
Chapitre 4

Nombres complexes

4.1 Forme cartésienne

4.1.1 Définition

Nous avons vu, dans la section sur les équations du deuxième degré, que l’équation x2+1 =
0 ne possède pas de solutions puisque le discriminant de x2 + 1 est ∆ = −4. En d’autres
termes : le réel −1 n’a pas de racines carrées, puisqu’il n’existe aucun réel x tel que x2 = −1.

Les nombres complexes fournissent une extension du corps des réels R permettant de ré-
soudre ce type d’équation. Pour cela,

• nous introduisons un « nombre »i (nombre « imaginaire ») tel que

i2 = −1

• nous imposons que tout calcul se fait selon les règles établies sur les réels.
Remarque 4.1. Tout comme i2 = −1, (−i)2 = (−1)2i2 = i2 = −1 : i et −i sont les racines de
−1. ⋄
Pour l’équation en x2 = −1, l’ensemble solution est S = {−i, i}. On obtient ainsi la factori-
sation

x2 + 1 = (x+ i)(x− i) .

En effet, (x+ i)(x− i) = x2 − ix+ ix− i2 = x2 + 1.
Exemple 4.2. Résoudre l’équation en x : x2 + x + 1 = 0. Le discriminant vaut ∆ = 12 − 4 =
−3 = (−1) · 3 et l’ensemble solution est

S =

{
−1− i

√
3

2
,
−1 + i

√
3

2

}
.

⋄
Nous allons donc devoir manipuler des nombres de la forme

z = a+ ib, a, b ∈ R .

Définition 4.3. L’ensemble
C = {z = a+ ib | a, b ∈ R}

est appelé l’ensemble des nombres complexes.
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4.1. Forme cartésienne

Définition 4.4. Soit z = a+ ib ∈ C, a, b ∈ R.
• L’écriture z = a+ ib est appelé forme cartésienne ou forme algébrique.
• a est la partie réelle de z, que l’on note

Re(z) = a .

• b est la partie imaginaire de z, que l’on note

Im(z) = b .

Ainsi, z = Re(z) + i Im(z) pour tout z ∈ C.

Remarque 4.5. iR = {ib | b ∈ R} est l’ensemble des nombres imaginaires. ⋄

4.1.2 Identification entre C et R2

Tout nombre complexe z = a + ib peut être associé au point de coordonnées (a, b) dans le
plan R2, et réciproquement, à tout point (a, b) ∈ R2, on associe l’unique nombre complexe
z = a+ ib.

Lorsque les points du plan R2 sont interprétés comme représentant des nombres complexes,
on parle du plan complexe ou encore du plan de Gauss.

Représentation graphique :

Quelques éléments de géométrie en écriture complexe :

1. Si z = a + ib, a, b ∈ R, le nombre complexe a − ib représente le symétrique de z par
rapport à l’axe réel. On note z̄ = a− ib que l’on appelle le conjugué de z.

2. Equation d’une droite verticale dans le repère Oxy de R2 :

x = a .

Equation de la même droite, en écriture complexe :

Re(z) = a ⇔ z + z̄ = 2a ∈ R .
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4.1. Forme cartésienne

3. Equation d’une droite horizontale dans le repère Oxy de R2 :

y = b .

Equation de la même droite, en écriture complexe :

Im(z) = b ⇔ z − z̄ = 2ib ∈ iR .

4.1.3 Opérations sur les nombres complexes

Soient z = a+ ib, z′ = a′ + ib′ ∈ C, a, b, a′, b′ ∈ R.

1. Egalité

z = z′ ⇐⇒

{
Re(z) = Re(z′)

Im(z) = Im(z′)
⇐⇒ a = a′ et b = b′ .

2. Addition +
z + z′ = (a+ ib) + (a′ + ib′) = (a+ a′) + i(b+ b′)

c’est-à-dire,

Re(z + z′) = Re(z) + Re(z′) et Im(z + z′) = Im(z) + Im(z′) .

En particulier,
Re(z + z) = 2Re(z) et Im(z + z) = 2 Im(z) .

3. Multiplication ·

zz′ = (a+ ib)(a′ + ib′)

= aa′ + iab′ + iba′ + i2bb′

= (aa′ − bb′) + i(ab′ + ba′)

c’est-à-dire

Re(zz′) = Re(z) Re(z′)− Im(z) Im(z′)

Im(zz′) = Re(z) Im(z′) + Im(z) Re(z′) .

Remarque 4.6. Observer la similitude avec cos(α + β) et sin(α + β). ⋄
En particulier, pour z = a+ ib, a, b ∈ R,
• λz = λa+ iλb, λ ∈ R (amplification par un réel)
• iz = ia+ i2b = −b+ ia (amplification par un imaginaire)
• zz = z2 = a2 − b2 + i2ab (carré).

Définition 4.7. Soit z = a + ib ∈ C, a, b ∈ R. Le nombre complexe conjugué de z, noté z̄, est
le nombre

z̄ = a− ib .

Propriété Soient z, z′ ∈ C.

1. Re(z) =
z + z̄

2
, Im(z) =

z − z̄

2i
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4.1. Forme cartésienne

2. z̄ = z

3. Re(z̄) = Re(z) et Im(z̄) = − Im(z)

4. z + z′ = z + z′

5. zz′ = z z′

6. zz̄ = Re2(z) + Im2(z)

7. z̄ = z ⇔ Im(z) = 0 ⇔ z ∈ R et z̄ = −z ⇔ Re(z) = 0 ⇔ z ∈ iR.

Les preuves se font par vérification directe.

