Chapitre 5

Logarithme et exponentielle

5.1 Introduction

La premiere apparition des logarithmes (du Grec "logos" (relation) et "arithmeticos" (nombre)
dans I'histoire remonte a 2000 avant ].C. chez les Babyloniens. Des tablettes comptables met-
taient en relation des produits dans une colonne avec des sommes dans une autre. Bien plus
tard, en 1614, Napier (qui donna son nom au logarithme naturel appelé logarithme népé-
rien) établit de nombreuses tables de correspondances entre somme et produit, qui furent
par exemple utilisées par Kepler pour simplifier ses calculs astronomiques.

1
En 1647, Saint-Vincent calcula 'aire sous la courbe n et en 1661 Huygens remarqua que cette

aire est donnée par un logarithme.

5.2 Logarithme

Définition 5.1. On définit le logarithme naturel In : R% — R par

1
ln(x):/ —dt.
1t

Géométriquement, In(z) représente l'aire algébrique de la portion du plan délimité par le
graphe de f(t) = % etlesdroitest = 1,t = z,y = 0.
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5.2. Logarithme

Animation disponible sur botafogo.saitis.net/analyse-A

De par sa définition,
1. In(1)=0
2. In(z) >0 x>1
3. In(z) <0 x<1

Le logarithme étant défini comme la fonction-aire associée a f(t) = }, le Théoreme Fonda-
mental de I’Analyse garantit qu’il est dérivable sur |0, +o00[, et qu’en plus

In'(x) = (/j%dt)/:%

En particulier, In(x) est strictement croissante, puisque sa dérivée est = > 0 pour tout z > 0.

5.2.1 La propriété fondamentale

La propriété la plus importante du logarithme est de transformer des produits en sommes :
Théoreme 5.2. Si x,y > 0, alors
In(z - y) = In(z) + In(y) .

Démonstration. Fixons x,y > 0. En utilisant la relation de Chasles,

W Y1
In(z-y) —In(y) = /1 zdt - /1 zdt

- [ .
y U

Introduisons la nouvelle variable v = t/y, qui donne dt = y du, et donc

W “ 1 1
/ —dt = —ydu = / —du = In(z),
y t 1 uy 1 u
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5.2. Logarithme

et donc la formule est démontrée.

2 . . T
Remarquons que I'opération qui transforme ["

dt en [} dt correspond a un "glissement"
de la portion du plan sous la courbe entre 1 et z :

Le changement de variable que 1’on a opéré dans I'intégrale correspond a appliquer a l'aire
bleue la transformation
T, : R? — R?,

qui a tout couple (a, b) fait correspondre le couple (ya, 3) Par exemple le couple (1,1) est
envoyé sur (y,1/y), et (x,1/z) est envoyé sur (yx,1/yz). On peut montrer que cette trans-
formation préserve les aires, puisqu’elle est linéaire et que sa matrice relativement a la base
canonique est donnée par
G2)
0

L’aire bleue est égale a In(z), l’aire verte vaut In(zy) — In(y) =(aire entre zy et 1)-(aire entre
et 1). Le calcul intégral plus haut revient & montrer que ces aires sont égales. O

<= O

dont le déterminant vaut 1.

On conclut de la propriété précédente :

Corollaire 3. 1. V& > 0,In (1) = —In(z)

2. Vx,y >0,In (%) = In(z) — In(y)
3. Vx> 0,Vn € N, In(2") = nln(z).

Démonstration. 1. Siz >0,

etdoncln (1) = —In(z)

2 In <§> —In (I : %) =In(z) + In (%) = In(x) — In(y)

3. La propriété est vérifiée pour n = 2, puisque
In(z?) = In(x - x) = In(x) + In(z) = 2In(z) .
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5.2. Logarithme

Si elle est vraie pour n, alors
In(z"™) = In(2" - 2) = In(z") + In(z) = nln(z) + In(z) = (n + 1) In(x),

donc elle est vraie aussi pour n + 1.
O

La derniere propriété s’étend a des puissances négatives n < 0. En effet, sin = —m, m € N,
alors

In(z") = In(z™™) = In (im) = —In(z™)

= (—m)In(x) = nln(x).

