
Chapitre 5

Logarithme et exponentielle

5.1 Introduction

La première apparition des logarithmes (du Grec "logos" (relation) et "arithmeticos" (nombre)
dans l’histoire remonte à 2000 avant J.C. chez les Babyloniens. Des tablettes comptables met-
taient en relation des produits dans une colonne avec des sommes dans une autre. Bien plus
tard, en 1614, Napier (qui donna son nom au logarithme naturel appelé logarithme népé-
rien) établit de nombreuses tables de correspondances entre somme et produit, qui furent
par exemple utilisées par Kepler pour simplifier ses calculs astronomiques.

En 1647, Saint-Vincent calcula l’aire sous la courbe
1

t
et en 1661 Huygens remarqua que cette

aire est donnée par un logarithme.

5.2 Logarithme

Définition 5.1. On définit le logarithme naturel ln : R∗
+ → R par

ln(x) =

∫ x

1

1

t
dt.

Géométriquement, ln(x) représente l’aire algébrique de la portion du plan délimité par le
graphe de f(t) = 1

t
et les droites t = 1, t = x, y = 0.
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5.2. Logarithme

Animation disponible sur botafogo.saitis.net/analyse-A

De par sa définition,

1. ln(1) = 0

2. ln(x) > 0 ⇔ x > 1

3. ln(x) < 0 ⇔ x < 1

Le logarithme étant défini comme la fonction-aire associée à f(t) = 1
t
, le Théorème Fonda-

mental de l’Analyse garantit qu’il est dérivable sur ]0,+∞[, et qu’en plus

ln′(x) =

(∫ x

1

1

t
dt

)′

=
1

x
.

En particulier, ln(x) est strictement croissante, puisque sa dérivée est 1
x
> 0 pour tout x > 0.

5.2.1 La propriété fondamentale

La propriété la plus importante du logarithme est de transformer des produits en sommes :

Théorème 5.2. Si x, y > 0, alors

ln(x · y) = ln(x) + ln(y) .

Démonstration. Fixons x, y > 0. En utilisant la relation de Chasles,

ln(x · y)− ln(y) =

∫ xy

1

1

t
dt−

∫ y

1

1

t
dt

=

∫ xy

y

1

t
dt .

Introduisons la nouvelle variable u = t/y, qui donne dt = y du, et donc∫ xy

y

1

t
dt =

∫ x

1

1

uy
y du =

∫ x

1

1

u
du = ln(x) ,
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5.2. Logarithme

et donc la formule est démontrée.

Remarquons que l’opération qui transforme
∫ x

1
1
t
dt en

∫ yx

y
1
t
dt correspond à un "glissement"

de la portion du plan sous la courbe entre 1 et x :

Le changement de variable que l’on a opéré dans l’intégrale correspond à appliquer à l’aire
bleue la transformation

Ty : R2 → R2 ,

qui a tout couple (a, b) fait correspondre le couple (ya, b
y
). Par exemple le couple (1, 1) est

envoyé sur (y, 1/y), et (x, 1/x) est envoyé sur (yx, 1/yx). On peut montrer que cette trans-
formation préserve les aires, puisqu’elle est linéaire et que sa matrice relativement à la base
canonique est donnée par (

y 0
0 1

y

)
dont le déterminant vaut 1.

L’aire bleue est égale à ln(x), l’aire verte vaut ln(xy)− ln(y) =(aire entre xy et 1)-(aire entre x
et 1). Le calcul intégral plus haut revient à montrer que ces aires sont égales.

On conclut de la propriété précédente :

Corollaire 3. 1. ∀x > 0, ln
(
1
x

)
= − ln(x)

2. ∀x, y > 0, ln
(

x
y

)
= ln(x)− ln(y)

3. ∀x > 0, ∀n ∈ N, ln(xn) = n ln(x).