Définition 4.8. Soit z = a + ib ∈ C, a, b ∈ R. Le module de z, noté |z|, est le nombre réel
positif ou nul

|z| =
√
zz̄ =

√
a2 + b2 =

√
Re2(z) + Im2(z).

En particulier on a
zz̄ = (a+ ib) + (a− ib) = a2 + b2 = |z|2

Représentation graphique :

On observe que le module représente la distance entre le point (a, b), identifé avec le nombre
z = a + ib, et l’origine O = (0, 0) identifié avec le nombre z = 0. Le conjugué représente le
symétrique de (a, b) par symétrie d’axe horizontal.

Propriété
• |Re(z)| ⩽ |z|, | Im(z)| ⩽ |z| ∀ z ∈ C
• |z| = |z̄| ∀ z ∈ C
•

1

z
=

z̄

|z|2
∀ z ∈ C∗

• |z1z2| = |z1| |z2|
∣∣∣∣z1z2
∣∣∣∣ = |z1|

|z2|
(z2 ̸= 0) ∀ z1, z2 ∈ C

• |z1 + z2| ⩽ |z1|+ |z2| ∀ z1, z2 ∈ C.

Remarque 4.9. (C,+, ·) est un corps (cf Chapitre 0). On a effet l’existence
• de l’élément neutre pour l’addition : 0 = 0 + i0
• de l’opposé de z = a+ ib, a, b ∈ R pour l’addition : −z = −(a+ ib) = − a− ib
• de l’élément neutre pour la multiplication : 1 = 1 + i0
• de l’inverse de z = a+ ib ̸= 0, a, b ∈ R pour la multiplication :

1

z
=

a− ib

a2 + b2
.
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4.1. Forme cartésienne

En effet,
1

z
=

z̄

zz̄
=

a− ib

|z|2
=

a− ib

a2 + b2
.

L’existence de l’inverse permet de définir la division dans C. Soient z1, z2 ∈ C avec
z2 ̸= 0. Alors

z1
z2

= z1
1

z2
=

1

z2
z1 .

⋄

4.1.4 Puissances et racines
Définition 4.10. Soient z ∈ C et n ∈ N∗. Comme pour les réels, « z puissance n »signifie

zn = z · z · . . . · z︸ ︷︷ ︸
n facteurs

.

De plus, si z ̸= 0, nous avons les exposants négatifs ou nul

z0 = 1 z−1 =
1

z
z−n =

1

zn
.

Définition 4.11. Soient z ∈ C et n ∈ N∗. Un nombre w ∈ C est une racine ne complexe de z
si w vérifie wn = z.

Exemple 4.12. Les racines carrées de −1 sont i et −i. ⋄

Exemple 4.13. Les racines cubiques de −1 sont données par ω3 = −1. On a ω =



−1

ou
1+i

√
3

2

ou
1−i

√
3

2
.

En effet, (−1)3 = (1±i
√
3

2
)3 = 1

8
(1 ± i3

√
3 − 9 ∓ i3

√
3) = −1. On peut le trouver en résolvant

l’équation z3 = −1 ⇔ z3 + 1 = (z + 1)(z2 − z + 1) = 0 dont on connait les solutions. ⋄
Cas particulier : trouver la racine carrée de z = a+ ib sous forme algébrique.

Pour z = a + ib, a, b ∈ R, on résout ω2 = z avec ω = α + iβ. Nous cherchons donc α, β ∈ R
tels que

(α + iβ)2 = α2 − β2 + i2αβ = a+ ib ⇔

{
α2 − β2 = a

2αβ = b .

Plutôt que la relation 2αβ = b, utilisons le carré du module

α2 + β2 = |α + iβ|2 =
∣∣∣√a+ ib

∣∣∣2 =√|a+ ib|2 =
√
a2 + b2 .

Alors

(α + iβ)2 = a+ ib ⇔


α2 − β2 = a = Re(z)

α2 + β2 =
√
a2 + b2 = |z|

sgn(αβ) = sgn(b) = sgn(Im(z)) .
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4.2. Représentation polaire et transformations

Exemple 4.14. Calculer les racines de i. On pose ω = α + iβ et on résout ω2 = i. On a

(α + iβ)2 = 0 + i · 1 ⇔


α2 − β2 = Re(i) = 0

α2 + β2 = |i| = 1

sgn(αβ) = sgn(Im(i)) = +1

⇔

{
α2 = β2 = 1

2

sgn(αβ) = +1
⇔ ω = ±1 + i√

2
.

⋄

4.2 Représentation polaire et transformations

4.2.1 Définition

Tout point du plan, et donc aussi tout nombre complexe, peut être représenté sous forme
polaire.

Définition 4.15. Soit z = x+ iy ∈ C. La forme polaire de z est la donnée
• du module r = |z|, qui représente la distance de z à O,
• de l’angle φ entre l’axe réel et le rayon-vecteur pointant vers z, appelé argument de z

noté arg(z).
On écrit alors z = [r, φ].

Bien-sûr, l’argument n’est pas unique, mais déterminé à un multiple de 2π près. On appelle
argument principal de z l’unique argument tel que

arg(z) ∈ ]−π , π ] .

Sur l’animation ci-dessous, on a représenté l’argument principal θ = arg(z) :

Animation disponible sur botafogo.saitis.net/analyse-1

Ce dont il faudra se souvenir lorsqu’on voudra résoudre des équations avec des nombres
complexes :

Propriété Soit z = [r, φ] et z′ = [r′, φ′]. Alors

z = z′ ⇔ r = r′ et φ = φ′ + k2π, k ∈ Z.
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4.2. Représentation polaire et transformations

Remarquons que si z = [r, φ] ∈ C, alors
• z̄ = [r,−φ], et
• pour λ > 0, on a λz = λ[r, φ] = [λr, φ].
• si z ̸= 0,

1

z
=

z

zz
=

z

|z|2
=

1

r2
z =

1

r2
[r,−φ] =

[
1
r
,−φ

]
.