Elle s’étend également a des exposants rationnels; on retiendra la regle de calcul : pour tout

aeQ

In(z%) = aln(z), x>0

5.2.2 Injectivité

Puisque In : RY — R est strictement croissante, elle est injective.
On a donc les équivalences suivantes, utiles pour la résolution d’équations/inéquations :
pour tout u,v > 0,

In(u) =In(v) < wu=v
In(u) <Iln(v) < wu<w
In(u) <In(v) < wu<w

Exemple 5.3. Résolvons
In(x 4+ 1) + In(x + 2) = In(2)

Les logarithmes sont bien définis lorsque x € Dg¢;, ol

Diss={reR|z+1>0etx+2>0} =] —1,400[.
Sudeéf/
In(z+1)+In(zx+2) =In(2) <= In((z+1)(z+2)) =1n(2)
— (z+1)(x+2)=2
— z(x+3)=0,
et donc

S = Dass {0, =3} = {0}.

Exemple 5.4. Résolvons
2In(z) > In(x +2) .

Notons d’abord que les deux deux membres de 1'inégalité sont bien définis lorsque z € Dqgf,
ou
Dyt ={r eR|z>0etx+2 >0} =]0,+o0].
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5.2. Logarithme

Sur Dgg¢, on a maintenant

2In(z) > In(x +2) <= In(z?) > In(z + 2)
= 2*>z+2
= 2’ —2-2>0
— (z+1)(x—2)>0.

L’ensemble solution est donc

S = Dggs N (] — 00, —1[U]2, o0])
=]2,00][.

Exemple 5.5. Résolvons
In(2?) > In(z + 2).

Notons d’abord que les deux deux membres de 1'inégalité sont bien définis lorsque x € Dqgf,
ou
Dyt ={zxeR|z#0etz+2>0} =] —2,0[U]0,+o0].

Sur Dg¢, on a maintenant
In(z?) > In(z +2) <= 2> >1+2
— (r+1)(x—2)>0.
L’ensemble solution est donc

S = Dget N (] — 00, —1[U]2, 00[) =] — 2, —1[U]2, oo .

5.2.3 Surjectivité

On a dit plus haut que In(z) est strictement croissante, mais ceci ne dit pas quel est son
comportement lorsque z — 400 ouz — 0.

Lemme In:R% — R n’est pas majorée, car

lim In(x) =400,

T—+400
et pas minorée, car
lim In(z) = —oc0.

z—0t

Démonstration. En termes géométriques, la limite

représente 1'aire de la région sous le graphe de f(t) = 1, entre ¢ = 1 et l'infini.

Considérons une famille infinie de rectangles, tous de largeur égale a 1, situés sous le graphe

de f(t) =1:
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5.2. Logarithme

i % L & & 1 e
L'aire du keéme rectangle, dont la base est I'intervalle [k, & + 1], a une aire égale a 1 - .
Puisque tous ces rectangles sont sous le graphe,
lim In(x) > -+ o+ b b s b i b iy
m nz)Z2-+-+-+-+=-4+=-+-+-+—+---
z-+oo “2°3 4 5 6 7 8 9 10
(Cette somme infinie est appelée la série harmonique.)

On groupe les termes de la somme en paquets, comme suit :

1 1
()

1 1
+(5+ +§>

1 1
+(§+ —+E)
+.

1 1

+(ﬁ?:?*“+ﬁ)

On remarque que la somme que représente le 2éme paquet peut étre minorée comme suit :

1+1>1+1_2 1 1
3474 4 7 4 2
Pour le troisieme paquet, qui contient 4 termes,

1+ +1_1+1+1+1
5 8 5 6 7 8
< 1+1+1+ 1
~8 8 8 8

1 1

—4.- ==

8 2

On peut faire de méme pour le kéme paquet : ’est une somme de 2°7! termes, et comme
chaque terme est plus grand que le dernier du paquet,

1 1 1 1
Pl Tttty
1 1

:2]6—1__:_.

