Chapitre 1

Logique

1.1 Notions de théorie des ensembles

Un ensemble est une collection bien définie d’objets/éléments distincts.

Souvent, on définit un ensemble E en listant les éléments qu’il contient :

Exemples 1.1. 1. E = {>,&, &}. Notons que la facon dont les éléments sont listés n"im-
porte pas: {>k,, &} et {M, K, &} définissent le méme ensemble E.

2. Ensembles contenant une infinité d’éléments :
N=1{0,1,2,3,...}

N* ={1,2,3,...}
Z=1{.,-3-2-1,01,23,...}

@:{§|pez,qu*}

Mais un ensemble est souvent défini a ’aide d’une propriété :

Exemple 1.2. L'ensemble des entiers positifs pairs est
E={2,4,68,...},
et peut étre décrit a 'aide d’une propriété, a savoir que c’est 'ensemble des entiers positifs

x qui peuvent s’écrire comme un multiple de 2, c’est-a-dire pour lesquels il existe un entier
k tel que v = 2k :

E={xeN|3Jke N,z =2k}.

Exemple 1.3. £ = {z € Q|2* — 1322 — 5z + 7 < 0} o

Rappelons la terminologie de base :
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Définition 1.4. ® On écrit “z € E” pour indiquer que x est un élément de £, ou que z
appartient a £. On écrira aussi “z ¢ E” pour indiquer que x n’est pas un élément de
E.

¢ I’ensemble vide est I’ensemble ne contenant aucun élément. On le note ). On a donc
E # () sietseulementsi 3z € E (E n’est pas vide si et seulement si il existe (au moins)
un x dans F).

¢ Inclusion : On dit qu'un ensemble A est un sous-ensemble de E, et on note A C E,
si et seulementsiVz € A,z € E (quel que soit x appartenant a A, alors x appartient
aussi a F).

Exemple 1.5.5i £ = { %, &, &}, alors
e dcLmais¢ ¢ FE
e SiA={d M} alors ACE.
e SiB={%, 4} alors B ¢ E.
o

“ 4

Remarque 1.6. Il est important de faire attention avec 1'usage des symboles “c” et “C”.

Lorsqu’on parle d'un élément x € E, ce “z” est considéré comme un individu, alors que
lorsqu’on écrit “{z}”, on parle de I'ensemble contenant le seul élément z. On écrit alors

{z} C E. o
Exemples 1.7. 1. NCNCQCR

22.Q¢N

3.0e N, 0 &N~

4. -3¢N, -2€Q
5 V2¢Q V2R

o
Remarque 1.8. * Le symbole “C” ne représente pas forcément une inclusion stricte. Il
est donc correct d’écrire “A C A”.
* L’inclusion est souvent utilisée pour caractériser 1'égalité entre deux ensembles :
A=B <& ACB e BCA.
o

On travaille en général dans un ensemble de référence E, non-vide, nommé univers, et on
raisonne sur des sous ensembles de £J. On représente souvent des sous-ensembles A C F et
B C E dans un diagramme de Venn :

FE : univers
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1.1.1 Union, intersection

Rappelons quelques autres sous-ensembles de £ qui peuvent étre formés a 'aide d’en-
sembles donnés A et B.

Définition 1.9. * L'intersection de A et B est]’ensemble des éléments de £ appartenant
aAetaB:
ANB={x € E|x € Aetx € B}.

* L'union de A et B est ensemble des éléments de £ appartenant a A ou a B (ou aux
deux, on dit que c’est un “ou non-exclusif”) :

AUB={rze€eFE|x€ Aoux € B}.