Animation disponible sur botafogo.saitis.net/analyse-A

4.2.2 Passage d’une forme à l’autre

Si on a un complexe donné sous forme polaire, z = [r, φ], alors Re(z) = r cosφ et Im(z) =
r sinφ et donc sa forme cartésienne est

z = r(cosφ+ i sinφ) .

Inversément, si un complexe z est donné sous forme cartésienne, z = a + ib ∈ C, alors on
peut le mettre sous forme polaire, z = [r, φ] en prenant r = |z| =

√
a2 + b2, et φ un angle

quelconque satisfaisant

cosφ =
a√

a2 + b2
et sinφ =

b√
a2 + b2

.

Remarquons que la recherche d’un argument nécessite que les deux conditions (sur cosφ et
sinφ) soient satisfaites simultanément. Si on n’en considère qu’une seule, on pourra trouver
un argument en localisant bien z pour en extraire l’information nécessaire pour conclure.
Exemple 4.16. Trouvons une représentation polaire pour z = −

√
3− i.

Pour commencer, r = |z| =
√
3 + 1 = 2. Ensuite, cherchons un angle φ tel que

cosφ = −
√
3

2
,

Toutes les solutions de cette équation sont

φ =
5π

6
+ k2π , k ∈ Z ou φ =

−5π

6
+ k2π , k ∈ Z .
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4.2. Représentation polaire et transformations

Comme notre complexe z appartient au quadrant III , on ne peut garder que les angles φ
du deuxième ensemble de solutions, puisque tous satisfont sin(φ) = −1

2
. Par exemple, avec

k = 0, φ = −5π
6

, et donc
z =

[
2, −5π

6

]
.

(On pourrait aussi prendre k = 1 et obtenir z = [2, 7π
6
], etc.)

⋄

4.2.3 Produit complexe en représentation polaire

Multiplions deux complexes z1 = [r1, φ1] et z2 = [r2, φ2]. Puisque

z1 = r1(cosφ1 + i sinφ1) ,

z2 = r2(cosφ2 + i sinφ2) ,

nous avons

z1z2 = r1r2(cosφ1 + i sinφ1)(cosφ2 + i sinφ2)

= r1r2
(
(cosφ1 cosφ2 − sinφ1 sinφ2) + i(cosφ1 sinφ2 + sinφ1 cosφ2)

)
= r1r2

(
cos(φ1 + φ2) + i sin(φ1 + φ2)

)
.

On a donc montré que

z1z2 = [r1, φ1] · [r2, φ2] =
[
r1r2, φ1 + φ2

]
.

Donc multiplier, en représentation polaire, revient à multiplier les modules et additionner les
arguments.

On en conclut que lorsqu’on divise deux nombres complexes, on divise les modules et on
soustrait les argument. En effet,

z1
z2

= z1 ·
1

z2
= [r1, φ1] ·

[
1
r2
,−φ2

]
=

[
r1
r2
, φ1 − φ2

]
.

Exemple 4.17. Pour z1 = (
√
2, π

12
) et z2 = (

√
6,−5π

6
),

|z1z2| =
√
2
√
6 = 2

√
3

arg(z1z2) =
π

12
− 5π

6
= −9π

12
= −3π

4

Donc
z1z2 =

(
2
√
3,−3π

4

)
.
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4.2. Représentation polaire et transformations

⋄
On peut utiliser les propriétés de l’argument pour calculer des angles dans le plan. En effet,
pour deux complexes z1 = [r1, φ1] et z2 = [r2, φ2],

φ = ẑ2Oz1 = φ1 − φ2 = arg(z1)− arg(z2) = arg

(
z1
z2

)
.

Plus généralement, l’angle formé par trois complexes z1, z2, z3 (dans cet ordre) :

φ = ẑ1z2z3 = ̂(z1 − z2)O(z3 − z2) = arg

(
z3 − z2
z1 − z2

)
.
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4.2. Représentation polaire et transformations

4.2.4 La formule de Moivre

Appliquons la formule du produit dans le cas où z1 = z2 = z = [r, φ] :

z2 = z · z = [r, φ] · [r, φ] = [r2, 2φ] .

Cette formule est un cas particulier de la formule de Moivre :

Théorème 4.18. Soit z = [r, φ]. Alors pour tout entier n ⩾ 2,

zn = [rn, nφ] = rn
(
cos(nφ) + i sin(nφ)

)
.

Démonstration. On a vu juste au-dessus que la formule est vraie pour n = 2.

Si on suppose que la formule est vraie pour n, zn = [rn, nφ], alors

zn+1 = zn · z = [rn, nφ] · [r, φ] = [rnr, nφ+ φ] = [rn+1, (n+ 1)φ] ,

et donc elle est vraie aussi pour n+ 1.

4.2.5 Géométrie et transformations dans le plan complexe

Soient z et z0 deux points du plan complexe. La distance de z à z0 est

dist(z, z0) = |z − z0| .

Equation d’un cercle centré à l’origine et de rayon R :

|z|2 = zz̄ = R2 .

Equation d’un cercle centré en z0 et de rayon R :

|z − z0|2 = R2 .