2k 2
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5.3. Exponentielle

Ceci montre que la somme totale est plus grande qu'une somme d’une infinité de paquets.
Comme chaque paquet représente une somme d’au moins 3, ceci montre que

R I I I +
2 3 4 5 6 7 8 9 10 ’
et donc que

lim In(z) = 400
r—+00

Pour la deuxiéme limite, le changement de variable z = < implique

1
lim In(z) = lim In (—) =— lim In(s) = —o0.

z—0t s—+o00 S s—+o00

]

Comme In : R} — R est dérivable, elle est continue. Les limites au borne du domaine
R?*, dans le lemme ci-dessus, et le Théoréeme des valeurs intermédiaires, impliquent que
Im(In) = R. On en conclut que In est surjective.

En particulier, il existe un nombre x tel que In(z) = 1. On note ce nombre e.

Exemple 5.6. Résolvons I'inéquation
In(1—2)+In(z) <2.

Commengons par le domaine de définition : pour que In(1 — z) et In(z) soient bien définis, il
faut que 1 — x et z soient simultanément dans le domaine du logarithme :

Dygss = {r € R|1 — 2z >0etx >0} =0, 1].
Sur Ddéf,

In(1 —z) +In(x) <2

R
5
i
8
8

Puisque A = (—1)® — 4e? < 0 et puisque le coefficient devant 2% est 1 > 0, on a que tout
x € Dggs est solution.

Donc S = Dges =0, 1]. o

5.3 Exponentielle

On a vu dans la section précédente que le logarithme naturel

In:R}, - R
x +— In(x)

est injectif et surjectif, et donc bijectif. Par conséquent, il admet une fonction réciproque.
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5.3. Exponentielle

Définition 5.7. La réciproque du logarithme naturelle est appelée exponentielle, et notée

exp: R — R}
x +— exp(z)

Le graphe de I’exponentielle s’obtient par une réflexion du graphe du In a travers l'axe x =
Y.

Animation disponible sur botafogo.saitis.net/analyse-A
Puisque exp est la réciproque de In, on a que pour tout y > 0,
exp(z) =y <= z=I(y)

De plus, les propriétés de base du logarithme ont des conséquences immédiates sur 1’expo-
nentielle :

e In(l)=0 = exp(0)=1,

e Infe)=1 = exp(l)=e,

¢ |n strictement croissante = exp strictement croissante
lim In(z) =400 = lim exp(z)= +o0

T—+00 T—+00
lim exp(z) =0
Tr—r—00

5
=R
=
I
|
8
!

La propriété fondamentale de la section précédente (le logarithme transforme des produits
en sommes) a pour conséquence que l'exponentielle transforme des sommes en produits :

Théoreme 5.8. Vz,y € R,
exp(z +y) = exp(z) - exp(y) .

Démonstration. Fixons z,y € R. Comme In : R* — R est bijective, il existe des uniques a,b
tels que x = In(a) et y = In(b). Par conséquent :

exp(z +y) = exp(ln(a) + In(b)) = exp(In(a - b) = ab = exp(z) - exp(y) .

]
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5.3. Exponentielle

On a aussi que

1

)

En effet,
1 =exp(0) = exp(z — z) = exp(z) exp(—x) .

Ensuite, on remarque que pour un entier n € N, la propriété fondamentale implique
exp(n) = exp(1+1+4---+1) = (exp(1))" = e".
On peut montrer que cette derniere se généralise : pour tout p/q € Q,

exp(p/q) = e”/".

Cette généralisation suggere que la fonction exponentielle soit également notée “e*”. On
utilisera donc, dorénavant, la notation

e’ 1= exp(z) Ve e R

On a en particulier que

a 1 1
(& = exp(—x) = m = e—x

Pour résoudre des équations/inéquations, on utilisera I'injectivité et la stricte croissance de
I'exponentielle :

u=v& et =¢

u<ves et <e

u<veet e

Exemple 5.9. Résolvons

3Tl _ et _ 32+l — relR.

Remarquons que Dpg = R. On peut commencer par simplifier :

Szl _ 9p2etl _ 307l — () o eed? — 2ee%® — 3ee” =0

& e —2e% 3¢ =0

e

En posant temporairement y = e”, qui est > 0 par définition, cette derniére devient

v -2 -3y=0 & y’—-2y—3)=0

& yly+1)y—-3)=0
< ye{-1,0,3}.