Exemple 1.10.Si A = {%, &, &, 4,0}, B = {—1,0,1/2}, alors
e ANB={0}
e AUB = {_1707\/57*7&7‘7‘}‘

o
Exemple 1.11.5i A = |—00, 1], B =0,2[, C' = |1, 3|, D = [3,4] alors
e ANB=]0,1]
e ANC =1
e AUC =]—0, 3]
e BNC =]1,2|
e BUC =10,3]
e AND =10
e BUD =]0,2[U[3,4] (pas de fagon plus compacte de 'écrire!)
e CND=1{3}
o
Remarquons que si A C B,alors AN B = A.
Exemples 1.12. 1. Si A =]0,1], B=[0,2],alors AN B = A.
2.QNR=Q
3. NNnQ=N
o

Lorsqu’on prend l'union/intersection de plusieurs ensembles, on aura parfois recours a une
notation indicielle semblable a celle utilisée pour les sommes et les produits. Plus précisément,
pour une famille finie d’ensembles A;, A,, ..., A,, on définit

LJAW:AUAﬂynuAW
k=1

ﬂAk:mﬂAﬂW~ﬂ&p
k=1

On a des notations semblables dans le cas de familles infinies (dites dénombrables) :

CL%:LJAk:AML%uAﬂ»~
k=0

keN

Fp%:(]Ak:AMm%mAﬂmu,
k=0

keN
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ou encore

UAk:--~UA_1UA0UA1U~-

ﬂAk:---mA,onmAm---.

Exemple 1.13. Si A, = [k, k + 1], alors

UJAr=[0.1uL2u23u-- =Ry,
(N As=[0.1Nn[L2N[2,3/ N =0,
JAe=-ul-1,0u0,1]u,2]U-- =R,

1.1.2 Complémentaire

Définition 1.14. Soit A C E. Le complémentaire de A dans E est I'ensemble défini par
Cp(A)={r e E|x g A}

Parfois, lorsqu’il n’y a pas d’ambigiiité sur I'univers E, Cp(A) est aussi noté A ou A°. On
peut donc écrire que B
0=~F, E=0.

On a toujours 1'équivalence B
r¢gA & xed

Pour deux ensembles A, B quelconques, on définit aussi le complémentaire de A dans B :
Cp(A)={r e B|z ¢ A}

Exemple 1.15.5i A = {>k, &, &}, B = {&, M, ¢}, alors

* ANB = {&7 .}
e AUB= {3, & & ¢
* Ca(B) = {k}
* Cp(A) ={4}
4 CA(A) = @
o
Exemples 1.16. 1. Cy(N*) = {0}
2. Cz(N)={...,-3,-2,—1}
3. Cr(Q) = tous les nombres irrationnels
o

Lemme Pourtous A, B C E,
1. A=A
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2. SiAC B,alors B C A.
3. ANB=AUB.
4. AUB=ANB.

Démonstration. 1. Evident.

2. En effet, B
reB <

3. En effet,

tr¢B =

rdA & z€A
r¢Z¢ ANB
r¢gAoux ¢ B
rcAourcB
reAUB.

Ainsi,

Dans un univers F,

ACcB <&

<,

Vee A x€B
ANB =10
AUB=F
F
B

A¢gB &
&
&
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1.2 Propriétés et propositions

1.2.1 Introduction

En sciences, il est important de développer un langage univoque pour communiquer des
faits et/ou analyser des résultats. Ce langage est celui de la logique mathématique. Voici
quelques exemples :

1. Un résultat mathématique : le théoréme de Pythagore. Pour tout triangle rectangle, la
somme des carrés des cathetes est égale au carré de I'hypothénuse.

2. Une observation physique : sous les bonnes conditions, I’écoulement d’un fluide est
régi par les équations de Navier-Stokes :

ou

pa—l—pqu—,uAu—ier:pf

3. Un projet en architecture : pour réduire les cotits environnementaux de construction
de nouveaux batiments, on réutilise les matériaux d’anciens batiments qui ne sont
plus en fonction.

Tous ces résultats, projets, observations s’expriment sous la forme de conditions, causes,
buts qui impliquent un résultat, un modele, une démarche.

1.2.2 Propriétés et ensembles

Une "phrase logique" se compose d"un objet ou d"un groupe d’objets, pris dans un référentiel
sur lequel on applique une propriété. Le référentiel est I’ensemble des objets sur lesquels on
définit des propriétés. Par exemple, la phrase "v/2 est irrationnel" se compose de

1. v/2: un élément, ici un nombre réel pris dans le référentiel R.
2. La propriété "est irrationnel”, appliquée a /2.