Considérons maintenant un complexe z, et interprétons géométriquement l’effet qu’ont sur
z les opérations élémentaires d’addition et de multiplication.
Translation
Si w ∈ C, alors l’opération

z 7→ z + w

correspond à faire une translation de z. On visualise cette opération comme la règle du
parallélogramme pour l’addition en géométrie vectorielle :
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4.2. Représentation polaire et transformations

Rotation
Dans C, la multiplication par un nombre complexe w de module 1,

z 7→ ωz ,

correspond à une rotation d’angle arg(ω) autour de l’origine. En effet, si z = [r, φ] et ω =
[1, θ], alors

ωz = [1, θ] · [r, φ]
= [r, φ+ θ]

On pourra donc écrire ωz = rotθ(z).

Sur l’animation ci-dessous, ω est sur le cercle de rayon 1 centré à l’origine :

Animation disponible sur botafogo.saitis.net/analyse-A

Homothétie
La multiplication de z par un réel λ ∈ R,

z 7→ λz

correspond à une homothétie.
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4.2. Représentation polaire et transformations

Animation disponible sur botafogo.saitis.net/analyse-A

On appelle λ le rapport de l’homothétie.
• Si λ > 0, alors arg(λz) = arg(z), et λz représente un agrandissement (si λ > 1) ou une

réduction (si 0 < λ < 1) de z, de facteur λ.
• Si λ < 0, alors arg(λz) = arg(z) + π, et λz représente une rotation de +π, composée

avec un agrandissement ou une réduction de facteur |λ|.
En particulier, la multiplication de z par λ = −1 = [1, π] donne −z, le symétrique de z par
rapport à l’origine O, et peut aussi se voir comme une rotation d’un angle π (ou −π) :

(−1)z = −z = rotπ(z) .

Similitude
La multiplication de z par un complexe ω quelconque,

z 7→ ωz

correspond à une similitude, c’est-à-dire une rotation composée avec une homothétie. En ef-
fet, en travaillant en représentation polaire, ω = [ρ, θ] = ρ[1, θ], on peut écrire ωz = ρ([1, θ]z).
Comme [1, θ]z = rotθ(z), z 7→ ωz est la composition de deux transformations,

z 7→ rotθ(z) 7→ ρ(rotθ(z)) = ωz ,

la première étape étant une rotation d’angle θ = arg(ω), la deuxième une homothétie de
rapport ρ = |ω| :

106 NumChap: chap-nombres-complexes, Dernière compilation: 2025-05-18 23:51:26+02:00. (Version Web:botafogo.saitis.net/analyse-A)

botafogo.saitis.net/analyse-A
botafogo.saitis.net/analyse-A


4.2. Représentation polaire et transformations

Animation disponible sur botafogo.saitis.net/analyse-A

Une remarque à propos de l’équation d’une droite dans C :

Considérons l’équation générale d’une droite dans le plan R2 :

ax+ by = c ,

avec a, b, c ∈ R. Si maintenant on la reformule en terme de z = x+ iy,

aRe(z) + b Im(z) = c .

On peut récrire cette dernière

a
z + z̄

2
+ b

z − z̄

2i
= c ,

ou encore
(a− ib)z + (a+ ib)z̄

2
= c .

En définissant u = a+ ib, cette dernière se lit comme

ūz + uz̄

2
= c .

Puisque uz̄ = ¯̄zu, le membre de gauche

ūz + uz̄

2
= Re(ūz) .

Donc l’équation de la droite ax+ by = c s’écrit, dans les complexes, comme

Re(ūz) = c .

Interprétons géométriquement cette formulation : u = a + ib est clairement le nombre com-
plexe directeur de la normale à la droite. En effectuant une rotation d’angle − arg(u) = arg(ū)
de tous les points z de la droite en les multipliant par ū/|u|, on obtient effectivement une
droite verticale.
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4.2. Représentation polaire et transformations

4.2.6 Racines n-èmes de nombres complexes

Un complexe ω est appelé racine n-ème de l’unité si

ωn = 1 .

On résout cette équation en posant ω = [r, φ] et 1 = [1, 0]. Par la formule de Moivre,

ωn = [rn, nφ] ,

et donc l’équation devient

[rn, nφ] = [1, 0] .

Or on a vu plus haut que l’égalité de deux nombres complexes sous forme polaire implique
• Modules égaux : rn = 1

⇒ r = 1 (car r ∈ R+)

• Arguments égaux à k2π près : nφ = 0 + k2π, k ∈ Z,

⇒ φ = k
2π

n
k ∈ Z .

Il y a donc n racines distinctes de 1 :

S =
{
[1, k 2π

n
]
∣∣∣ k = 0, . . . , n− 1

}
.

• Pour n = 2,

S =
{
[1, k π]

∣∣∣ k = 0, 1
}
.
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4.2. Représentation polaire et transformations

• Pour n = 3,

S =
{
[1, k 2π

3
]
∣∣∣ k = 0, 1, 2

}
.

• Pour n = 4,

S =
{
[1, k π

2
]
∣∣∣ k = 0, . . . , 3

}
.

• Pour n = 5,

S =
{
(1, k 2π

5
)
∣∣∣ k = 0, . . . , 4

}
.
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On peut appliquer la même méthode pour calculer la racine n-ème d’un complexe quel-
conque. De manière générale, les racines ne d’un complexe sont localisées sur les sommets
d’un polygône régulier à n côtés inscrit dans un cercle.
Exemple 4.19. Cherchons les racines cubiques de 8i, c’est-à-dire les ω ∈ C tels que

ω3 = 8i .

On pose ω = [r, φ], et on met 8i sous forme polaire : i = [8, π
2
]. En utilisant la formule de

Moivre, l’équation devient
[r3, 3φ] = [8, π

2
] ,

qui implique r3 = 8, c’est-à-dire r = 2, et

3φ =
π

2
+ 2kπ , k ∈ Z ,

qui donne φ = π
6
+ k 2π

3
, k ∈ Z.