Mais puisque on cherche y > 0, on ne garde que la solution y = e = 3. Ainsi, S = {In(3)}
(et cela n’a rien a voir avec la mythologie Grecque!). o

La fonction exponentielle a la particularité d’étre égale a sa dérivée :
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5.3. Exponentielle

Propriété Pour toutz € R,
(ex)/ — e:l:

Démonstration. Puisque 1’exponentielle est la réciproque du logarithme, on a

In(e”) =2  VxeR.

En dérivant des deux cotés de cette équation, puisque (In(z)) = 1,

—(e")' =1.

eIE

5.3.1 Sur la construction des fonctions In et exp

Il existe de nombreuses maniéres de définir le logarithme naturel et I'exponentielle. A partir
de chaque définition, on peut définir I’autre fonction comme la réciproque de la premiere ou
vice-versa. Chaque définition de ces fonctions sont équivalentes entre elles.

1. In(-) peut étre définie comme I'unique fonction dérivable sur R* satisfaisant
fle-y)=fx)+ fly),  fle)=1.

2. exp(-) peut se définir comme 1'unique solution de I'équation différentielle u'(x) = u(x)
avec u(0) = 1 comme condition initiale.

3. exp(z) peut se définir comme une série entiere,

exp(x) = Z a:_' :

5.3.2 Sur la généralisation de la notion de puissance

Rappelons que pour un exposant n entier, la fonction “puissance” est définie par

=z
—

n fois
Nous avions ensuite étendu cette définition a des exposants rationnels, en posant

2?9 = N qp

Maintenant, les fonctions In et exp permettent de généraliser la fonction “puissance” a des
exposants réels quelconques.

Définition 5.10. Si o € R, on pose, pour tout z > 0,

% :=exp (- In(z)) .
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5.4. Base quelconque

Cette définition coincide avec les deux précédentes, dans les cas ou celles-ci sont valides.
Par exemple, pour un n entier,

exp(nln(z)) = exp(In(z) + - - - + In(x)))
— exp(In(z) - exp(Inz)) -~ exp(In(z)

On a aussi la propriété de base qui est vérifiée : pour tous a, 5 € R, et pour tout z > 0,

2% 2P = goth

Puis, la régle de dérivation classique pour les puissances reste valable :

1

(%) = az*” x>0.

En effet,

(2%)" = (exp(evIn(x)))’

5.4 Base quelconque

L’exponentielle et le logarithme des deux derniéres sections permet de généraliser la notion
de puissance a des exposants réels (jusqu’a présent, nous pouvions comprendre a” avec
p € Q mais pas a” avec = un irrationnel).

Définition 5.11. Soit @ > 0. On définit I’exponentielle de base a comme la fonction

exp, : R—=R
x — exp,(z) = exp(xIn(a))
De par sa définition, exp, hérite des mémes propriétés que exp. On a par exemple la propriété
fondamentale :
exp, (¢ + y) = exp, () - exp,(y) -

Ceci implique pour tout entier n, exp,(n) = a”, et donc nous mene a utiliser la notation
suivante :

a® = exp,(z).

L’exponentielle de base a est également dérivable, et
(a®) = (exp(zIn(a))) = exp(xIn(a)) (zIn(a)) = _a” In(a).
>0

Ainsi,
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5.4. Base quelconque

1. si0 < a < 1,alors In(a) < 0 et a” est strictement décroissante,
2. sia =1, alors In(a) = 0 et a” est constante (égale a 1),

3. sia > 1,alorsIn(a) > 0 et a” est stricement croissante.