Pour l'instant, nous avons juste construit une phrase, a prendre comme un assemblage
de mots, sans se soucier de sa valeur de vérité, c’est-a-dire si elle est vraie ou fausse. Par
exemple, on peut tout a fait écrire la phase "v/2 est rationnel". Il s’agira par la suite de déter-
miner s’il est correct d’affirmer "v/2 est rationnel".

Formellement, voici comment on peut écrire une propriété appliquée a un élément d'un
référentiel.

Définition 1.17. Soit un référentiel £ et P une propriété définie sur F. La phrase "v € E
possede la propriété P" se note P(z). Cette écriture s’appelle le langage propositionnel.
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Exemple 1.18. On choisit £ = R. Soient P; la propriété "est rationnel" et P, la propriété est
irrationnel".
1. La phrase "\/2 est rationnel" se note P, (\/5)
2. La phrase "V/2 est irrationnel” se note Pg(\/ﬁ). .
o

Souvent, on écrit ces phrases dans le langage ensembliste, qui est un langage pratique pour
effectuer des calculs logiques ou des raisonnements :

Exemple 1.19. Pour £ = R.
1. La phrase "v/2 est rationnel” se note v/2 € Q.
2. La phrase "\/2 est irrationnel" se note v/2 € R \ Q.

Formellement, a toute propriété P définie sur £, on peut associer un ensemble Ap C E':

Ap={z € E|P(z)} ={x € E|x possede la propriété P} .
La phrase "z posséde P" s’écrit alors comme = € Ap.
Définition 1.20. De méme qu’on peut écrire la phrase "z possede la propriété P", on peut

écrire la phrase "z ne possede pas la propriété P". La négation de la propriété P est notée
nonP et la phrase "z ne possede pas la propriété P" se note nonP(z).

En langage ensembliste :

AnonP = {1’ € E|nonP(x)} = CE(AP) = AP.

Ap est 'ensemble des r ne possédant pas la propriété P. C’est le complémentaire de Ap
dans E.

En langage ensembliste, on utilise le diagramme de Venn pour représenter Ap et son com-
plémentaire :

E : référentiel

Ap

flp

Considérons a présent une autre propriété () définie sur £ et Ay son ensemble associé. Re-
présentons la situation comme un diagramme de Venn :
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E : référentiel
AP /’IQ

On peut combiner la propriété P avec () :

1. x possede la propriété (P et ), noté (P et Q)(z) ou (P(x) et Q(z)), si = possede a la
fois la propriété P et la propriété (). L'ensemble des = possedant la propriété (P et Q)
est A(petQ) = Ap N AQ .

A(petQ) =ApnN AQ = {l‘ ek | P((L’) et Q(ZL‘)} .

2. z possede la propriété (P ou Q), noté (P ou Q)(z) ou (P(z) ou Q(z)), si x possede
au moins l'une des deux propriétés (soit P, soit Q, soit les deux). L'ensemble des x
possédant la propriété (P ou Q) est A(poug) = ApU Ag :

Apougy=ApUAg={z € F|P(z)ouQ(x)}.
3. Négation de P et Q : non(P et Q) est (nonP ou non@). En effet :
ApNAg=ApUAg
4. Négation de P ou Q : non(P ou Q) est (nonP et non@). En effet :
ApUAg=ApnAg

Remarque 1.21. On dit que P et () sont incompatibles (elles ne peuvent pas étre satisfaites
simultanément) si et seulement si Ap N Ag = 0. o

Reégles de calcul logique I :

1. non(P et Q) = nonP ou non@
2. non(P ou )) = nonP et non®)

1.2.3 Propositions
Soit P une propriété définie sur un référentiel ' et Ap son ensemble associé correspondant.
Définition 1.22. Une proposition 7" est une affirmation énoncée a propos des éléments de £.

On peut séparer les propositions en trois grandes familles.