On a donc trois solutions distinctes, en prenant k = 0, 1, 2 :

z0 = [2, π
6
] , z1 = [2, 5π

6
] , z2 = [2, 3π

2
] .

Ces racines sont aux sommets d’un triangle équilatéral, situés sur un cercle de rayon r = 2
centré à l’origine :

⋄
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4.2.7 Une remarque sur la forme exponentielle

Définition 4.20. Pour z = [r, φ], on définit la forme exponentielle z = reiφ.

Les règles de calcul des exponentielles réelles s’appliquent. En particulier si z1 = r1e
iφ1 et

z2 = r2e
iφ2 , alors

z1z2 = r1r2e
i(φ1+φ2).

Cette forme a donc l’avantage de faciliter les calculs sous forme polaire.
Remarque 4.21. 1. Il est possible de définir une fonction exponentielle complexe z 7→ ez

pour tout z ∈ C. Avec cette fonction on peut démontrer l’égalité

reiφ = r(cos(φ) + i sin(φ)).

Ceci sort cependant du cadre du cours, et nous allons admettre l’égalité

reiφ = [r, φ]

comme convention et nous pouvons l’utiliser dans les calculs.

2. pour z = reiφ, z̄ = [r,−φ] = re−iφ.

3. En particulier, si on pose z = eiφ = cos(φ) + i sin(φ), on a formellement que

cos(φ) = Re(z) =
z + z̄

2
=

eiφ + e−iφ

2
= cosh(iφ)

et

sin(φ) = Im(z) =
z + z̄

2i
=

eiφ − e−iφ

2i
=

1

i
sinh(iφ).

On constate que dans le plan complexe, les fonctions trigonométriques et hyperbo-
liques sont les mêmes !

Rappel : pour x ∈ R

cosh(x) =
ex + e−x

2
, sinh(x) =

ex − e−x

2
.

⋄

4.3 Polynômes réels et complexes

4.3.1 Définitions
Définition 4.22. Un polynôme complexe en z ∈ C est une combinaison linéaire de puis-
sances de z :

P (z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0 =
n∑

k=0

akz
k ,

où les coefficients ak ∈ C pour tout k. Le degré d’un polynôme P est la plus grande puis-
sance de z dont le coefficient est non nul. On le note degP . Si un polynôme ne contient qu’un
seul terme, c’est un monôme.
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Exemples 4.23. 1. P (z) = 0z4 + z2 − 3z + 2 est un polynôme de degré 2 : deg(P ) = 2.
2. P (z) = 3z4 + z − z6 −

√
3 est un polynôme de degré 6 : deg(P ) = 6.

3. P (z) = 5z3 est un monôme de degré 3.
⋄

On considérera les polynômes comme des fonctions complexes, z 7→ P (z).

On notera :
• C[z] : l’ensemble de tous les polynômes complexes.
• R[z] : l’ensemble de tous les polynômes à coefficients réels : ak ∈ R pour tout k.
• Pn[z] : l’ensemble des polynômes de degré inférieur ou égal à n :

On dit que des polynômes P et Q sont égaux, et on note P = Q, lorsque

P (z) = Q(z) ∀z ∈ C .

Théorème 4.24. Soient

P (z) = anz
n + an−1z

n−1 + ...+ a1z + a0,

Q(z) = bnz
n + bn−1z

n−1 + ...+ b1z + b0 .

Alors P = Q si et seulement ak = bk pour tout k = 0, 1, ..., n.

On somme des polynômes comme on somme des fonctions réelles : si P,Q sont des poly-
nômes, alors P +Q est aussi un polynôme, défini par

(P +Q)(z) = P (z) +Q(z) ∀z ∈ C .

Concrètement, le coefficient en zk de P +Q s’obtient en additionnant les coefficients de P et
de Q associés à la puissance zk.
Exemple 4.25. Si

P (z) = 3z2 + 5z − 6

Q(z) = −z3 − 2z2 + 3 ,

alors P +Q est
(P +Q)(z) = P (z) +Q(z) = −z3 + z2 + 5z − 3 .

⋄
En général, deg(P +Q) ⩽ max{degP, degQ}.
Exemple 4.26. P (z) = 2z3 + z + 1 est de degré 3, Q(z) = −2z3 + 3z2 − 5 est de degré 3, mais
(P +Q)(z) = 3z2 + z − 4 est de degré 2. ⋄
Soient P est un polynôme et λ ∈ C est un scalaire (nombre fixé), le produit de P par λ , noté
λP , est le polynôme λP ∈ C[z] défini en multipliant chaque coefficient de P par λ .
Exemple 4.27. Si P (z) = 3z2 + 5z − 6 et λ = −2

3
, alors

(λP )(z) = λP (z) = − 2z2 − 10

3
z + 4 .

⋄
Remarquons que

deg(λP ) =

{
0 si λ = 0 ,

deg(P ) si λ ̸= 0 .

Avec les deux opérations définies ci-dessus (addition de polynômes et multiplication d’un
polynôme par un scalaire) C[z], R[z] et Pn[z] sont des exemples d’espaces vectoriels.
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4.3.2 Multiplication et factorisation

On multiplie des polynômes comme on multiplie des fonctions réelles : si P,Q sont des po-
lynômes, alors PQ est aussi un polynôme, défini par

(PQ)(z) = P (z)Q(z) ∀z ∈ C .

Exemple 4.28. Soient P (z) = 3z2 + 5z − 6 et Q(z) = − z3 − 2z2 + 3.