Démonstration. 1. Si x > 0,

0 = ln(1) = ln

(
x · 1

x

)
= ln(x) + ln

(
1

x

)
,

et donc ln
(
1
x

)
= − ln(x)

2. ln
(

x
y

)
= ln

(
x · 1

y

)
= ln(x) + ln

(
1
y

)
= ln(x)− ln(y)

3. La propriété est vérifiée pour n = 2, puisque

ln(x2) = ln(x · x) = ln(x) + ln(x) = 2 ln(x) .
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5.2. Logarithme

Si elle est vraie pour n, alors

ln(xn+1) = ln(xn · x) = ln(xn) + ln(x) = n ln(x) + ln(x) = (n+ 1) ln(x) ,

donc elle est vraie aussi pour n+ 1.

La dernière propriété s’étend à des puissances négatives n < 0. En effet, si n = −m, m ∈ N,
alors

ln(xn) = ln(x−m) = ln

(
1

xm

)
= − ln(xm)

= (−m) ln(x) = n ln(x) .

Elle s’étend également à des exposants rationnels ; on retiendra la règle de calcul : pour tout
α ∈ Q,

ln(xα) = α ln(x) , x > 0

5.2.2 Injectivité

Puisque ln : R∗
+ → R est strictement croissante, elle est injective.

On a donc les équivalences suivantes, utiles pour la résolution d’équations/inéquations :
pour tout u, v > 0,

ln(u) = ln(v) ⇔ u = v

ln(u) < ln(v) ⇔ u < v

ln(u) ⩽ ln(v) ⇔ u ⩽ v

Exemple 5.3. Résolvons
ln(x+ 1) + ln(x+ 2) = ln(2)

Les logarithmes sont bien définis lorsque x ∈ Ddéf, où

Ddéf = {x ∈ R |x+ 1 > 0 et x+ 2 > 0} =]− 1,+∞[ .

Sur Ddéf,

ln(x+ 1) + ln(x+ 2) = ln(2) ⇐⇒ ln ((x+ 1)(x+ 2)) = ln(2)

⇐⇒ (x+ 1)(x+ 2) = 2

⇐⇒ x(x+ 3) = 0 ,

et donc
S = Ddéf ∩ {0,−3} = {0} .

⋄
Exemple 5.4. Résolvons

2 ln(x) > ln(x+ 2) .

Notons d’abord que les deux deux membres de l’inégalité sont bien définis lorsque x ∈ Ddéf,
où

Ddéf = {x ∈ R |x > 0 et x+ 2 > 0} =]0,+∞[ .
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5.2. Logarithme

Sur Ddéf, on a maintenant

2 ln(x) > ln(x+ 2) ⇐⇒ ln(x2) > ln(x+ 2)

⇐⇒ x2 > x+ 2

⇐⇒ x2 − x− 2 > 0

⇐⇒ (x+ 1)(x− 2) > 0 .

L’ensemble solution est donc

S = Ddéf ∩ (]−∞,−1[∪]2,∞[)

=]2,∞[ .

⋄
Exemple 5.5. Résolvons

ln(x2) > ln(x+ 2) .

Notons d’abord que les deux deux membres de l’inégalité sont bien définis lorsque x ∈ Ddéf,
où

Ddéf = {x ∈ R |x ̸= 0 et x+ 2 > 0} =]− 2, 0[∪]0,+∞[ .

Sur Ddéf, on a maintenant

ln(x2) > ln(x+ 2) ⇐⇒ x2 > x+ 2

⇐⇒ (x+ 1)(x− 2) > 0 .

L’ensemble solution est donc

S = Ddéf ∩ (]−∞,−1[∪]2,∞[) =]− 2,−1[∪]2,∞[ .

⋄

5.2.3 Surjectivité

On a dit plus haut que ln(x) est strictement croissante, mais ceci ne dit pas quel est son
comportement lorsque x → +∞ ou x → 0+.

Lemme ln : R∗
+ → R n’est pas majorée, car

lim
x→+∞

ln(x) = +∞ ,

et pas minorée, car
lim
x→0+

ln(x) = −∞ .

Démonstration. En termes géométriques, la limite

lim
x→+∞

ln(x)

représente l’aire de la région sous le graphe de f(t) = 1
t
, entre t = 1 et l’infini.