1. Une proposition simple affirme qu'un élément particulier =, de £ possede la pro-
priété P :
T: P (.270)

En langage ensembliste, 7" : =y € Ap.
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Exemple 1.23. T : /2 est irrationnel. o

2. Une proposition universelle affirme que tout x dans le référentiel £ possede la pro-
priété P :
T:VxekFE, Plx)
En langage ensembliste, T : Ap = E.
Exemple 1.24. T : Vz € R, 2> > 0. o

3. Une proposition existentielle affirme qu’au moins un élément de E possede la pro-
priété P
T:3x€FE, Plx)
En langage ensembliste, T': Ap # (), ouencore T : 3z € E,x € Ap.
Exemple 1.25. 7 : 3x € R, 2% = 2. o

Exprimons les négations de ces trois types de propositions :

1. Négation d’une proposition simple : 2, ne possede pas P.
non7 : nonP(z)

En langage ensembliste, non7": zy ¢ Ap ou encore x, € Ap.
Exemple 1.26. nonT : v/2 est rationnel. o

2. Négation d’une proposition universelle : il existe v € E t.q.  ne possede pas P.
non7 : 3z € E, nonP(x)

En langage ensembliste, non7" : Ap # E ou encore Ap # 0.
Exemple 1.27.non7 : 3z € R, 2? < 0. o

3. Négation d"une proposition existentielle : quel que soit z € I, x ne possede pas P.
nonT : Vx € E, nonP(x)

En langage ensembliste, nonT : Ap = () ou encore Ap=FE.
Exemple 1.28. non : Vo € R, 2? # 2. o

A présent, on peut parler de valeur de vérité de I'affirmation T : elle est soit vraie, soit fausse.
Elle est vraie si et seulement si non7 est fausse, et elle est fausse si et seulement si non7 est
vraie.

Remarque 1.29. Prendre garde a I'importance du référentiel : soit la propriété P(z) : 2? =

—1. La proposition
T:3z € E, P(x)

est fausse si £ = R, mais vraie si £ = C. o

Regles de calcul logique II
e non (Vz € E, P(x)) est 3z € E,nonP(x)
* non (Jx € E, P(z)) est Vo € E,nonP(x)
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1.2.4 Implications et équivalences

Un structure importante pour énoncer des résultats en sciences est 'implication. On observe
un certain résultat si certaines conditions sont réunies.

Soient P et () deux propriétés définies sur E, Ap et A, les ensembles correspondants. L'af-

" 4

tirmation "si « possede P, alors x possede Q" s’écrit :
On peut construire la proposition universelle :
T:Vx € E,P(x) = Q(x).

Souvent, on notera P = () au lieude 7.

En langage ensembliste, la proposition universelle P = () exprime que tous les éléments de
Ap sont aussi éléments de Ag, :

P=Q:VzeAp, xe A
qui peut aussi s’écrire comme
P=Q:VzeE, sixe Ap, alorsz € Ag

Oou encore
P=0Q:ApC AQ.

FE : univers

fl Q

On constate que la condition P est plus restrictive que (). Tout z qui posséde P possede
nécessairement (), mais il y a des x qui peuvent posséder la propriété () sans posséder la
propriété P.

La proposition ) = P est appelée la réciproque de P = ). En langage ensembliste, on écrit
Q= P:Voxec Ay, v Apouencore Ag C Ap.

On dit que P et @ sont équivalentes si et seulement si (P = Q et P < @), noté P < Q.
En langage ensembliste, on aura (Ap C Ag et Ag C Ap) c’est-a-dire (Ap = Ag).

Le symbole < peut aussi s’utiliser pour comparer des propositions. Pour deux propositions
T,T,, Th < T, signitie que T; et T sont équivalentes : elles partagent la méme valeur de
vérité. T est vraie si et seulement si T, est vraie, et T est fausse si et seulement si 75 est
fausse.
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Il est important de savoir comment nier une implication. On a le résultat suivant :
non(Vx € E, P(z) = Q(z)) & Jzr € E, P(x) et nonQ(x).
En effet :
non(Vz € E, P(z) = Q(z)) @ non(Vz € Ap, z € Ag)

& Ap ¢ Ag
S dreAp, v & Ag
SdoeFE xcApeta g Ag
& 3Jz € E, (P(z) etnonQ(x)) .

