
Chapitre 1

Logique

1.1 Notions de théorie des ensembles

Un ensemble est une collection bien définie d’objets/éléments distincts.

Souvent, on définit un ensemble E en listant les éléments qu’il contient :

Exemples 1.1. 1. E = {⋆,♣,♠}. Notons que la façon dont les éléments sont listés n’im-
porte pas : {⋆,♣,♠} et {♠,⋆,♣} définissent le même ensemble E.

2. Ensembles contenant une infinité d’éléments :

N = {0, 1, 2, 3, . . . }
N∗ = {1, 2, 3, . . . }
Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }

Q =

{
p

q

∣∣ p ∈ Z, q ∈ N∗
}

⋄
Mais un ensemble est souvent défini à l’aide d’une propriété :

Exemple 1.2. L’ensemble des entiers positifs pairs est

E = {2, 4, 6, 8, . . . } ,

et peut être décrit à l’aide d’une propriété, à savoir que c’est l’ensemble des entiers positifs
x qui peuvent s’écrire comme un multiple de 2, c’est-à-dire pour lesquels il existe un entier
k tel que x = 2k :

E = {x ∈ N | ∃k ∈ N , x = 2k} .

⋄
Exemple 1.3. E = {x ∈ Q |x3 − 13x2 − 5x+ 7 < 0} ⋄
Rappelons la terminologie de base :
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1.1. Notions de théorie des ensembles

Définition 1.4. • On écrit “x ∈ E” pour indiquer que x est un élément de E, ou que x
appartient à E. On écrira aussi “x ̸∈ E” pour indiquer que x n’est pas un élément de
E.

• l’ensemble vide est l’ensemble ne contenant aucun élément. On le note ∅. On a donc
E ̸= ∅ si et seulement si ∃x ∈ E (E n’est pas vide si et seulement si il existe (au moins)
un x dans E).

• Inclusion : On dit qu’un ensemble A est un sous-ensemble de E, et on note A ⊂ E,
si et seulement si ∀x ∈ A, x ∈ E (quel que soit x appartenant à A, alors x appartient
aussi à E).

Exemple 1.5. Si E = {⋆,♣,♠}, alors
• ♣ ∈ E mais ♦ ̸∈ E
• Si A = {♣,♠}, alors A ⊂ E.
• Si B = {♣,♦}, alors B ̸⊂ E.

⋄
Remarque 1.6. Il est important de faire attention avec l’usage des symboles “∈” et “⊂”.
Lorsqu’on parle d’un élément x ∈ E, ce “x” est considéré comme un individu, alors que
lorsqu’on écrit “{x}”, on parle de l’ensemble contenant le seul élément x. On écrit alors
{x} ⊂ E. ⋄
Exemples 1.7. 1. N∗ ⊂ N ⊂ Q ⊂ R

2. Q ̸⊂ N

3. 0 ∈ N, 0 ̸∈ N∗

4. −3
2
̸∈ N, −3

2
∈ Q

5.
√
2 ̸∈ Q,

√
2 ∈ R

⋄
Remarque 1.8. • Le symbole “⊂” ne représente pas forcément une inclusion stricte. Il

est donc correct d’écrire “A ⊂ A”.
• L’inclusion est souvent utilisée pour caractériser l’égalité entre deux ensembles :

A = B ⇔ A ⊂ B et B ⊂ A .

⋄
On travaille en général dans un ensemble de référence E, non-vide, nommé univers, et on
raisonne sur des sous ensembles de E. On représente souvent des sous-ensembles A ⊂ E et
B ⊂ E dans un diagramme de Venn :

8 NumChap: chap-logique, Dernière compilation: 2025-05-18 23:51:26+02:00. (Version Web:botafogo.saitis.net/analyse-A)

https://fr.wikipedia.org/wiki/Diagramme_de_Venn
botafogo.saitis.net/analyse-A


1.1. Notions de théorie des ensembles

1.1.1 Union, intersection

Rappelons quelques autres sous-ensembles de E qui peuvent être formés à l’aide d’en-
sembles donnés A et B.
Définition 1.9. • L’intersection de A et B est l’ensemble des éléments de E appartenant

à A et à B :
A ∩B = {x ∈ E |x ∈ A et x ∈ B} .

