le plan R? :
ar +by =c,
avec a, b, ¢ € R. Si maintenant on la reformule en terme de z = x + iy,
aRe(z) +bIm(z) = c.

On peut récrire cette derniére

ou encore
(a —ib)z + (a +1ib)Z
=c.
2

En définissant © = a + ib, cette derniére se lit comme

uz +uz
— =c.
2
Puisque uz = ~u, le membre de gauche
w = Re(uz).

Donc I’équation de la droite ax + by = ¢ s’écrit, dans les complexes, comme
Re(uz) = c.

Interprétons géométriquement cette formulation : v = a + ib est clairement le nombre com-
plexe directeur de la normale a la droite. En effectuant une rotation d’angle — arg(u) = arg(«)
de tous les points z de la droite en les multipliant par @/|u|, on obtient effectivement une
droite verticale.
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1R

4.2.6 Racines n-émes de nombres complexes
Un complexe w est appelé racine n-éme de 1'unité si
w'=1.

On résout cette équation en posant w = [r, ¢| et 1 = [1, 0]. Par la formule de Moivre,

wh = [r", neyl,

et donc I'équation devient

[r™ ne| = [1,0].

Or on a vu plus haut que I'égalité de deux nombres complexes sous forme polaire implique
* Modules égaux:r" =1

=r=1(carr € R})

e Arguments égaux a k2w pres:np = 0+ k27, k € Z,
2
=p==Fk il kelZ.
n
Il y a donc n racines distinctes de 1 :

S = {[Lk%ﬂ]

k:(),...,n—l}.

e Pourn =2,

S:{[l,kw]‘kzo,l}.
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e Pourn =3,

sz{mk%

k:0,1,2}.
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\ ‘ i /
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e Pourn =4,

<1
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’ .
[ ~ i
22« —- 20— R
¥
\ o .
N e ]
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~ ¥
\\ ~ 4 /
7 /
\ g . P
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B
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e Pourn =35,
S:{@k%ﬂk:aqu.
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iR
Z1
s Ll S ‘-\\
e \ o
22 /:/’ . i \\ \-\\
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'\, ‘ // ’_/
A ’ /
7
o G, Y & F
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24

On peut appliquer la méme méthode pour calculer la racine n-eme d'un complexe quel-
conque. De maniere générale, les racines n¢ d'un complexe sont localisées sur les sommets
d’un polygone régulier a n cOtés inscrit dans un cercle.

Exemple 4.19. Cherchons les racines cubiques de 8i, c’est-a-dire les w € C tels que
w® = 8i.

On pose w = [r, ], et on met 8i sous forme polaire : i = [8, 7]. En utilisant la formule de
Moivre, I’équation devient

[, 3¢] = 8, 5]
qui implique r* = 8, c’est-a-dire r = 2, et
3g0:g+2k7r, keZ,

qui donne ¢ = £ + k3, k € Z.
On a donc trois solutions distinctes, en prenant £ = 0,1, 2:
20:[2,E], 21:[27%], 22:[2,3%]

Ces racines sont aux sommets d’un triangle équilatéral, situés sur un cercle de rayon r = 2
centré a I’origine :
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4.3. Polyndmes réels et complexes

4.2.7 Une remarque sur la forme exponentielle

Définition 4.20. Pour z = [r, ¢|, on définit la forme exponentielle z = re’?.

Les regles de calcul des exponentielles réelles s’appliquent. En particulier si z; = e et
29 = 19€'?2, alors
2179 = T1reetP1HP2),

Cette forme a donc I’avantage de faciliter les calculs sous forme polaire.