(PQ)(z) = P (z)Q(z)

= (3z2 + 5z − 6)(− z3 − 2z2 + 3)

= −3z5 − 6z4 + 9z2 − 5z4 − 10z3 + 15z + 6z3 + 12z2 − 18

= −3z5 − 11z4 − 4z3 + 21z2 + 15z − 18.

⋄
Remarquons que

deg(PQ) = degP + degQ

Définition 4.29. Un polynôme P est dit réductible s’il peut s’écrire comme un produit de
polynômes,

P = P1P2 ,

où P1 et P2 sont de degrés au moins 1 ; écrire P comme un tel produit est une factorisation
de P . S’il n’est pas réductible, P est dit irréductible.

Exemple 4.30. 1. P (z) = 3z+1 est irréductible. (On peut l’écrire comme P (z) = 3(z+ 1
3
),

mais P1(z) = 3 est de degré zéro.)

2. P (z) = z2 + 3z + 2 est réductible (donc pas irréductible) car il peut s’écrire P (z) =
(z + 1)(z + 2).

⋄
Il est important de noter que la réductibilité d’un polynôme dépend du type de polynômes
que l’on souhaite voir apparaître dans la factorisation.

En effet, la possibilité d’une factorisation P = P1P2 dépend de ce qui est exigé sur P1 et P2 :
si on exige que P1, P2 ∈ R[z], la factorisation n’est pas toujours possible. Donc un polynôme
peut être irréductible dans R[z] mais pas dans C[z] !
Exemple 4.31. Soit P (z) = z2 + 1, qui est à coefficients réels.

• Puisque le discriminant ∆ = −4 < 0, il n’existe pas de polynômes P1, P2 ∈ R[z] de
degrés ⩾ 1 tels que P = P1P2.

• Par contre, c’est possible en prenant P1, P2 ∈ C[z], puisqu’on peut écrire P (z) = (z −
i)(z + i).

⋄
Nous verrons plus bas que si z0 est une racine de P , alors P peut s’écrire comme P (z) = (z−
z0)Q(z) où Q est un polynôme de degré plus petit. Les seuls polynômes irréductibles dans
C[z] sont donc les polynômes de degré 1. Dans R[z], les seuls autres polynômes irréductibles
sont les polynômes de degré 2 à discriminants négatifs.
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4.3.3 Racines et factorisations

Une question naturelle, si on se donne un polynôme P , est de trouver les racines de P , à
savoir les z tels que

P (z) = 0 .

Rechercher les racines de P (dans C ou R) et factoriser P (en un produit de facteurs irré-
ductibles dans ces mêmes ensembles) sont des problèmes équivalentes. Nous l’avions déjà
constaté dans le cas particulier de l’étude des trinômes du second degré.

Donnons quelques exemples de factorisations.
Exemple 4.32. Trouver les décompositions en facteurs irréductibles de P (z) = z4−z2−2z−1.
Par les identités remarquables (voir fin de section), on a

P (z) = z4 − (z2 + 2z + 1)

= (z2)2 − (z + 1)2

= (z2 − (z + 1))(z2 + z + 1)

= (z2 − z − 1)(z2 + z + 1)

= (z − z1)(z − z2)(z
2 + z + 1) ,

où z1 =
1−

√
5

2
, z2 = 1+

√
5

2
. Comme le discriminant de z2+z+1 est strictement négatif, il ne peut

pas être factorisé comme produit de polynômes à coefficients réels et donc la décomposition
dans R[z] de P est

P (z) = (z − z1)(z − z2)(z
2 + z + 1).

Si on travaille à présent dans C[z], on peut autoriser des polynômes à coefficients complexes
dans la décomposition, et en reprenant l’expression du dessus, nous pouvons écrire

z2 + z + 1 = (z − w1)(z − w2) ,

où w1 =
−1−

√
3i

2
, w2 =

−1+
√
3i

2
. La décomposition en facteurs irréductibles de P dans C[z] est

donc
P (z) = (z − z1)(z − z2)(z − w1)(z − w2).

⋄
Dans l’exemple précédent, nous avons pu factoriser le polynôme en utilisant les identités re-
marquables et le discriminant. Dans le cas où la factorisation n’est pas évidente, on recherche
une racine particulière z0 et on divise P (z) par le binôme (z − z0).

Théorème 4.33. Soient P un polynôme, degP ⩾ 1, et z0 ∈ C. Il existe alors un unique polynôme
F tel que

P (z) = (z − z0)F (z) + P (z0) .

De plus, on a degF = degP − 1

On prouve ce théorème par une vérification directe. Supposons que P est de degré n, de la
forme suivante :

P (z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0 .

Fixons un z0 ∈ C quelconque, et cherchons un polynôme F de degré n− 1 tel que

P (z) = (z − z0)F (z) + P (z0) ∀z ∈ C .
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Nommons bk les coefficients du polynôme recherché :

F (z) = bn−1z
n−1 + bn−2z

n−2 + · · ·+ b1z + b0 .

Commençons par développer :

(z − z0)F (z) = (bn−1z
n−1 + bn−2z

n−2 + · · ·+ b1z + b0)(z − z0)

= bn−1z
n + (bn−2 − bn−1z0)z

n−1 + · · ·+ (b0 − b1z0)z − b0z0

En posant
bn−1 = an
bn−2 = an−1 + bn−1z0

...
b1 = a2 + b2z0
b0 = a1 + b1z0 ,

on peut récrire cette dernière comme suit

(z − z0)F (z) = −z0b0 + P (z)− a0 .