• L’union de A et B est ensemble des éléments de E appartenant à A ou à B (ou aux
deux, on dit que c’est un “ou non-exclusif ”) :

A ∪B = {x ∈ E |x ∈ A ou x ∈ B} .

Exemple 1.10. Si A = {⋆,♣,♠,♦, 0}, B = {−1, 0,
√
2}, alors

• A ∩B = {0}
• A ∪B = {−1, 0,

√
2,⋆,♣,♠,♦}.

⋄
Exemple 1.11. Si A = ]−∞, 1], B = ]0, 2[, C = ]1, 3], D = [3, 4] alors

• A ∩B = ]0, 1]
• A ∩ C = ∅
• A ∪ C = ]−∞, 3]
• B ∩ C = ]1, 2[
• B ∪ C = ]0, 3]
• A ∩D = ∅
• B ∪D = ]0, 2[ ∪ [3, 4] (pas de façon plus compacte de l’écrire !)
• C ∩D = {3}

⋄
Remarquons que si A ⊂ B, alors A ∩B = A.
Exemples 1.12. 1. Si A =]0, 1], B = [0, 2], alors A ∩B = A.

2. Q ∩ R = Q
3. N ∩Q = N

⋄
Lorsqu’on prend l’union/intersection de plusieurs ensembles, on aura parfois recours à une
notation indicielle semblable à celle utilisée pour les sommes et les produits. Plus précisément,
pour une famille finie d’ensembles A1, A2, . . . , An, on définit

n⋃
k=1

Ak = A1 ∪ A2 ∪ · · · ∪ An .

n⋂
k=1

Ak = A1 ∩ A2 ∩ · · · ∩ An .

On a des notations semblables dans le cas de familles infinies (dites dénombrables) :
∞⋃
k=0

Ak =
⋃
k∈N

Ak = A0 ∪ A1 ∪ A2 ∪ · · ·

∞⋂
k=0

Ak =
⋂
k∈N

Ak = A0 ∩ A1 ∩ A2 ∩ · · · ,
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1.1. Notions de théorie des ensembles

ou encore ⋃
k∈Z

Ak = · · · ∪ A−1 ∪ A0 ∪ A1 ∪ · · ·⋂
k∈Z

Ak = · · · ∩ A−1 ∩ A0 ∩ A1 ∩ · · · .

Exemple 1.13. Si Ak = [k, k + 1], alors⋃
k∈N

Ak = [0, 1] ∪ [1, 2] ∪ [2, 3] ∪ · · · = R+ ,⋂
k∈N

Ak = [0, 1] ∩ [1, 2] ∩ [2, 3] ∩ · · · = ∅ ,⋃
k∈Z

Ak = · · · ∪ [−1, 0] ∪ [0, 1] ∪ [1, 2] ∪ · · · = R .

⋄

1.1.2 Complémentaire

Définition 1.14. Soit A ⊂ E. Le complémentaire de A dans E est l’ensemble défini par

CE(A) = {x ∈ E |x ̸∈ A}

Parfois, lorsqu’il n’y a pas d’ambigüité sur l’univers E, CE(A) est aussi noté A ou Ac. On
peut donc écrire que

∅ = E , E = ∅ .

On a toujours l’équivalence
x ̸∈ A ⇔ x ∈ A

Pour deux ensembles A,B quelconques, on définit aussi le complémentaire de A dans B :

CB(A) = {x ∈ B |x ̸∈ A}

Exemple 1.15. Si A = {⋆,♣,♠}, B = {♣,♠,♦}, alors
• A ∩B = {♣,♠}
• A ∪B = {⋆,♣,♠,♦}
• CA(B) = {⋆}
• CB(A) = {♦}
• CA(A) = ∅

⋄
Exemples 1.16. 1. CN(N∗) = {0}

2. CZ(N) = {. . . ,−3,−2,−1}
3. CR(Q) = tous les nombres irrationnels

⋄

Lemme Pour tous A,B ⊂ E,

1. A = A.
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1.1. Notions de théorie des ensembles

2. Si A ⊂ B, alors B ⊂ A.

3. A ∩B = A ∪B.

4. A ∪B = A ∩B.

Démonstration. 1. Evident.