Remarque 4.21. 1. Il est possible de définir une fonction exponentielle complexe z — e*
pour tout z € C. Avec cette fonction on peut démontrer 1’égalité

re'? = r(cos(p) + isin(yp)).
Ceci sort cependant du cadre du cours, et nous allons admettre 1'égalité
re' = [r,¢]

comme convention et nous pouvons l'utiliser dans les calculs.
2. pour z = re', z = [r,—p] = re .
3. En particulier, si on pose z = e'? = cos(p) + isin(yp), on a formellement que
z2+2z ¥ te

cos(p) = Re(z) = 5 = 5 = cosh(ip)

et
242z e —e ¥ 1
sin(p) = Im(z) = = = —sinh(ip).
(¢) = Im(z) = — 5% > sinh(iy)
On constate que dans le plan complexe, les fonctions trigonométriques et hyperbo-
liques sont les mémes!!

Rappel : pour z € R

cosh(z) = %, sinh(x) = e

4.3 Polynomes réels et complexes

4.3.1 Définitions

Définition 4.22. Un polynéme complexe en z € C est une combinaison linéaire de puis-
sances de z :

P(2) = ap2" + ap_12" '+t arz+ag = Z apz®
ou les coefficients a;, € C pour tout k. Le degré d'un polyndme P est la plus grande puis-
sance de z dont le coefficient est non nul. On le note deg P. Si un polyndme ne contient qu'un

seul terme, c’est un mondéme.
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Exemples 4.23. 1. P(z) = 0z* 4 2% — 32 + 2 est un polyndme de degré 2 : deg(P) = 2.
2. P(z) = 32* + 2 — 2 — V/3 est un polyndome de degré 6 : deg(P) = 6.
3. P(z) = 52® est un monome de degré 3.

On considérera les polyndmes comme des fonctions complexes, z — P(z).

On notera :
e C[z] : I'ensemble de tous les polynémes complexes.
e R[z] : 'ensemble de tous les polynomes a coefficients réels : a;, € R pour tout k.
e P,[z] : 'ensemble des polyndémes de degré inférieur ou égal a n :

On dit que des polyndmes P et () sont égaux, et on note P = (), lorsque

P(z) =Q(z) VzeC.

e

Théoréme 4.24. Soient

P(Z) = Clnzn T an,lznfl + ... + a1z + ap,
Q(Z) = bnzn + bn—lzn_1 + ...+ bz + bo .

Alors P = (@) si et seulement ay, = by, pour tout k = 0,1, ..., n.

On somme des polyndmes comme on somme des fonctions réelles : si P, sont des poly-
nomes, alors P + () est aussi un polyndme, défini par

(P+Q)(2) = P(2) +Q(2) VzeC.

Concretement, le coefficient en z* de P + () s’obtient en additionnant les coefficients de P et
de @ associés a la puissance z".
Exemple 4.25. Si

P(z) =32 +52—6

Qz) = —2* — 222 +3,
alors P + QQ est

(P+Q)2)=P>2)+Q(z) = -2+ 2" +52—3.

En général, deg(P + Q) < max{deg P, deg Q}.

Exemple 4.26. P(z2) = 223 + z + 1 est de degré 3, Q(z) = —223 + 322 — 5 est de degré 3, mais
(P+Q)(z) =322 + z — 4 est de degré 2. o

Soient P est un polyndme et A € C est un scalaire (nombre fixé), le produit de P par A, noté
AP, est le polyndome AP € C[z] défini en multipliant chaque coefficient de P par A .

Exemple 4.27. Si P(z) = 32 + 5z — 6 et A = —2, alors

(AP)(2) = AP(2) = — 22 — ?z +4.

Remarquons que
0 iA=0
deg(A\P) = S? ’
deg(P) siA#0.

Avec les deux opérations définies ci-dessus (addition de polynémes et multiplication d’un
polynome par un scalaire) C[z], R[z] et P,[z] sont des exemples d’espaces vectoriels.
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4.3.2 Multiplication et factorisation

On multiplie des polyndmes comme on multiplie des fonctions réelles : si P, () sont des po-
lynémes, alors P() est aussi un polyndme, défini par

(PQ)(z) = P(2)Q(z)  VzeC.
Exemple 4.28. Soient P(z) =32+ 5z —6etQ(z) = — 2% — 22 + 3.

