Chapitre 2

Algebre élémentaire

2.1 Calcul dans R

Propriété (R, +,-)estun corps commutatif qui satisfait aux regles de calcul usuel. Soient
a,b,c € R.

1. a4+ b= b+ a(+ est commutative)

2. a+ (b+c¢) = (a+b) + ¢ (+ est associative)
3. a+0=0+a = a (0 estl'élément neutre pour +)
4. a+ (—a) = 0 (élément opposé pour +)
5. a-b=b-a(-estcommutative)
6. a-(b-c)=(a-b)-c(-estassociative)
7. a-1=1-a=a(1estl'élément neutre pour -)
8. a-1=1 (a#0)(élément inverse pour )
9. a-(b+c¢)=a-b+ a-c(distributivité mixte)
Définition 2.1.
Ry ={aeR|a >0},
R_={aecR|a<0}.
Propriété

1. La somme de deux nombres positifs est un nombre positif : Va,b € Ry, a+b € R..
Soientx,y,a e Rox =y<= xr+a=y+a.

Soientz,y,a c Rz <y<=zr+a<y-+a.

Soient a,b,c € R.a < betb < ¢ = a < c. La réciproque est fausse.

Soient z,y,a,b € R.z < yeta < b= x+a < y+ b. Laréciproque est fausse.
Va,be Ry, abe R,.

Soient z,y,a € R*. v = y <= ax = ay.

Soienta,b e R.ab=0<= a=00ub=0.

W ® N D

Soientz,y,a e R.x > yeta > 0= ax > ay.
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2.1. Calcul dans R

10. Soient z,y,a € R.x > yeta < 0 = ax < ay. Attention au changement du sens
de I'inégalité!

[ustration : siz € [2,5] etsiy € [1,4], que dire de v — y?
¢ Un calcul faux:

2 < = <5
1 < y < 4
2—1=1 < r—y < 1=5—-4
Pas de soustraction terme a terme!
* Uncalculjuste:1 <y <44 —1 > —y > —4 (attention au changement du sens des
inégalités!)
2 < T < 5
-4 < -y < -1
2—4=-2 < r—y < 4=5-1

Ainsiz —y € [—2,4].

Définition 2.2. Représentation décimale. Un réel positif =+ € R peut toujours s’écrire sous
la forme

r=n+r, neN,rel0,1].

n et r sont respectivement la partie entiere et la partie décimale de . Comme 0 < r < 1,1l
existe des d;, € {0,...,9}, k € N* tels que

r=d;107' +dy107 2+ .- = Z B0
k=1

Les d;, sont appelées les décimales de z et on donne z sous sa représentation décimale
x: D(x) =n.dd,...
Pour z < 0, on définit D(z) = —D(—x).
Exemple 2.3. 1T = 4.25, —21 = —218, 7 = 3.14159..., 0.9 = 1. o
Théoreme 2.4. Soit v € R. On a I'équivalence
r € Q < D(x) est soit finie, soit périodique.
Définition 2.5. Soient a € R et n € N*. La puissance n-ieme de a, notée a”, est le nombre

at=a-a-...-q.
——

n facteurs

Exemple 2.6. o (—2)3 =(-2)(-2)(-2) = -8
NOETE
e 0'=0.

Propriété Soienta,b € R, m,n € N*.
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2.1. Calcul dans R

1. a™a” = ™™
2. (am)n — amn
3. (ab)™ = a"b"

Généralisation aux exposants négatifs ou nuls :

Définition 2.7. Soient a € R* et n € Z. Alors

an

Remarque 2.8. On adopte la convention 0° = 1.
Remarque 2.9. Les propriétés 1 a 3 restent valables pour m,n € Z. o

2.1.1 Fonction signe

Définition 2.10. Soit x € R*. Le signe de x , noté sgn(z), est le nombre

+1 siz>0
sen(z) -1 siz <0

Remarque 2.11. La fonction signe est parfois définie en = = 0 par sgn(0) = 0. o
Propriété Soienta,b € R*.
1. sgn(ab) = sgn(a)sgn(b) .
2. sgn (%) = sgn(ab) .
Exemple 2.12. Etudier le signe de l'expression