Considérons une famille infinie de rectangles, tous de largeur égale à 1, situés sous le graphe
de f(t) = 1

t
:
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5.2. Logarithme

L’aire du kème rectangle, dont la base est l’intervalle [k, k + 1], a une aire égale à 1 · 1
k+1

.
Puisque tous ces rectangles sont sous le graphe,

lim
x→+∞

ln(x) ⩾
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
+

1

9
+

1

10
+ · · ·

(Cette somme infinie est appelée la série harmonique.)

On groupe les termes de la somme en paquets, comme suit :(
1

2

)
+

(
1

3
+

1

4

)
+

(
1

5
+ · · ·+ 1

8

)
+

(
1

9
+ · · ·+ 1

16

)
+ · · ·

+

(
1

2k−1 + 1
+ · · ·+ 1

2k

)
+ · · ·

On remarque que la somme que représente le 2ème paquet peut être minorée comme suit :

1

3
+

1

4
⩾

1

4
+

1

4
= 2 · 1

4
=

1

2

Pour le troisième paquet, qui contient 4 termes,

1

5
+ · · ·+ 1

8
=

1

5
+

1

6
+

1

7
+

1

8

⩾
1

8
+

1

8
+

1

8
+

1

8

= 4 · 1
8
=

1

2

On peut faire de même pour le kème paquet : c’est une somme de 2k−1 termes, et comme
chaque terme est plus grand que le dernier du paquet,

1

2k−1 + 1
+ · · ·+ 1

2k
⩾

1

2k
+ · · ·+ 1

2k

= 2k−1 · 1

2k
=

1

2
.
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5.3. Exponentielle

Ceci montre que la somme totale est plus grande qu’une somme d’une infinité de paquets.
Comme chaque paquet représente une somme d’au moins 1

2
, ceci montre que

1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
+

1

9
+

1

10
+ · · · = +∞ ,

et donc que
lim

x→+∞
ln(x) = +∞

Pour la deuxième limite, le changement de variable x = 1
s

implique

lim
x→0+

ln(x) = lim
s→+∞

ln

(
1

s

)
= − lim

s→+∞
ln(s) = −∞ .

Comme ln : R∗
+ → R est dérivable, elle est continue. Les limites au borne du domaine

R∗
+, dans le lemme ci-dessus, et le Théorème des valeurs intermédiaires, impliquent que

Im(ln) = R. On en conclut que ln est surjective.

En particulier, il existe un nombre x tel que ln(x) = 1. On note ce nombre e.
Exemple 5.6. Résolvons l’inéquation

ln(1− x) + ln(x) ⩽ 2 .

Commençons par le domaine de définition : pour que ln(1− x) et ln(x) soient bien définis, il
faut que 1− x et x soient simultanément dans le domaine du logarithme :

Ddéf = {x ∈ R|1− x > 0 et x > 0} =]0, 1[ .

Sur Ddéf,

ln(1− x) + ln(x) ⩽ 2 ⇔ ln((1− x)x) ⩽ 2 · 1
⇔ ln((1− x)x) ⩽ 2 ln(e)

⇔ ln((1− x)x) ⩽ ln(e2)

⇔ (1− x)x ⩽ e2

⇔ x2 − x+ e2 ⩾ 0 .

Puisque ∆ = (−1)2 − 4e2 < 0 et puisque le coefficient devant x2 est 1 > 0, on a que tout
x ∈ Ddéf est solution.

Donc S = Ddéf =]0, 1[. ⋄

5.3 Exponentielle

On a vu dans la section précédente que le logarithme naturel

ln : R∗
+ → R
x 7→ ln(x)

est injectif et surjectif, et donc bijectif. Par conséquent, il admet une fonction réciproque.
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5.3. Exponentielle

Définition 5.7. La réciproque du logarithme naturelle est appelée exponentielle, et notée

exp : R → R∗
+

x 7→ exp(x)

Le graphe de l’exponentielle s’obtient par une réflexion du graphe du ln à travers l’axe x =
y.