(PQ)(2) = P(2)Q(2)
= (322 +52—6)(—2° — 222+ 3)
=325 — 622 + 922 — 522 — 1023 + 152 4+ 62° + 1222 — 18
= —32° — 112* — 423 + 2122 4+ 152 — 18,

Remarquons que
deg(PQ) = deg P + deg @

Définition 4.29. Un polyndme P est dit réductible s’il peut s’écrire comme un produit de
polyndmes,
P=PP,

ou P, et P, sont de degrés au moins 1; écrire P comme un tel produit est une factorisation
de P. S’il n’est pas réductible, P est dit irréductible.

Exemple 4.30. 1. P(z) = 3z+1 estirréductible. (On peut I’écrire comme P(z) = 3(z2+3),
mais P (z) = 3 est de degré zéro.)

2. P(z) = 2? + 3z + 2 est réductible (donc pas irréductible) car il peut s’écrire P(z) =
(z+1)(z+2).
o

I est important de noter que la réductibilité d’un polynéme dépend du type de polyndomes
que l'on souhaite voir apparaitre dans la factorisation.

En effet, la possibilité d"une factorisation P = P, P, dépend de ce qui est exigé sur P; et P, :
si on exige que P, P, € R[z], la factorisation n’est pas toujours possible. Donc un polynéme
peut étre irréductible dans R[z] mais pas dans C[z]!

Exemple 4.31. Soit P(z) = 2% + 1, qui est & coefficients réels.
e Puisque le discriminant A = —4 < 0, il n’existe pas de polynémes P, P, € R[z| de
degrés > 1 tels que P = P, P.
e Par contre, c’est possible en prenant P, P, € C[z], puisqu’on peut écrire P(z) = (z —
i)(z +1).
o
Nous verrons plus bas que si z, est une racine de P, alors P peut s’écrire comme P(z) = (z —
20)Q(2) ou ) est un polyndme de degré plus petit. Les seuls polyndmes irréductibles dans
C[z] sont donc les polynomes de degré 1. Dans R|z], les seuls autres polynomes irréductibles
sont les polynomes de degré 2 a discriminants négatifs.
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4.3.3 Racines et factorisations

Une question naturelle, si on se donne un polyndéme P, est de trouver les racines de P, a
savoir les z tels que
P(z)=0.

Rechercher les racines de P (dans C ou R) et factoriser P (en un produit de facteurs irré-
ductibles dans ces mémes ensembles) sont des probléemes équivalentes. Nous l’avions déja
constaté dans le cas particulier de I’étude des trindmes du second degré.

Donnons quelques exemples de factorisations.

Exemple 4.32. Trouver les décompositions en facteurs irréductibles de P(z) = 2*—2%—22—1.
Par les identités remarquables (voir fin de section), on a

P(z) = 2" — (2 +22+1)
= () = (2 +1)?
= - (z+1D))(2+2+1)
= —z-1)(A+z+1)
=(z—2)(z—2) (2 +z+1),

ollz; = %5, 29 = %5 Comme le discriminant de 22+ z+1 est strictement négatif, il ne peut
pas étre factorisé comme produit de polynomes a coefficients réels et donc la décomposition
dans R[z] de P est

P(z) = (2 —21)(z — 20)(Z* + 2 + 1).

Si on travaille a présent dans C[z], on peut autoriser des polynomes a coefficients complexes
dans la décomposition, et en reprenant I’expression du dessus, nous pouvons écrire

24z4+1=(2z—w)(z—w),

ol w, = —1—\/31’ wy = —1—;\/31

2
donc

. La décomposition en facteurs irréductibles de P dans C|[z] est

P(z)=(2—21)(z — 22)(z —wy) (2 — wa).