F : univers

}"1 Q

La négation d"une implication est donc une proposition existentielle.
A retenir :
Regles de calcul logique III :
e non (Vz € £, P(z) = Q(x)) & (3 € E, P(x) etnonQ(z)) .
Sous forme compacte : non(P = () < P et non().
Exemple 1.30. Un exemple important : la négation de la définition de limite. La définition
de la limite d"une suite est :

a, converge vers a < lim a, = a

n—oo

&
(T':Ve>0,3INeNtelqueVn e N,n> N = |a, —a|<¢).

Considérons non("a, converge vers a"). On va décomposer la proposition 7" et la nier par
étape :

e T:Ve>0,A(e).

e A(e) : 3N € N, B(N).

e B(N):VneN,P(n)= Q(n).

e Pln):n>=N, Qn):l|a,—a|<e.

On nie chaque partie indépendamment :
e non7 : 3¢ > 0,nonA(e).
e nonA(e) : VN € N,nonB(N).
e nonB(N) :3n € N, P(n) etnonQ(n).
e nonQ(n) : |a, —al > «.
On récrit alors la négation bout a bout :

non7 : 3¢ >0,YN e Nyane N;n > Net|a, —a| > ¢.
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1.3 Méthodes de preuves

Une théorie mathématique se construit sur des regles que 1'on se donne au départ (les
axiomes et définitions) et sur la logique. A partir des axiomes, on utilise le langage logique
pour déduire de nouveaux résultats, appelés propositions ou théoremes.

Dans un référentiel, une proposition a une valeur de vérité : elle est soit vraie, soit fausse.
Exemple 1.31. Sur le référentiel £ = R, considérons les affirmations

T2 e,
i T2 2 g Q”.
On peut montrer (voir cours d’analyse) que v/2 et 7 sont tous deux irrationnels. Donc 7 est
fausse et 75, est vraie. o

Dans le but de montrer qu'une affirmation est vraie ou fausse, nous présenterons cinq mé-
thodes de preuve :

1. preuve directe

2. preuve indirecte (ou par contraposée)
3. preuve par contre-exemple

4. preuve par I'absurde

5. preuve par récurrence

1.3.1 La méthode directe

Le but ici est de montrer qu’une proposition universelle 7' : Vo € E, P(z) = ()(x) est vraie.

Pour un x quelconque, on montre que 'implication P(x) = ()(z) est vraie en montrant que
le contenu de P(x) peut étre utilisé directement, et développé de fagon a impliquer Q)(z). Ceci
se fait souvent en introduisant une suite d’implications intermédiaires plus simples, toutes
vraies :
P(z) = Ti(x)

\

Ty(x)

4

¥

Ty(z) = Q(z) .
Les implications intermédiaires sont introduites en détaillant naturellement les éléments
contenus dans l'affirmation de départ.
Exemple 1.32. Démontrons que 1’affirmation de 'exemple du dessus, T : “le carré de tout
entier pair est pair”, est vraie. Prenons un a € Z, quelconque, et développons :

aestpair = dk € Z, a = 2k
= 3k € Z, a® = (2k)* =2 2k?

~~
EL

=307, a* =2/
= a” est pair.

1 8 NumChap: chap-logique, Derniére compilation: 2025-05-18 23:51:26+02:00. (Version Web: botafogo.saitis.net/analyse-2)


botafogo.saitis.net/analyse-A

1.3. Méthodes de preuves

Ici, la premieére affirmation intermédiaire a seulement consisté a expliciter ce que signifie

1"

étre pair” (a savoir : pouvoir étre écrit comme un multiple de 2). o

1.3.2 La méthode indirecte ou contraposée

Le but ici est également de montrer qu'une proposition universelle est vraie, a l'aide de sa
contraposée.

Définition 1.33. Soit 7" : Vz € E, P(z) = (z). La proposition
C :Vz € E,non Q(z) = non P(x)

est la proposition contraposée de 7.

Exemple 1.34. La contraposée de la proposition “s’il pleut, je sors avec mon parapluie” est
“si je sors sans parapluie, c’est qu’il ne pleut pas”. o
Remarquons qu’une proposition est équivalente a sa contraposée : T' < C. En langage ensem-
bliste, cette équivalence s’écrit :

Ap C AQ = A_Q C A_p .