Animation disponible sur botafogo.saitis.net/analyse-A

Puisque exp est la réciproque de ln, on a que pour tout y > 0,

exp(x) = y ⇐⇒ x = ln(y)

De plus, les propriétés de base du logarithme ont des conséquences immédiates sur l’expo-
nentielle :

• ln(1) = 0 =⇒ exp(0) = 1,
• ln(e) = 1 =⇒ exp(1) = e,
• ln strictement croissante =⇒ exp strictement croissante
• lim

x→+∞
ln(x) = +∞ =⇒ lim

x→+∞
exp(x) = +∞

• lim
x→0+

ln(x) = −∞ =⇒ lim
x→−∞

exp(x) = 0

La propriété fondamentale de la section précédente (le logarithme transforme des produits
en sommes) a pour conséquence que l’exponentielle transforme des sommes en produits :

Théorème 5.8. ∀x, y ∈ R,
exp(x+ y) = exp(x) · exp(y) .

Démonstration. Fixons x, y ∈ R. Comme ln : R∗
+ → R est bijective, il existe des uniques a, b

tels que x = ln(a) et y = ln(b). Par conséquent :

exp(x+ y) = exp(ln(a) + ln(b)) = exp(ln(a · b) = ab = exp(x) · exp(y) .
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5.3. Exponentielle

On a aussi que

exp(−x) =
1

exp(x)

En effet,
1 = exp(0) = exp(x− x) = exp(x) exp(−x) .

Ensuite, on remarque que pour un entier n ∈ N, la propriété fondamentale implique

exp(n) = exp(1 + 1 + · · ·+ 1) = (exp(1))n = en .

On peut montrer que cette dernière se généralise : pour tout p/q ∈ Q,

exp(p/q) = ep/q .

Cette généralisation suggère que la fonction exponentielle soit également notée “ex”. On
utilisera donc, dorénavant, la notation

ex := exp(x) ∀x ∈ R

On a en particulier que

e−x = exp(−x) =
1

exp(x)
=

1

ex

Pour résoudre des équations/inéquations, on utilisera l’injectivité et la stricte croissance de
l’exponentielle :

u = v ⇔ eu = ev

u < v ⇔ eu < ev

u ⩽ v ⇔ eu ⩽ ev

Exemple 5.9. Résolvons

e3x+1 − 2e2x+1 − 3ex+1 = 0 , x ∈ R .

Remarquons que DDéf = R. On peut commencer par simplifier :

e3x+1 − 2e2x+1 − 3ex+1 = 0 ⇔ ee3x − 2ee2x − 3eex = 0

⇔ e3x − 2e2x − 3ex = 0

En posant temporairement y = ex, qui est > 0 par définition, cette dernière devient

y3 − 2y2 − 3y = 0 ⇔ y(y2 − 2y − 3) = 0

⇔ y(y + 1)(y − 3) = 0

⇔ y ∈ {−1, 0, 3} .

Mais puisque on cherche y > 0, on ne garde que la solution y = ex = 3. Ainsi, S = {ln(3)}
(et cela n’a rien à voir avec la mythologie Grecque !). ⋄
La fonction exponentielle a la particularité d’être égale à sa dérivée :
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5.3. Exponentielle

Propriété Pour tout x ∈ R,
(ex)′ = ex

Démonstration. Puisque l’exponentielle est la réciproque du logarithme, on a

ln(ex) = x ∀x ∈ R .

En dérivant des deux côtés de cette équation, puisque (ln(x))′ = 1
x
,

1

ex
(ex)′ = 1 .

5.3.1 Sur la construction des fonctions ln et exp

Il existe de nombreuses manières de définir le logarithme naturel et l’exponentielle. A partir
de chaque définition, on peut définir l’autre fonction comme la réciproque de la première ou
vice-versa. Chaque définition de ces fonctions sont équivalentes entre elles.

1. ln(·) peut être définie comme l’unique fonction dérivable sur R∗
+ satisfaisant

f(x · y) = f(x) + f(y) , f(e) = 1 .

2. exp(·) peut se définir comme l’unique solution de l’équation différentielle u′(x) = u(x)
avec u(0) = 1 comme condition initiale.