Dans I’exemple précédent, nous avons pu factoriser le polynome en utilisant les identités re-
marquables et le discriminant. Dans le cas ot la factorisation n’est pas évidente, on recherche
une racine particuliere z, et on divise P(z) par le bindome (z — z).

Théoreme 4.33. Soient P un polynome, deg P > 1, et 2, € C. Il existe alors un unique polynome
F tel que
P(z) = (2 —20)F(2) + P(2) -

De plus, on a deg F' = deg P — 1

On prouve ce théoreme par une vérification directe. Supposons que P est de degré n, de la
forme suivante :
P(2) = ap2" + ap12" '+ Farz+ag.

Fixons un z, € C quelconque, et cherchons un polynéme F' de degré n — 1 tel que

P(z) = (2 — 20)F(2) + P(20) Vz e C.
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Nommons by, les coefficients du polynéme recherché :
F(2) = by 12" by 02" 24+ bz + b
Commencons par développer :
(2= 20)F(2) = (by_12" ' 4 bp 02" 2+ -+ b1z + by) (2 — 2)
= bp12" 4+ (bp—g — bp_120)2" 4 -+ (bg — b120)z — bo2o

En posant
bnfl = Qan
bp—o = an_1+by_120

b1 = (12+b220
bo = ai+biz,

on peut récrire cette derniére comme suit
(z—20)F(2) = —2z0by + P(2) — ao .

Puisque cette derniere est vraie en particulier pour z = 2, on en tire la relation P(z) =

ap + bozp, qui permet donc d’écrire
(z = 20)F(2) = P(2) — P(%),

ce qui conclut la preuve.

La facon dont les coefficients b, sont définis récursivement ci-dessus, a savoir b; = a;1 +
2pbj11, peut se résumer dans un shéma appelé shéma de Horner :

a n

Ap—1

ap—2

5]

0]

<0

bn—120

bn—zzn

bl 20

bnfv’n

bn -1

b n—2

b-u—.‘i

(()()

P(Z()}

Dans la premiére colonne, on descend le coefficient a,, pour obtenir b,_;, puis on effectue le
produit croisé avec z,. Par la suite, on somme les résultats de chaque colonne pour obtenir
le nouveau coefficient by, et on reproduit la procédure jusqu’a arriver au bout du tableau.
Quelques remarques concernant la relation obtenue dans le théoréme ci-dessus :

P(z) = (2 — 20)F(2) + P(20).
1. P(z) est appelé le reste de la division de P(z) par z — z.
2. si zg est une racine de P(z), i.e. P(zy) = 0, alors
P(z) = (z = 20) F(2),
et donc P est divisible par z — z.
Pour continuer a factoriser P, on continue le procédé sur F' en recherchant une racine

particuliére z, jusqu’a obtenir finalement un produit de facteurs irréductibles.
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Remarque 4.34. S’il existe n € N* et un polynome F'(z) tel que F'(z) # 0 et
P(z) = (2 = 2)"F(2),

on dit que z, est une racine d’ordre (ou de multiplicité) n. Cas particuliers : sin = 1, on
parle de racine simple, si n = 2 on parle de racine double. o

Exemple 4.35. Effectuer la division de P(z) = 2* + 72 4+ 42 — 12 par z — 1.

1 7 4 -12
Tg = 1 1 8 12
1 8 12 0

Ainsi
2+ T2° +4r — 12 = (z — 1) (2 + 8z + 12).