(« Tout ce qui est dans Ap est aussi dans A, si et seulement si tout ce qui n’est pas dans Ag
n’est pas non plus dans Ap. »)

E : référentiel
Ag

Comme 7 et sa contraposée sont équivalentes, on peut montrer que 7 est vraie en montrant
que C est vraie, ce qui est parfois plus simple, comme dans 1’exemple ci-dessous.

Exemple 1.35. Démontrons que
T : VYa € Z, sia® est pair, alors a est pair
est vraie. (Pas facile para la méthode directe, essayez!)
Ecrivons la contraposée de 7" :
C': Va € Z, sia estimpair, alors a” est impair,
et montrons que C' est vraie, par la méthode directe. Fixons ¢ € Z.On a:
aestimpair = 3k € Z, a = 2k + 1
=3ke€Z,a®=02k+1)*=2- 2k +2k) +1
—
=3leZ, a>=20+1
= a” est impair.

Donc C est vraie, et donc 1" est vraie également. o

NumChap: chap-logique, Derniére compilation: 2025-05-18 23:51:26+02:00. (Version Web:botafogo.saitis.net/analyse-2) 19


botafogo.saitis.net/analyse-A

1.3. Méthodes de preuves

Remarque 1.36. Ne pas confondre la contraposée avec la négation et la réciproque! En effet,
rappelons que pour une affirmation universelle 7" : Vz € E, P(z) = Q(x), ona

* sa contraposée : Vr € E, nonQ(z) = nonP(z),

* sanégation : 3xy € E, P(zy) et non Q(zo),

* saréciproque:Vx € E,Q(z) = P(z).

1.3.3 La méthode de preuve par contre-exemple

Remarquons pour commencer qu’en toute généralité, une affirmation est fausse (resp. vraie)
si et seulement si sa négation est vraie (resp. fausse).

Le but ici est de montrer qu'une proposition universelle
T:VreFE, P(x)
est fausse en montrant que sa négation est vraie. Or pour montrer que
nonT : Jzy € E, nonP(x)

est vraie, il suffit d’exhiber un =y € E qui ne satisfait pas P; ce = est appelé contre-exemple.
Exemple 1.37. Par ce qu’on a vu dans un exemple précédent, la proposition

T :Va € Z,a* pair = a impair
est fausse. Mais une autre facon de montrer que T'est fausse est de considérer sa négation,
nonT : Jag € Z, af pair et a, pair.

et de remarquer que nonT est vraie, puisqu’en prenant z, = 2, on a 2} = 4 et 2 est pair.
Remarquons pourtant que :

1. Onn’a pas montré qu’il n’existait pas de a impair dont le carré est pair.

2. On a pas montré non plus que si le carré est pair, le nombre est pair.

o

Exemple 1.38. Considérons l'affirmation T : « toute suite réelle z,, dont le carré x,,> converge
est elle-méme convergente ».

Montrons que T est fausse, en considérant sa négation non7" : «il existe une suite z,, diver-
gente telle que z,,* converge ».

Comme contre-exemple, il suffit de prendre z,, = (—1)", qui est divergente, alors que son
carré z,,> = +1 est une suite constante, et donc convergente. o

Exemple 1.39. Considérons 1’affirmation 7" : «la somme de deux irrationnels est irration-
nelle ». Sa négation est nonT : «il existe deux irrationnels dont la somme est rationnelle »,
et elle est vraie puisqu’on peut par exemple prendre + = —/2 et y = /2 sont tous deux
irrationnels, mais leur somme = + y = 0 est rationnelle. Donc 7" est fausse. o
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1.3.4 La méthode de preuve par ’absurde/contradiction
On a déja dit qu'une fagcon de montrer qu'une proposition 7" est vraie est de montrer que sa
négation, non7, est fausse.

L’'idée de la méthode de preuve par I'absurde est la suivante : on montre que non7" est fausse
en montrant qu’elle ne peut pas étre vraie, dans le sens suivant : supposer que non7" est
vraie méne a une conclusion absurde, en contradiction avec les hypotheéses de départ.