3. exp(x) peut se définir comme une série entière,

exp(x) =
∞∑
k=0

xk

k!
.

4. ...

5.3.2 Sur la généralisation de la notion de puissance

Rappelons que pour un exposant n entier, la fonction “puissance” est définie par

xn := x · x · · ·x︸ ︷︷ ︸
n fois

Nous avions ensuite étendu cette définition à des exposants rationnels, en posant

xp/q := q
√
xp .

Maintenant, les fonctions ln et exp permettent de généraliser la fonction “puissance” à des
exposants réels quelconques.

Définition 5.10. Si α ∈ R, on pose, pour tout x > 0,

xα := exp (α · ln(x)) .
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5.4. Base quelconque

Cette définition coïncide avec les deux précédentes, dans les cas où celles-ci sont valides.
Par exemple, pour un n entier,

exp(n ln(x)) = exp(ln(x) + · · ·+ ln(x)))

= exp(ln(x)) · exp(ln(x)) · · · exp(ln(x))
= x · x · · ·x
= xn

On a aussi la propriété de base qui est vérifiée : pour tous α, β ∈ R, et pour tout x > 0,

xα · xβ = xα+β .

Puis, la règle de dérivation classique pour les puissances reste valable :

(xα)′ = αxα−1 x > 0 .

En effet,

(xα)′ = (exp(α ln(x)))′

= exp(α ln(x)) (α ln(x))′

= exp(α ln(x))
α

x
= αxαx−1

= αxα−1

5.4 Base quelconque

L’exponentielle et le logarithme des deux dernières sections permet de généraliser la notion
de puissance à des exposants réels (jusqu’à présent, nous pouvions comprendre ap avec
p ∈ Q mais pas ax avec x un irrationnel).

Définition 5.11. Soit a > 0. On définit l’exponentielle de base a comme la fonction

expa : R → R
x 7→ expa(x) = exp(x ln(a))

De par sa définition, expa hérite des mêmes propriétés que exp. On a par exemple la propriété
fondamentale :

expa(x+ y) = expa(x) · expa(y) .

Ceci implique pour tout entier n, expa(n) = an, et donc nous mène à utiliser la notation
suivante :

ax := expa(x) .

L’exponentielle de base a est également dérivable, et

(ax)′ = (exp(x ln(a)))′ = exp(x ln(a)) (x ln(a))′ = ax︸︷︷︸
>0

ln(a) .

Ainsi,
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5.4. Base quelconque

1. si 0 < a < 1, alors ln(a) < 0 et ax est strictement décroissante,

2. si a = 1, alors ln(a) = 0 et ax est constante (égale à 1),

3. si a > 1, alors ln(a) > 0 et ax est stricement croissante.

Sur l’animation ci-dessous, on observe ce changement de monotonicité en faisant varier la
base a :

Animation disponible sur botafogo.saitis.net/analyse-1

Remarquons que

lim
x→+∞

ax =

{
+∞, a > 1
0, a < 1

lim
x→−∞

ax =

{
0, a > 1

+∞, a < 1

5.4.1 Logarithme en base a > 0

Pour une base a > 0, différente de 1, la fonction expa : R → R∗
+ est bijective. Elle admet donc

une réciproque :

Définition 5.12. Pour une base a > 0, a ̸= 1, la réciproque de expa : R → R∗
+ est appelée

logarithme en base a :

loga : R∗
+ → R
x 7→ y = loga(x)

On a donc, par définition,
ax = y ⇔ x = loga(y)

• Puisque, ex = y ⇔ x = ln(y), on a que

loge = ln .
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5.4. Base quelconque

• Le logarithme en base a = 10 est généralement noté simplement “log”.
Par construction (il est la réciproque d’une fonction de type exponentielle), le logarithme
de base a partage les propriétés et les règles de calcul du logarithme naturel. En particulier
loga(1) = 0 et loga(a) = 1.

On peut en fait toujours l’exprimer à l’aide de ln :

Propriété ∀a > 0, a ̸= 1,

loga(x) =
ln(x)

ln(a)
, ∀x > 0 .