On constate qu’on obtient 0 a la fin du processus, ainsi P(1) = 0 ce qu’on aurait pu observer
des le départ puisque 1 est une racine. Des lors si on souhaite résoudre 1’équation P(z) = 0,
on proceéde tout d’abord pour le schéma de Horner pour écrire

P(z) = (z — 1)(2® 4+ 8z + 12)

que l'on peut factoriser encore comme P(z) = (z — 1)(xz + 2)(x + 6). On trouve alors que

les solutions de P(x) = 0 sont données par x = 1 ouz = —2 ou z = —6 et donc I'ensemble
solution de I'équation P(z) = 0est S = {—6, -2, 1}. o
Exemple 4.36. Effectuer la division de P(z) = 2* + 822 4+ 17z + 10 par = + 1. Ici il faut voir
que zp = —1 et par conséquent on effectue la division de P(x) par z — (—1). On a par Horner
1 8 17 10
xg = —1 -1 —7 —10
1 iz 10 0

Ainsi, P(z) = (x 4+ 1)(2? 4+ Tz + 10) et en continuant
Plx) =2 +822 + 172+ 10 = (z + 1)(2* + Tx + 10) = (z + 1)(z + 2)(z + 5)..

Les solutions de 1’équation P(z) = 0 sont donc données par S = {—5, —2, —1}. o

Exemple 4.37. Résoudre I'équation 3z* — 222 + 42+ 9 = 0. On observe que o = —1 est racine
évidente de P(z) = 3z — 22 + 42 + 9. P(x) est donc divisible par = + 1. Par Horner, on
obtient

P(z) = (v +1)(32> =52 +9) .

Ici la décomposition dans R s’arréte car 322 — 5z + 9 n’a aucune racine réelle (A < 0).
L'équation P(z) = 0 pour z € R admet donc comme ensemble solution S = {1}.

Si on résout a présent P(z) = 0 pour = € C, on peut factoriser P comme
P(a) = (x + 1)(32* — 52 + 9) = 3(x + 1)z — 24)( — ),

_ 5830

>, et donc I’ensemble solution est S = {—1,z_, 2 }. o

avec T4
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Exemple 4.38. Effectuer la division de P(z) = 42® + 2 par x + 2.

4 0 0 2
Tg = —2 -8 16 —32
4 —8 16 —30

Ainsi
42° + 2 = (z + 2)(42* — 82 + 16) — 30.

Ici il faut faire attention a remplir la premiere ligne du tableau avec des 0 sur les puissances
manquantes. On constate également que le reste ici est non nul : en effet on a bien que
P(—2) = —30. On ne peut pas résoudre I'équation P(x) = 0 en procédant par division par
x + 2. Par contre, cela donne les solutions de I'équation Q(z) = 0 ott Q(z) = P(z) + 30. En
effet, on a Q(z) = P(z) + 30 = (z + 2)(42? — 8x + 16) = 4(z + 2)(2* — 2z + 4). Comme
x* — 2x + 4 n’admet par de racines réelles (A < 0), on a que les solutions de Q(z) = 0

dans R sont données par S = {—2}. Dans C, elles sont données par S = {—2,z_,z,} ou
ry =14 V3i. o

4.3.4 Théoreme fondamental de 1’algebre et décompositions

Théoreme 4.39. Tout polynome P € C[z] possede au moins une racine complexe.

Exemple 4.40. z; = 1 + ¢ est solution de I'équation z'" + 122iz — 12 — 12i = 0. 3

Par le Théoreme Fondamental, les seuls polyndmes irréductibles de C[z] sont du premier
degré.

Corollaire 1. tout polynéme P € C|z] s’écrit comme
Pz)=alz—2z)(z—2) (2 — 2z,)
ot o, 21, ..., 2, € Cet z1,, k = 1,...,n sont les racines de P.

Théoreme 4.41. Soit P € R[z] un polynome a coefficients réels. Alors, si z est une racine de P, son
complexe conjugué z est aussi racine de P.

En effet, soit P(z) = a,2" + a, 12" '+ -+ a1z +agaveca, € R, k=0,...,n. Alors

0=P(z) & 0=P(2)
=p2" + 12"+ a1z +ag
—a,Z" 4+ ap 12"Vt a1Z+ag

= P(2).