Remarquons que de maniere tres générale, une proposition peut toujours s’écrire sous la
forme d"une implication, T': H = C, qui comporte
* les hypotheses H (le référentiel, les propriétés que les éléments du référentiel véri-
fient, etc.),
* la conclusion C' (nouvelle propriété déduite a partir des hypotheses).
Pour montrer qu'une implication
T:H=C

est vraie, la méthode consiste a montrer que si non7" est vraie, alors on arrive a une contra-
diction. Dit encore autrement, puisque

non7 : H etnon (',

on démontre que sous les hypotheses H, nonT" est impossible car en contradiction avec H.

Voyons un exemple classique.
Exemple 1.40. Montrons que l'affirmation « V/2 est irrationnel », ¢’est-a-dire

T:vV2¢Q,

est vraie. Pour la démontrer par 1’absurde, on consideére

nonT:V2€Q.

SinonT est vraie, cela signifie que 1’on peut choisir a, b € N* tels que
a
- =V2.
b v2

Remarquons que 1’on peut supposer que la fraction { est irréductible, c’est-a-dire que a et b
n’ont aucun diviseur en commun.

Ensuite, élevons ¢ = /2 au carré, pour obtenir

_ 2 _ 972
Ceci implique que a? est pair. Par ce que nous avions montré plus haut, cela implique que a
est pair, et donc qu’il peut s’écrire comme a = 2¢ pour un certain ¢ € Z. Donc on a finalement
que

a’ = (2c)* =4 =26 = 25 =107

Donc b? est pair, et ceci implique que b est pair a son tour. Donc b = 2d pour un certain
d € N. Donc on en déduit que a et b sont pairs tous les deux, et donc qu’ils ont un diviseur
commun : 2. Ceci est en contradiction avec notre hypothese de départ. Par conséquent, nonT’
ne peut pas étre vraie, elle est donc fausse, et T est vraie : v/2 est irrationnel. o
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1.3.5 La méthode de preuve par induction/récurrence

But : montrer qu'une proposition P(n) dépendant d'un entier positif n est vraie pour tout n
a partir d’une valeur n :

V'n = ng, P(n) vraie.
L'idée est la suivante. Imaginons un petit bonhomme qui doit gravir un escalier infiniment
haut. Quelles sont les facultés qu’il doit posséder?

1. 11 doit tout d’abord commencer quelque part (initialisation sur une marche numéro
no).

2. 1l doit ensuite étre capable, si il est sur une marche quelconque, d’atteindre la sui-
vante.

Ainsi, en commengant a la marche n, il peut atteindre la marche ny + 1, puis de la marche
no + 1 atteindre la marche ng + 2, etc., et ainsi gravir tout I'escalier.

Ce principe s’exprime sous la forme d'un axiome :
Axiome d’induction : Une proposition P(n) est vraie Vn > ng ssi

1. P(ng) vraie (on accéde a une premiere marche)

2. ¥n = ng, P(n)vraie = P(n + 1) vraie (on passe d'une marche quelconque a la
suivante)

itérer

No  accéder

Exemple 1.41. Soit S,, définie par
Sp=1-1142-2043 31+ - +n-nl=> k-kl
k=1

Démontrer
VneN S, =n+1)!-1.

Notons P(n) : S, = (n+1)! — 1.
1. Pour ny = 1, vérifions que P(ny) est vraie :

Spy=051=1-1=1 et (ng+1)—-1=21-1=1.

2. AmontrerVn > 1: P(n) = P(n+1)
* Hypothese de récurrence que 1'on suppose vraie P(n): S, = (n+1)! —1
* Sous cette condition, montrons alors P(n + 1) : S, = (n +2)! — 1.
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On calcule

Spi1=1-1142-2143-31+---+n-nl+(n+1) - (n+1)
=S, +(n+1)-(n+1)!
NP m+1)!—14(n+1)-(n+1)!
Hyp. récurrence
=(1+n+1)n+1)!-1
=nm+2)n+1)—-1=Mn+2)—-1.
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