2. En effet,
x ∈ B ⇔ x ̸∈ B ⇒ x ̸∈ A ⇔ x ∈ A

3. En effet,

x ∈ A ∩B ⇔ x ̸∈ A ∩B

⇔ x ̸∈ A ou x ̸∈ B

⇔ x ∈ A ou x ∈ B

⇔ x ∈ A ∪B .

4. Pour y voir plus clair, posons A = A′, B = B′. Par le point précédent, on peut écrire

A ∩B = A′ ∩B′

= A′ ∪B′

= A ∪B

= A ∪B .

Ainsi,
A ∩B = A ∩B = A ∪B .

Dans un univers E,

A ⊂ B ⇔ ∀x ∈ A, x ∈ B

⇔ A ∩B = ∅
⇔ A ∪B = E

A ̸⊂ B ⇔ ∃x ∈ A, x ̸∈ B

⇔ A ∩B ̸= ∅
⇔ A ∪B ̸= E .
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1.2. Propriétés et propositions

1.2 Propriétés et propositions

1.2.1 Introduction

En sciences, il est important de développer un langage univoque pour communiquer des
faits et/ou analyser des résultats. Ce langage est celui de la logique mathématique. Voici
quelques exemples :

1. Un résultat mathématique : le théorème de Pythagore. Pour tout triangle rectangle, la
somme des carrés des cathètes est égale au carré de l’hypothénuse.

2. Une observation physique : sous les bonnes conditions, l’écoulement d’un fluide est
régi par les équations de Navier-Stokes :

ρ
∂u

∂t
+ ρu · ∇u− µ∆u+∇p = ρf

3. Un projet en architecture : pour réduire les coûts environnementaux de construction
de nouveaux bâtiments, on réutilise les matériaux d’anciens bâtiments qui ne sont
plus en fonction.

Tous ces résultats, projets, observations s’expriment sous la forme de conditions, causes,
buts qui impliquent un résultat, un modèle, une démarche.

1.2.2 Propriétés et ensembles

Une "phrase logique" se compose d’un objet ou d’un groupe d’objets, pris dans un référentiel
sur lequel on applique une propriété. Le référentiel est l’ensemble des objets sur lesquels on
définit des propriétés. Par exemple, la phrase "

√
2 est irrationnel" se compose de

1.
√
2 : un élément, ici un nombre réel pris dans le référentiel R.

2. La propriété "est irrationnel", appliquée à
√
2.

Pour l’instant, nous avons juste construit une phrase, à prendre comme un assemblage
de mots, sans se soucier de sa valeur de vérité, c’est-à-dire si elle est vraie ou fausse. Par
exemple, on peut tout à fait écrire la phase "

√
2 est rationnel". Il s’agira par la suite de déter-

miner s’il est correct d’affirmer "
√
2 est rationnel".

Formellement, voici comment on peut écrire une propriété appliquée à un élément d’un
référentiel.

Définition 1.17. Soit un référentiel E et P une propriété définie sur E. La phrase "x ∈ E
possède la propriété P " se note P (x). Cette écriture s’appelle le langage propositionnel.
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1.2. Propriétés et propositions

Exemple 1.18. On choisit E = R. Soient P1 la propriété "est rationnel" et P2 la propriété est
irrationnel".

1. La phrase "
√
2 est rationnel" se note P1(

√
2).

2. La phrase "
√
2 est irrationnel" se note P2(

√
2). .

⋄
Souvent, on écrit ces phrases dans le langage ensembliste, qui est un langage pratique pour
effectuer des calculs logiques ou des raisonnements :
Exemple 1.19. Pour E = R.

1. La phrase "
√
2 est rationnel" se note

√
2 ∈ Q.

2. La phrase "
√
2 est irrationnel" se note

√
2 ∈ R \Q.

⋄
Formellement, à toute propriété P définie sur E, on peut associer un ensemble AP ⊂ E :

AP = {x ∈ E |P (x)} = {x ∈ E |x possède la propriété P} .

La phrase "x possède P " s’écrit alors comme x ∈ AP .