Corollaire 2. Soit P(z) = az?+bz+c, a,b,c € R, a # 0 un trindme réel du deuxieme degré. Alors
P(z) possede

* soit deux racines réelles, distinctes ou confondues

* soit deux racines complexes conjuguées I'une de I'autre.
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Théoreme 4.42. Tout polynéme P € Rx] peut étre décomposé en facteurs irréductibles de Rx] :
P(x) = a(z — 2)™ -+ (@ — )" (22 + Bra + 7)™ -+ (22 + Byz + 7)™

avec
® g cR*

racines réelles x;, 1 = 1, ..., p toutes différents

n; € Nordre (ou multiplicité) de la racine x;

* couples réels (5;,7;), j = 1,...,q tous différents et tels que A; = BJ? —4v; <0

* m; € N

*ny+---+n,+2(m +---+my) =degP.

Preuve : En effet supposons que P est un polynome réel de degré strictment plus grand
que 2 ou de degré 2 mais avec un discriminant non négatif. P, a titre de cas particulier d'un
polynome a coefficients complexes, possede au moins une racine z, € C.
e Si cette racine est réelle, zp = 2y € R et P(x) est divisible par x — xy. P n’est donc pas
irréductible.
e Si cette racine est complexe avec Im(zy) # 0, Z, est aussi racine et donc P(z) est divi-
sible par (x — z0)(z — Zo) = 2% — 2Re(20) + |20|?. De nouveau, P n’est pas irréductible.
Exemple 4.43. Décomposer P(z) = z* + 1 en facteurs irréductibles dans R|x].
* Pestréel et de degré 4 :il a deux paires de racines complexes conjuguées.
 Racines dans C: P(z) = 0 si et seulement si 2* = —1 = [1,7 + k27, k € Z, ce qui
donne z = [1, % + k%], k € Z. Donc

e Factorisation :

Pl <x_ 1\;;) (x_ 1\/—;) (:1:— _1/-;) (1;_ _i/;)/

~
Décomposition en facteurs irréductibles dans C|x]

(e (i

= (22 =V2r+ 1)+ V22 +1)

. J
-

Décomposition en facteurs irréductibles dans R|x]

Attention :

1. P est un polynome a coefficient réel, mais il peut étre vu comme un polynéme com-
plexe (puisque R C C).

2. Ecrire la décomposition de P en facteurs irrécuctibles dans C, c’est 1’écrire comme un
produit de polyndmes complexes irréductibles.

3. Ecrire la décomposition de P en facteurs irrécuctibles dans R, c’est 1’écrire comme un
produit de polyndmes réels irréductibles.
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4.3.5 Polyndémes remarquables

Propriété Soita c C.

1. 22 —a?>= (2 —a)(z +a)

2. 22 —a*=(z—a)(z* + za + a?)

3.2"—a"=(z—a)z" P+ 2" Za+ o+ 2" R 4 za" R e
Propriété Soita c C.

1. (z £a)? = 2% + 2za + a?

2. (zta)®=2%+32%a+ 3za* + a*

3. (zta)" = Z (Z) (+a)"*2* (bindme de Newton)
k=0

n

Les coefficients (}), dans la formule du bindme, sont appelés coefficients binomiaux et
peuvent se calculer a I'aide du triangle de Pascal :

n=0|(x+a)’= 1 1
n=1|(zx+a)l= z +a 11
n=2|(x+a)?= 2> +2ax +ad? 1 21
n=3|(x+a)P= 2* +3ax?® +3d*z +2° 1 3 31
n=4|(r+a)= ' +4ar® +6a*z*> +4a’r +a*|1 4 6 4 1
k 01 2 3 4

On construit le triangle de Pascal avec les deux regles suivantes :
1. On commence et on termine chaque ligne par un 1.

2. En sommant deux nombres consécutifs d"une ligne, on obtient le nombre sur la ligne
en dessous.
Ces regles s’écrivent comme :
1L ()= (") =1, neN
2. (") + () =0, k=12..n n>L
On peut montrer que
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