Puisque cette dernière est vraie en particulier pour z = z0, on en tire la relation P (z0) =
a0 + b0z0, qui permet donc d’écrire

(z − z0)F (z) = P (z)− P (z0) ,

ce qui conclut la preuve.

La façon dont les coefficients bk sont définis récursivement ci-dessus, à savoir bj = aj+1 +
z0bj+1, peut se résumer dans un shéma appelé shéma de Hörner :

Dans la première colonne, on descend le coefficient an pour obtenir bn−1, puis on effectue le
produit croisé avec z0. Par la suite, on somme les résultats de chaque colonne pour obtenir
le nouveau coefficient bk et on reproduit la procédure jusqu’à arriver au bout du tableau.
Quelques remarques concernant la relation obtenue dans le théorème ci-dessus :

P (z) = (z − z0)F (z) + P (z0).

1. P (z0) est appelé le reste de la division de P (z) par z − z0.
2. si z0 est une racine de P (z), i.e. P (z0) = 0, alors

P (z) = (z − z0)F (z),

et donc P est divisible par z − z0.

Pour continuer à factoriser P , on continue le procédé sur F en recherchant une racine
particulière z

′
0 jusqu’à obtenir finalement un produit de facteurs irréductibles.
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Remarque 4.34. S’il existe n ∈ N∗ et un polynôme F (z) tel que F (z0) ̸= 0 et

P (z) = (z − z0)
nF (z) ,

on dit que z0 est une racine d’ordre (ou de multiplicité) n. Cas particuliers : si n = 1, on
parle de racine simple, si n = 2 on parle de racine double. ⋄
Exemple 4.35. Effectuer la division de P (x) = x3 + 7x2 + 4x− 12 par x− 1.

Ainsi
x3 + 7x2 + 4x− 12 = (x− 1)(x2 + 8x+ 12) .

On constate qu’on obtient 0 à la fin du processus, ainsi P (1) = 0 ce qu’on aurait pu observer
dès le départ puisque 1 est une racine. Dès lors si on souhaite résoudre l’équation P (x) = 0,
on procède tout d’abord pour le schéma de Hörner pour écrire

P (x) = (x− 1)(x2 + 8x+ 12)

que l’on peut factoriser encore comme P (x) = (x − 1)(x + 2)(x + 6). On trouve alors que
les solutions de P (x) = 0 sont données par x = 1 ou x = −2 ou x = −6 et donc l’ensemble
solution de l’équation P (x) = 0 est S = {−6,−2, 1}. ⋄
Exemple 4.36. Effectuer la division de P (x) = x3 + 8x2 + 17x + 10 par x + 1. Ici il faut voir
que x0 = −1 et par conséquent on effectue la division de P (x) par x− (−1). On a par Hörner

Ainsi, P (x) = (x+ 1)(x2 + 7x+ 10) et en continuant

P (x) = x3 + 8x2 + 17x+ 10 = (x+ 1)(x2 + 7x+ 10) = (x+ 1)(x+ 2)(x+ 5) .

Les solutions de l’équation P (x) = 0 sont donc données par S = {−5,−2,−1}. ⋄
Exemple 4.37. Résoudre l’équation 3x3−2x2+4x+9 = 0. On observe que x0 = −1 est racine
évidente de P (x) = 3x3 − 2x2 + 4x + 9. P (x) est donc divisible par x + 1. Par Hörner, on
obtient

P (x) = (x+ 1)(3x2 − 5x+ 9) .

Ici la décomposition dans R s’arrête car 3x2 − 5x + 9 n’a aucune racine réelle (∆ < 0).
L’équation P (x) = 0 pour x ∈ R admet donc comme ensemble solution S = {1}.
Si on résout à présent P (x) = 0 pour x ∈ C, on peut factoriser P comme

P (x) = (x+ 1)(3x2 − 5x+ 9) = 3(x+ 1)(x− x+)(x− x−) ,

avec x± = 5±
√
83i

6
, et donc l’ensemble solution est S = {−1, x−, x+}. ⋄
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Exemple 4.38. Effectuer la division de P (x) = 4x3 + 2 par x+ 2.

Ainsi
4x3 + 2 = (x+ 2)(4x2 − 8x+ 16)− 30 .

Ici il faut faire attention à remplir la première ligne du tableau avec des 0 sur les puissances
manquantes. On constate également que le reste ici est non nul : en effet on a bien que
P (−2) = −30. On ne peut pas résoudre l’équation P (x) = 0 en procédant par division par
x + 2. Par contre, cela donne les solutions de l’équation Q(x) = 0 où Q(x) = P (x) + 30. En
effet, on a Q(x) = P (x) + 30 = (x + 2)(4x2 − 8x + 16) = 4(x + 2)(x2 − 2x + 4). Comme
x2 − 2x + 4 n’admet par de racines réelles (∆ < 0), on a que les solutions de Q(x) = 0
dans R sont données par S = {−2}. Dans C, elles sont données par S = {−2, x−, x+} où
x± = 1±

√
3i. ⋄

4.3.4 Théorème fondamental de l’algèbre et décompositions

Théorème 4.39. Tout polynôme P ∈ C[z] possède au moins une racine complexe.

Exemple 4.40. z0 = 1 + i est solution de l’équation z17 + 122iz3 − 12− 12i = 0. ⋄
Par le Théorème Fondamental, les seuls polynômes irréductibles de C[z] sont du premier
degré.

Corollaire 1. tout polynôme P ∈ C[z] s’écrit comme

P (z) = α(z − z1)(z − z2) · · · (z − zn)

où α, z1, ..., zn ∈ C et zk, k = 1, ..., n sont les racines de P .