Définition 1.20. De même qu’on peut écrire la phrase "x possède la propriété P ", on peut
écrire la phrase "x ne possède pas la propriété P ". La négation de la propriété P est notée
nonP et la phrase "x ne possède pas la propriété P " se note nonP (x).

En langage ensembliste :

AnonP = {x ∈ E |nonP (x)} = CE(AP ) = ĀP .

ĀP est l’ensemble des x ne possédant pas la propriété P . C’est le complémentaire de AP

dans E.

En langage ensembliste, on utilise le diagramme de Venn pour représenter AP et son com-
plémentaire :

Considérons à présent une autre propriété Q définie sur E et AQ son ensemble associé. Re-
présentons la situation comme un diagramme de Venn :
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On peut combiner la propriété P avec Q :

1. x possède la propriété (P et Q), noté (P et Q)(x) ou (P (x) et Q(x)), si x possède à la
fois la propriété P et la propriété Q. L’ensemble des x possèdant la propriété (P et Q)
est A(P et Q) = AP ∩ AQ :

A(P et Q) = AP ∩ AQ = {x ∈ E |P (x) et Q(x)} .

2. x possède la propriété (P ou Q), noté (P ou Q)(x) ou (P (x) ou Q(x)), si x possède
au moins l’une des deux propriétés (soit P, soit Q, soit les deux). L’ensemble des x
possédant la propriété (P ou Q) est A(P ou Q) = AP ∪ AQ :

A(P ou Q) = AP ∪ AQ = {x ∈ E |P (x) ou Q(x)} .

3. Négation de P et Q : non
(
P et Q

)
est
(
nonP ou nonQ

)
. En effet :

AP ∩ AQ = ĀP ∪ ĀQ

4. Négation de P ou Q : non
(
P ou Q

)
est
(
nonP et nonQ

)
. En effet :

AP ∪ AQ = ĀP ∩ ĀQ

Remarque 1.21. On dit que P et Q sont incompatibles (elles ne peuvent pas être satisfaites
simultanément) si et seulement si AP ∩ AQ = ∅. ⋄
Règles de calcul logique I :

1. non(P et Q) = nonP ou nonQ
2. non(P ou Q) = nonP et nonQ

1.2.3 Propositions

Soit P une propriété définie sur un référentiel E et AP son ensemble associé correspondant.

Définition 1.22. Une proposition T est une affirmation énoncée à propos des éléments de E.

On peut séparer les propositions en trois grandes familles.

1. Une proposition simple affirme qu’un élément particulier x0 de E possède la pro-
priété P :

T : P (x0)

En langage ensembliste, T : x0 ∈ AP .
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Exemple 1.23. T :
√
2 est irrationnel. ⋄

2. Une proposition universelle affirme que tout x dans le référentiel E possède la pro-
priété P :

T : ∀x ∈ E, P (x)

En langage ensembliste, T : AP = E.
Exemple 1.24. T : ∀x ∈ R, x2 ⩾ 0. ⋄

3. Une proposition existentielle affirme qu’au moins un élément de E possède la pro-
priété P

T : ∃x ∈ E, P (x)

En langage ensembliste, T : AP ̸= ∅, ou encore T : ∃x ∈ E, x ∈ AP .
Exemple 1.25. T : ∃x ∈ R, x2 = 2. ⋄

Exprimons les négations de ces trois types de propositions :

1. Négation d’une proposition simple : x0 ne possède pas P .

nonT : nonP (x0)

En langage ensembliste, nonT : x0 ̸∈ AP ou encore x0 ∈ ĀP .
Exemple 1.26. nonT :

√
2 est rationnel. ⋄

2. Négation d’une proposition universelle : il existe x ∈ E t.q. x ne possède pas P .

nonT : ∃x ∈ E, nonP (x)

En langage ensembliste, nonT : AP ̸= E ou encore ĀP ̸= ∅.
Exemple 1.27. nonT : ∃x ∈ R, x2 < 0. ⋄

3. Négation d’une proposition existentielle : quel que soit x ∈ E, x ne possède pas P .

nonT : ∀x ∈ E, nonP (x)

En langage ensembliste, nonT : AP = ∅ ou encore ĀP = E.
Exemple 1.28. non : ∀x ∈ R, x2 ̸= 2. ⋄