2z +1)(x — 2)
(z+2)3—x)

fx) =

® D =R \ {—2, 3}
* Tableau des signes (remarque : le facteur 2 est strictement positif et ne joue pas de

role)
x —2 —1 2 3
zHl— — — 0 + + + + +
r—2|— — — — — 0 + + +
z+2]— 0 + + + + 4+ + +
3—z|+ + + + + + + 0 -
f@y =1 + 0 = 0 + | -
Ainsi

e f(x) <0 size]—o0,—-2[U]-1,2[U]3, +o0]

e f(z)=0 sixze {-1,2}

e f(x)>0 size]-2,-1[U]2,3].
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2.2. Généralités sur les équations

2.1.2 Identités algébriques

Propriété Identités remarquables. Soient a,b € R.
1. (a £b)? = a* £+ 2ab + a*
2. (a£b)® = a4 3a®b + 3ab® £ V?
3. a> = b* = (a — b)(a +b).Ici, (a + b) est 'expression conjuguée de (a — b).
4. a®—b® = (a—b)(a*+ab+0b?). Ici, (a* + ab+ b*) est 'expression conjuguée de (a —b).
5.a" =b"=(a—0b)(a" ' +a" b+ - +a" RO 4 @b 0

Exemple 2.13. Amplification par I’expression conjuguée

1 1 2+1 2+1
V2-1 V2-1v2+1 0 2-1
o
Exemple 2.14. Amplification par 1’expression conjuguée
1 1 Y —Yz+1 V- Yr+1 V22— Yr+1 (04 1)
g g g T —_ .
Ve+1l Yr+1yz° - Yz+1 r+1 r+1
o

2.2 Généralités sur les équations

Dans ce chapitre on commence a s’intéresser a la résolution d’équations.

Si f et g sont deux fonctions définies sur Dg¢s C R, on pourra considérer I'équation

ou l'inéquation stricte

ou l'inéquation large
flz) < g(z).

Résoudre I'équation (ou I'inéquation) (en x), c’est chercher 'ensemble de foutes les valeurs de
vérifiant I’équation (ou I'inéquation); on I’appellera ensemble solution :

S = {x € Dge | x vérifie 'équation (ou I'inéquation)} .

Remarque 2.15. Dans ce cours, on ne considérera que des (in-)équations ot f, g contiennent
* des polyndmes
* des valeurs absolues

des fonctions racines

des fonctions trigonométriques ou trigonométriques réciproques

des fonctions logarithmiques ou exponentielles
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2.2. Généralités sur les équations

Dans la recherche de S, il s’agit de passer de la propriété qui définit les solutions a partir de
I"équation de départ,
E : z estsolution de f(z) = g(z)

a celle, équivalente, qui rend explicite 'ensemble solution :
E.; :z € SoulS estl’ensemble solution.
Pour ce faire, on passe par une suite d’étapes intermédiaires équivalentes,
FeEBE bhs &S LB & By,
ou les E; sont des propriétés impliquant des équations intermédiaires de plus en plus en

simples.

Pour aboutir a un ensemble de solutions qui soit exactement le méme que celui de I(in-
)équation de départ, chaque équivalence intermédiaire devra contenir une opération qui
assure 1’équivalence de ’ensemble solution. Cette opération consistera en général a appli-
quer une fonction h des deux cotés d’une (in-)égalité, celle de départ étant f(z) = g(x) (ou
f(z) < g(z)). Il faudra donc, a chaque étape, s’assurer que ‘ensemble des = qui vérifient
I'(in-)équation est le méme avant et apres l'application de h.

A la premiere étape par exemple, il faudra s’assurer
* que h est injective dans le cas des équations

fl@)=g(x) < h(f(x)) =h(g(z)).
* que h est strictement monotone (et donc aussi injective) dans le cas des inéquations
f(@) <g(z) < h(f(z)) <h(g(z)) sistrictement croissante,

f(@) <g(x) < h(f(z)) > h(g(x)) sistrictement décroissante.

Par exemple, les équations faisant intervenir la fonction racine (voir semaine 5) sont délicates
car I'élévation au carré n’est pas injective sur tout R ou dans le cas d'inéquations avec des
fonctions trigonométriques, ces dernieéres n’étant pas monotones (et pas injectives non plus).