Théorème 4.41. Soit P ∈ R[z] un polynôme à coefficients réels. Alors, si z est une racine de P , son
complexe conjugué z̄ est aussi racine de P .

En effet, soit P (z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0 avec ak ∈ R, k = 0, . . . , n. Alors

0 = P (z) ⇔ 0 = P (z)

= anzn + an−1zn−1 + · · ·+ a1z + a0

= anz̄
n + an−1z̄

n−1 + · · ·+ a1z̄ + a0

= P (z̄).

Corollaire 2. Soit P (z) = az2+ bz+ c, a, b, c ∈ R, a ̸= 0 un trinôme réel du deuxième degré. Alors
P (z) possède

• soit deux racines réelles, distinctes ou confondues
• soit deux racines complexes conjuguées l’une de l’autre.
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Théorème 4.42. Tout polynôme P ∈ R[x] peut être décomposé en facteurs irréductibles de R[x] :

P (x) = a(x− x1)
n1 · · · (x− xp)

np(x2 + β1x+ γ1)
m1 · · · (x2 + βqx+ γq)

mq

avec
• a ∈ R∗

• racines réelles xi, i = 1, . . . , p toutes différents
• ni ∈ N ordre (ou multiplicité) de la racine xi

• couples réels (βj, γj), j = 1, . . . , q tous différents et tels que ∆j = β2
j − 4γj < 0

• mj ∈ N
• n1 + · · ·+ np + 2(m1 + · · ·+mq) = degP .

Preuve : En effet supposons que P est un polynôme réel de degré strictment plus grand
que 2 ou de degré 2 mais avec un discriminant non négatif. P , à titre de cas particulier d’un
polynôme à coefficients complexes, possède au moins une racine z0 ∈ C.

• Si cette racine est réelle, z0 = x0 ∈ R et P (x) est divisible par x− x0. P n’est donc pas
irréductible.

• Si cette racine est complexe avec Im(z0) ̸= 0, z̄0 est aussi racine et donc P (x) est divi-
sible par (x− z0)(x− z̄0) = x2 − 2Re(z0) + |z0|2. De nouveau, P n’est pas irréductible.

Exemple 4.43. Décomposer P (x) = x4 + 1 en facteurs irréductibles dans R[x].
• P est réel et de degré 4 : il a deux paires de racines complexes conjuguées.
• Racines dans C : P (x) = 0 si et seulement si x4 = −1 = [1, π + k2π], k ∈ Z, ce qui

donne x = [1, π
4
+ k π

2
], k ∈ Z. Donc

S =

{
1± i√

2
,
−1± i√

2

}
• Factorisation :

P (x) =

(
x− 1 + i√

2

)(
x− 1− i√

2

)(
x− −1 + i√

2

)(
x− −1− i√

2

)
︸ ︷︷ ︸

Décomposition en facteurs irréductibles dans C[x]

=

((
x− 1√

2

)2
− i2

2

)((
x+ 1√

2

)2
− i2

2

)
= (x2 −

√
2x+ 1)(x2 +

√
2x+ 1)︸ ︷︷ ︸

Décomposition en facteurs irréductibles dans R[x]

.

Attention :

1. P est un polynôme à coefficient réel, mais il peut être vu comme un polynôme com-
plexe (puisque R ⊂ C).

2. Ecrire la décomposition de P en facteurs irrécuctibles dans C, c’est l’écrire comme un
produit de polynômes complexes irréductibles.

3. Ecrire la décomposition de P en facteurs irrécuctibles dans R, c’est l’écrire comme un
produit de polynômes réels irréductibles.

⋄

118 NumChap: chap-nombres-complexes, Dernière compilation: 2025-05-18 23:51:26+02:00. (Version Web:botafogo.saitis.net/analyse-A)

botafogo.saitis.net/analyse-A


4.3. Polynômes réels et complexes

4.3.5 Polynômes remarquables

Propriété Soit a ∈ C.

1. z2 − a2 = (z − a)(z + a)

2. z3 − a3 = (z − a)(z2 + za+ a2)

3. zn − an = (z − a)(zn−1 + zn−2a+ · · ·+ zn−kak−1 + · · ·+ zan−2 + an−1)

Propriété Soit a ∈ C.

1. (z ± a)2 = z2 ± 2za+ a2

2. (z ± a)3 = z3 ± 3z2a+ 3za2 ± a3

3. (z ± a)n =
n∑

k=0

(
n

k

)
(±a)n−kzk (binôme de Newton)

Les coefficients
(
n
k

)
, dans la formule du binôme, sont appelés coefficients binomiaux et

peuvent se calculer à l’aide du triangle de Pascal :

n = 0 (x+ a)0 = 1 1
n = 1 (x+ a)1 = x +a 1 1
n = 2 (x+ a)2 = x2 +2ax +a2 1 2 1
n = 3 (x+ a)3 = x3 +3ax2 +3a2x +x3 1 3 3 1
n = 4 (x+ a)4 = x4 +4ax3 +6a2x2 +4a3x +a4 1 4 6 4 1
k 0 1 2 3 4

On construit le triangle de Pascal avec les deux règles suivantes :

1. On commence et on termine chaque ligne par un 1.

2. En sommant deux nombres consécutifs d’une ligne, on obtient le nombre sur la ligne
en dessous.

Ces règles s’écrivent comme :

1.
(
n
0

)
=
(
n
n

)
= 1, n ∈ N.

2.
(

n
k−1

)
+
(
n
k

)
=
(
n+1
k

)
, k = 1, 2, ..., n, n ⩾ 1.

On peut montrer que (
n

k

)
=

n!

k!(n− k)!
.
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4.3. Polynômes réels et complexes
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