À présent, on peut parler de valeur de vérité de l’affirmation T : elle est soit vraie, soit fausse.
Elle est vraie si et seulement si nonT est fausse, et elle est fausse si et seulement si nonT est
vraie.
Remarque 1.29. Prendre garde à l’importance du référentiel : soit la propriété P (x) : x2 =
−1. La proposition

T : ∃x ∈ E,P (x)

est fausse si E = R, mais vraie si E = C. ⋄
Règles de calcul logique II

• non (∀x ∈ E,P (x)) est ∃x ∈ E,nonP (x)
• non (∃x ∈ E,P (x)) est ∀x ∈ E,nonP (x)
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1.2.4 Implications et équivalences

Un structure importante pour énoncer des résultats en sciences est l’implication. On observe
un certain résultat si certaines conditions sont réunies.

Soient P et Q deux propriétés définies sur E, AP et AQ les ensembles correspondants. L’af-
firmation "si x possède P , alors x possède Q" s’écrit :

P (x) ⇒ Q(x).

On peut construire la proposition universelle :

T : ∀x ∈ E,P (x) ⇒ Q(x).

Souvent, on notera P ⇒ Q au lieu de T .

En langage ensembliste, la proposition universelle P ⇒ Q exprime que tous les éléments de
AP sont aussi éléments de AQ :

P ⇒ Q : ∀x ∈ AP , x ∈ AQ

qui peut aussi s’écrire comme

P ⇒ Q : ∀x ∈ E, si x ∈ AP , alors x ∈ AQ

ou encore
P ⇒ Q : AP ⊂ AQ.

On constate que la condition P est plus restrictive que Q. Tout x qui possède P possède
nécessairement Q, mais il y a des x qui peuvent posséder la propriété Q sans posséder la
propriété P .

La proposition Q ⇒ P est appelée la réciproque de P ⇒ Q. En langage ensembliste, on écrit
Q ⇒ P : ∀x ∈ AQ, x ∈ AP ou encore AQ ⊂ AP .

On dit que P et Q sont équivalentes si et seulement si
(
P ⇒ Q et P ⇐ Q

)
, noté P ⇔ Q.

En langage ensembliste, on aura
(
AP ⊂ AQ et AQ ⊂ AP

)
c’est-à-dire

(
AP = AQ

)
.

Le symbole ⇔ peut aussi s’utiliser pour comparer des propositions. Pour deux propositions
T1, T2, T1 ⇔ T2 signifie que T1 et T2 sont équivalentes : elles partagent la même valeur de
vérité. T1 est vraie si et seulement si T2 est vraie, et T1 est fausse si et seulement si T2 est
fausse.
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1.2. Propriétés et propositions

Il est important de savoir comment nier une implication. On a le résultat suivant :

non(∀x ∈ E,P (x) ⇒ Q(x)) ⇔ ∃x ∈ E,P (x) et nonQ(x).

En effet :

non(∀x ∈ E,P (x) ⇒ Q(x)) ⇔ non
(
∀x ∈ AP , x ∈ AQ)

⇔ AP ̸⊂ AQ

⇔ ∃x ∈ AP , x ̸∈ AQ

⇔ ∃x ∈ E, x ∈ AP et x ̸∈ AQ

⇔ ∃x ∈ E,
(
P (x) et nonQ(x)

)
.

La négation d’une implication est donc une proposition existentielle.
A retenir :

Règles de calcul logique III :
• non (∀x ∈ E,P (x) ⇒ Q(x)) ⇔ (∃x ∈ E,P (x) et nonQ(x)) .

Sous forme compacte : non(P ⇒ Q) ⇔ P et nonQ.
Exemple 1.30. Un exemple important : la négation de la définition de limite. La définition
de la limite d’une suite est :

an converge vers a ⇔ lim
n→∞

an = a

⇔
(T : ∀ ε > 0, ∃N ∈ N tel que ∀n ∈ N, n ⩾ N ⇒ |an − a| < ε ) .