Sur l'animation ci-dessous, on observe ce changement de monotonicité en faisant varier la
base a :

rAa
LdJd

Animation disponible sur botafogo.saitis.net/analyse-

Remarquons que

lim a”
T—r—+00

400, a>1
0, a<l

lim a® 0, a>1
T——00 +o0o, a< 1

5.4.1 Logarithme en base a > 0

Pour une base a > 0, différente de 1, la fonction exp, : R — R est bijective. Elle admet donc
une réciproque :

Définition 5.12. Pour une base a > 0, a # 1, la réciproque de exp, : R — R’ est appelée
logarithme en base a :

log, : Ry — R
x— y = log,(x)

On a dong, par définition,
a"=y & x=log,(y)

e Puisque, ¢’ =y < = = In(y), on a que

log, =1n .
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5.4. Base quelconque

* Lelogarithme en base a = 10 est généralement noté simplement “log”.
Par construction (il est la réciproque d’une fonction de type exponentielle), le logarithme
de base a partage les propriétés et les régles de calcul du logarithme naturel. En particulier
log,(1) = 0etlog,(a) = 1.

On peut en fait toujours l'exprimer a l'aide de In :

Propriété Vo > 0,a # 1,

In(x)
1 = :
08, () In(a) Ve >0
Démonstration. Siy = log,(z), alors
y=log,(z) & d'=z
= eyln(a) _ ln(z)
< yln(a) = In(x)
In(x)
Rt =
Y Tn(a)

On a en particulier que

, (In(x)\ 1 1
(log, ()" = (ln(a)) T In(a)z
Donc

* si( < a < 1,log, est strictement décroissant,
® sia > 1, log, est strictement croissant.
Le graphe de log, s’obtient par symétrie d’axe x = y a partir du graphe de a” (en gris) :

a=2.000...

Q

log,(z) e

ne

rA
Ld

Animation disponible sur botafogo.saitis.net/analyse-1
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5.4. Base quelconque

On observe en particulier que

lim log,(x) =

r—r-+00

400, a>1
—o0, a<l1

lim log,(z) = —o0, a>1
oot B\ T oo, a<1

Exemple 5.13. Soit a € R \ {1}. Résolvons
log,(z) + log,(z — 2a) > 2 + log,(3) .

La base a joue donc le role d’un parametre.

Commencons par
Dyt = {z € Rlz > 0 etz — 2a > 0} =]2a, +o0].

Sur DDéf ,

log, (z) + log,(x — 2a) > 2 + log,(3)

< log, (z(x — 2a 2-1+log,(3)
2log,(a) + log,(3)
log, (a”) +log,(3)
1

0g,(3a%)

) =
< log, (z(r — 2a)) >
& log, (z(x — 2a)) >
< log,(x(x —2a)) >

On disctincte a présent les cas :
* Si0 < a<1,log, est décroissant et donc

log,(z(z — 2a)) > log,(3a”)
& o(r — 2a) < 3a?
& (x+a)(r—3a) <0
&z € [—a,3al
& €]2a, 3al.

e Sia > 1, alors log, est croissant et donc

log, (2(w — 2a)) > log, (3¢%)
& x(z — 2a) > 3d*
< (r+a)(r—3a) =0
& x €] — 00, —a] U[3a, +o00|
&z € [3a, o0

En résumé,
o |2a, 3d] si0<a<1,
[Ba,+oo] sia>1.
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5.4. Base quelconque

5.4.2 A propos des graphes de log,(z) et a”

On discute des positions relatives des graphes du logarithme et de I’exponentielle, lorsqu’on
change la base a. Cette discussion peut s’accompagner de 1’animation du dessus, dans la-

quelle on peut faire varier a.

1. Casol1 0 < a < 1:les courbes se croisent une fois sur la droite = = .

y| log,(x)

N 1 . . .
3. Cas ol a = e« : les courbes se croisent une fois sur la droite = = y.

135
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5.4. Base quelconque

Remarque 5.14. On remarque que dans dans certains cas, il existe un nombre z, (ou deux)
tel que
xo = a™ = log, (o).

On appelle ce z, un point fixe.

On peut par exemple calculer la valeur critique de la base a pour laquelle il n'y a plus de
points fixes. La situation "limite" est quand les graphes de a” et log,(x) se croisent en un seul
point sur la droite z = y et sont tangents en ce point a la droite (qui est de pente 1). Ceci
amene a résoudre (par exemple) les équations :

B ~ In(wo) , B I
To — 10ga(I0) = 111(@) s IOga(])o) = m = 1.
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5.4. Base quelconque

En résolvant par rapport In(a) et x(, on trouve finalement

rg=e, In(a)=-<a=e-.
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