Démonstration. Si y = loga(x), alors

y = loga(x) ⇔ ay = x

⇔ ey ln(a) = eln(x)

⇔ y ln(a) = ln(x)

⇔ y =
ln(x)

ln(a)

On a en particulier que

(loga(x))
′ =

(
ln(x)

ln(a)

)′

=
1

ln(a)

1

x
.

Donc
• si 0 < a < 1, loga est strictement décroissant,
• si a > 1, loga est strictement croissant.

Le graphe de loga s’obtient par symétrie d’axe x = y à partir du graphe de ax (en gris) :

Animation disponible sur botafogo.saitis.net/analyse-1
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5.4. Base quelconque

On observe en particulier que

lim
x→+∞

loga(x) =

{
+∞, a > 1
−∞, a < 1

lim
x→0+

loga(x) =

{
−∞, a > 1
+∞, a < 1

Exemple 5.13. Soit a ∈ R∗
+ \ {1}. Résolvons

loga(x) + loga(x− 2a) ⩾ 2 + loga(3) .

La base a joue donc le rôle d’un paramètre.

Commençons par
Ddéf = {x ∈ R|x > 0 et x− 2a > 0} =]2a,+∞[ .

Sur DDéf,

loga(x) + loga(x− 2a) ⩾ 2 + loga(3)

⇔ loga(x(x− 2a)) ⩾ 2 · 1 + loga(3)

⇔ loga(x(x− 2a)) ⩾ 2 loga(a) + loga(3)

⇔ loga(x(x− 2a)) ⩾ loga(a
2) + loga(3)

⇔ loga(x(x− 2a)) ⩾ loga(3a
2)

On disctincte à présent les cas :
• Si 0 < a < 1, loga est décroissant et donc

loga(x(x− 2a)) ⩾ loga(3a
2)

⇔ x(x− 2a) ⩽ 3a2

⇔ (x+ a)(x− 3a) ⩽ 0

⇔ x ∈ [−a, 3a]

⇔ x ∈]2a, 3a].

• Si a > 1, alors loga est croissant et donc

loga(x(x− 2a)) ⩾ loga(3a
2)

⇔ x(x− 2a) ⩾ 3a2

⇔ (x+ a)(x− 3a) ⩾ 0

⇔ x ∈]−∞,−a] ∪ [3a,+∞[

⇔ x ∈ [3a,+∞[

En résumé,

S =

{
]2a, 3a] si 0 < a < 1 ,

[3a,+∞[ si a > 1 .

⋄
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5.4. Base quelconque

5.4.2 A propos des graphes de loga(x) et ax

On discute des positions relatives des graphes du logarithme et de l’exponentielle, lorsqu’on
change la base a. Cette discussion peut s’accompagner de l’animation du dessus, dans la-
quelle on peut faire varier a.

1. Cas où 0 < a < 1 : les courbes se croisent une fois sur la droite x = y.

2. Cas où 1 < a < e
1
e : les courbes se croisent deux fois sur la droite x = y.

3. Cas où a = e
1
e : les courbes se croisent une fois sur la droite x = y.
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5.4. Base quelconque

4. Cas où a > e
1
e : les courbes ne se croisent pas.

Remarque 5.14. On remarque que dans dans certains cas, il existe un nombre x0 (ou deux)
tel que

x0 = ax0 = loga(x0).

On appelle ce x0 un point fixe.
On peut par exemple calculer la valeur critique de la base a pour laquelle il n’y a plus de
points fixes. La situation "limite" est quand les graphes de ax et loga(x) se croisent en un seul
point sur la droite x = y et sont tangents en ce point à la droite (qui est de pente 1). Ceci
amène à résoudre (par exemple) les équations :

x0 = loga(x0) =
ln(x0)

ln(a)
, log

′

a(x0) =
1

ln(a)x0

= 1.
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5.4. Base quelconque

En résolvant par rapport ln(a) et x0, on trouve finalement

x0 = e, ln(a) =
1

e
⇔ a = e

1
e .

⋄
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