Considérons non("an converge vers a"). On va décomposer la proposition T et la nier par
étape :

• T : ∀ε > 0, A(ε).
• A(ε) : ∃N ∈ N, B(N).
• B(N) : ∀n ∈ N, P (n) ⇒ Q(n).
• P (n) : n ⩾ N, Q(n) : |an − a| < ε.

On nie chaque partie indépendamment :
• nonT : ∃ε > 0,nonA(ε).
• nonA(ε) : ∀N ∈ N,nonB(N).
• nonB(N) : ∃n ∈ N, P (n) et nonQ(n).
• nonQ(n) : |an − a| ⩾ ε.

On récrit alors la négation bout à bout :

nonT : ∃ε > 0,∀N ∈ N,∃n ∈ N, n ⩾ N et |an − a| ⩾ ε.

⋄
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1.3 Méthodes de preuves

Une théorie mathématique se construit sur des règles que l’on se donne au départ (les
axiomes et définitions) et sur la logique. A partir des axiomes, on utilise le langage logique
pour déduire de nouveaux résultats, appelés propositions ou théorèmes.

Dans un référentiel, une proposition a une valeur de vérité : elle est soit vraie, soit fausse.
Exemple 1.31. Sur le référentiel E = R, considérons les affirmations

• T1 : “
√
2 ∈ Q”,

• T2 : “π ̸∈ Q”.
On peut montrer (voir cours d’analyse) que

√
2 et π sont tous deux irrationnels. Donc T1 est

fausse et T2 est vraie. ⋄
Dans le but de montrer qu’une affirmation est vraie ou fausse, nous présenterons cinq mé-
thodes de preuve :

1. preuve directe
2. preuve indirecte (ou par contraposée)
3. preuve par contre-exemple
4. preuve par l’absurde
5. preuve par récurrence

1.3.1 La méthode directe

Le but ici est de montrer qu’une proposition universelle T : ∀x ∈ E,P (x) ⇒ Q(x) est vraie.

Pour un x quelconque, on montre que l’implication P (x) ⇒ Q(x) est vraie en montrant que
le contenu de P (x) peut être utilisé directement, et développé de façon à impliquer Q(x). Ceci
se fait souvent en introduisant une suite d’implications intermédiaires plus simples, toutes
vraies :

P (x) ⇒T1(x)

⇓
T2(x)

⇓
...
⇓
Tn(x) ⇒ Q(x) .

Les implications intermédiaires sont introduites en détaillant naturellement les éléments
contenus dans l’affirmation de départ.
Exemple 1.32. Démontrons que l’affirmation de l’exemple du dessus, T : “le carré de tout
entier pair est pair”, est vraie. Prenons un a ∈ Z, quelconque, et développons :

a est pair ⇒ ∃ k ∈ Z, a = 2k

⇒ ∃ k ∈ Z, a2 = (2k)2 = 2 · 2k2︸︷︷︸
∈Z

⇒ ∃ ℓ ∈ Z, a2 = 2 ℓ

⇒ a2 est pair.
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Ici, la première affirmation intermédiaire a seulement consisté à expliciter ce que signifie
“être pair” (à savoir : pouvoir être écrit comme un multiple de 2). ⋄

1.3.2 La méthode indirecte ou contraposée

Le but ici est également de montrer qu’une proposition universelle est vraie, à l’aide de sa
contraposée.

Définition 1.33. Soit T : ∀x ∈ E,P (x) ⇒ Q(x). La proposition

C : ∀x ∈ E,non Q(x) ⇒ non P (x)

est la proposition contraposée de T .

Exemple 1.34. La contraposée de la proposition “s’il pleut, je sors avec mon parapluie” est
“si je sors sans parapluie, c’est qu’il ne pleut pas”. ⋄
Remarquons qu’une proposition est équivalente à sa contraposée : T ⇔ C. En langage ensem-
bliste, cette équivalence s’écrit :

AP ⊂ AQ ⇔ AQ ⊂ AP .

(« Tout ce qui est dans AP est aussi dans AQ si et seulement si tout ce qui n’est pas dans AQ

n’est pas non plus dans AP . »)

Comme T et sa contraposée sont équivalentes, on peut montrer que T est vraie en montrant
que C est vraie, ce qui est parfois plus simple, comme dans l’exemple ci-dessous.
Exemple 1.35. Démontrons que

T : ∀ a ∈ Z, si a2 est pair, alors a est pair

est vraie. (Pas facile para la méthode directe, essayez !)

Ecrivons la contraposée de T :

C : ∀ a ∈ Z, si a est impair, alors a2 est impair ,

et montrons que C est vraie, par la méthode directe. Fixons a ∈ Z. On a :

a est impair ⇒ ∃ k ∈ Z, a = 2k + 1

⇒ ∃ k ∈ Z, a2 = (2k + 1)2 = 2 · (2k2 + 2k︸ ︷︷ ︸
∈Z

) + 1

⇒ ∃ ℓ ∈ Z, a2 = 2 ℓ+ 1

⇒ a2 est impair.

Donc C est vraie, et donc T est vraie également. ⋄
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Remarque 1.36. Ne pas confondre la contraposée avec la négation et la réciproque ! En effet,
rappelons que pour une affirmation universelle T : ∀x ∈ E, P (x) ⇒ Q(x), on a

• sa contraposée : ∀x ∈ E, nonQ(x) ⇒ nonP (x),
• sa négation : ∃x0 ∈ E,P (x0) et non Q(x0),
• sa réciproque : ∀x ∈ E,Q(x) ⇒ P (x).

⋄

1.3.3 La méthode de preuve par contre-exemple

Remarquons pour commencer qu’en toute généralité, une affirmation est fausse (resp. vraie)
si et seulement si sa négation est vraie (resp. fausse).

Le but ici est de montrer qu’une proposition universelle

T : ∀x ∈ E, P (x)

est fausse en montrant que sa négation est vraie. Or pour montrer que

nonT : ∃x0 ∈ E, nonP (x0)

est vraie, il suffit d’exhiber un x0 ∈ E qui ne satisfait pas P ; ce x0 est appelé contre-exemple.
Exemple 1.37. Par ce qu’on a vu dans un exemple précédent, la proposition

T : ∀a ∈ Z, a2 pair ⇒ a impair

est fausse. Mais une autre façon de montrer que Test fausse est de considérer sa négation,

nonT : ∃a0 ∈ Z, a20 pair et a0 pair .

et de remarquer que nonT est vraie, puisqu’en prenant x0 = 2, on a x2
0 = 4 et 2 est pair.

Remarquons pourtant que :

1. On n’a pas montré qu’il n’existait pas de a impair dont le carré est pair.

2. On a pas montré non plus que si le carré est pair, le nombre est pair.

⋄
Exemple 1.38. Considérons l’affirmation T : « toute suite réelle xn dont le carré xn

2 converge
est elle-même convergente ».
Montrons que T est fausse, en considérant sa négation nonT : « il existe une suite xn diver-
gente telle que xn

2 converge ».

Comme contre-exemple, il suffit de prendre xn = (−1)n, qui est divergente, alors que son
carré xn

2 = +1 est une suite constante, et donc convergente. ⋄
Exemple 1.39. Considérons l’affirmation T : « la somme de deux irrationnels est irration-
nelle ». Sa négation est nonT : « il existe deux irrationnels dont la somme est rationnelle »,
et elle est vraie puisqu’on peut par exemple prendre x = −

√
2 et y =

√
2 sont tous deux

irrationnels, mais leur somme x+ y = 0 est rationnelle. Donc T est fausse. ⋄
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1.3.4 La méthode de preuve par l’absurde/contradiction

On a déjà dit qu’une façon de montrer qu’une proposition T est vraie est de montrer que sa
négation, nonT , est fausse.

L’idée de la méthode de preuve par l’absurde est la suivante : on montre que nonT est fausse
en montrant qu’elle ne peut pas être vraie, dans le sens suivant : supposer que nonT est
vraie mène à une conclusion absurde, en contradiction avec les hypothèses de départ.

Remarquons que de manière très générale, une proposition peut toujours s’écrire sous la
forme d’une implication, T : H ⇒ C, qui comporte

• les hypothèses H (le référentiel, les propriétés que les éléments du référentiel véri-
fient, etc.),

• la conclusion C (nouvelle propriété déduite à partir des hypothèses).
Pour montrer qu’une implication

T : H ⇒ C

est vraie, la méthode consiste à montrer que si nonT est vraie, alors on arrive à une contra-
diction. Dit encore autrement, puisque

non T : H et non C ,

on démontre que sous les hypothèses H , nonT est impossible car en contradiction avec H .

Voyons un exemple classique.
Exemple 1.40. Montrons que l’affirmation «

√
2 est irrationnel », c’est-à-dire

T :
√
2 ̸∈ Q ,

est vraie. Pour la démontrer par l’absurde, on considère

non T :
√
2 ∈ Q .

Si nonT est vraie, cela signifie que l’on peut choisir a, b ∈ N∗ tels que

a

b
=

√
2 .

Remarquons que l’on peut supposer que la fraction a
b

est irréductible, c’est-à-dire que a et b
n’ont aucun diviseur en commun.

Ensuite, élevons a
b
=

√
2 au carré, pour obtenir

a2

b2
= 2 ⇔ a2 = 2b2.

Ceci implique que a2 est pair. Par ce que nous avions montré plus haut, cela implique que a
est pair, et donc qu’il peut s’écrire comme a = 2c pour un certain c ∈ Z. Donc on a finalement
que

a2 = (2c)2 = 4c2 = 2b2 ⇒ 2c2 = b2.

Donc b2 est pair, et ceci implique que b est pair à son tour. Donc b = 2d pour un certain
d ∈ N. Donc on en déduit que a et b sont pairs tous les deux, et donc qu’ils ont un diviseur
commun : 2. Ceci est en contradiction avec notre hypothèse de départ. Par conséquent, nonT
ne peut pas être vraie, elle est donc fausse, et T est vraie :

√
2 est irrationnel. ⋄
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1.3.5 La méthode de preuve par induction/récurrence

But : montrer qu’une proposition P (n) dépendant d’un entier positif n est vraie pour tout n
à partir d’une valeur n0 :

∀n ⩾ n0, P (n) vraie.

L’idée est la suivante. Imaginons un petit bonhomme qui doit gravir un escalier infiniment
haut. Quelles sont les facultés qu’il doit posséder?

1. Il doit tout d’abord commencer quelque part (initialisation sur une marche numéro
n0).

2. Il doit ensuite être capable, si il est sur une marche quelconque, d’atteindre la sui-
vante.

Ainsi, en commençant à la marche n0, il peut atteindre la marche n0 + 1, puis de la marche
n0 + 1 atteindre la marche n0 + 2, etc., et ainsi gravir tout l’escalier.

Ce principe s’exprime sous la forme d’un axiome :

Axiome d’induction : Une proposition P (n) est vraie ∀n ⩾ n0 ssi

1. P (n0) vraie (on accède à une première marche)

2. ∀n ⩾ n0, P (n) vraie ⇒ P (n + 1) vraie (on passe d’une marche quelconque à la
suivante)

Exemple 1.41. Soit Sn définie par

Sn = 1 · 1! + 2 · 2! + 3 · 3! + · · ·+ n · n! =
n∑

k=1

k · k! .

Démontrer
∀n ∈ N∗, Sn = (n+ 1)!− 1 .

Notons P (n) : Sn = (n+ 1)!− 1.

1. Pour n0 = 1, vérifions que P (n0) est vraie :

Sn0 = S1 = 1 · 1! = 1 et (n0 + 1)!− 1 = 2!− 1 = 1 .

2. A montrer ∀n ⩾ 1 : P (n) ⇒ P (n+ 1)
• Hypothèse de récurrence que l’on suppose vraie P (n) : Sn = (n+ 1)!− 1
• Sous cette condition, montrons alors P (n+ 1) : Sn+1 = (n+ 2)!− 1.
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On calcule

Sn+1 = 1 · 1! + 2 · 2! + 3 · 3! + · · ·+ n · n! + (n+ 1) · (n+ 1)!

= Sn + (n+ 1) · (n+ 1)!

=︸︷︷︸
Hyp. récurrence

(n+ 1)!− 1 + (n+ 1) · (n+ 1)!

= (1 + n+ 1)(n+ 1)!− 1

= (n+ 2)(n+ 1)!− 1 = (n+ 2)!− 1 .

⋄
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