Voici quelques exemples ot il est important de respecter cette équivalence :
Exemple 2.16. Résoudreen z € R, P(z) : /z < 2.

* Dgss =R
e Equivalence: /= <2 < z < 2% = 8. Ainsi,
q vV < <
P(z):ens. A Q(z): ens. B

S=A=B=]-c,8§

o

Exemple 2.17. Résoudre en z € R, P(x) : z? = 64.
® Dget =R
. . A 2 o ’ A . . . _
e Implication: g =64 « 2 =38 .Iln'y a pas équivalence : des solutions sont per
P(x):ens. A Q(z): ens. B

dues. Eneffet, {8} = BC A =S5 ={-8,8}.

o
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Exemple 2.18. Résoudreen z € R, P(z) : /x = —4.
® Dggs = Ry
e Implication : y/z = —4 = gz =16 . Il n’y a pas équivalence : on a introduit des « so-

N—
P(x):ens. A Q(x): ens. B
lutions parasites ». En effet, S = ) = A C B = {16}.

2.2.1 Equations avec parametres

Pour chacun des types d’(in-)équation présenté dans les chapitres suivants, on considérera
des (in-)équations avec parametres. Par exemple, pour une équation,

fn(@) = gm()
ou m est le parametre de 'équation. Dans ce cas, 'ensemble de définition et I’ensemble
solution dépendent a priori de m.

Les équations avec parametres sont importantes pour plusieurs raisons.

1. Dans la pratique, on cherche a déterminer des solutions en fonction de certains para-
metres (par exemple en physique, trajectoire en fonction de la vitesse initiale).

2. Parfois, on cherche a résoudre le probleme inverse : quels sont les parametres néces-
saires a I’observation de telle solution particuliére.

3. Leur résolution représente un bon exercice méthodologique.

2.3 Equations et inéquations linéaires

2.3.1 Cas général

Définition 2.19. Soient a,b € R.
ar=2>

est une équation linéaire en z € R.

On résout facilement une équation linéaire, pour laquelle clairement Dy = R, en isolant z.
On peut le faire en prenant garde a distinguer les valeurs de a : a.
e Casa#0:az=ber=2=2dous={2}
e Casa=0:ar =b< 0x =b. Ainsi,
— si b =0, tout z est solution, d’ou S = R
— sib # 0, aucun x n’est solution, d’ot1 S = (.

Définition 2.20. Soient a,b € R.
axr > b
est une inéquation linéaire en z € R.
Ici aussi, Dg¢r = R, et on résout également une inéquation linéaire en isolant z, et en prenant

garde a distinguant les valeurs et le signe de a :
e Casa>0:ax>bs x> dousS=]2 +oof
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2.3. Equations et inéquations linéaires

e Casa=0:ax>b<0x >0
— sib < 0, tout z est solution, d’ou S = R
— sib > 0, aucun z n’est solution, d’otr S = 0.
e Casa<0:az>besr<? doulS=]-o00, 2]

' a

Un discussion similaire s’adapte pour les inéquations ax > b, ax < bet ax < b.

2.3.2 Avec parametre

Considérons maintenant des équations linéaires avec parametre.
Un exemple introductif :
Exemple 2.21. Résoudre, pour = € R, par rapport a m € R, I'équation
mx = 1.
On peut résoudre cette équation pour certaines valeurs fixées de m. Par exemple :
L.Sim=2:2r=1®2=1&5={1}.
2.5im=3:3r=1s=5&5={i}.
On constate que 'ensemble solution dépend de m; il s’agit donc de déterminer, pour toute
valeur de m, 'ensemble des solutions. Formellement, il s’agit de trouver

{les parametres} — {les ensembles solutions}
m— S = S(m).

Trouvons donc I’ensemble solution de 1'équation maz = 1, en fonction de m. Pour commen-
cer, remarquons que le domaine de définition de I'équation ne dépend pas de m : Dgss = R.
Puis, on cherche a isoler x en prenant garde a éviter la division par zéro.

* Sim = 0,1’équation devient 0 - z = 1 et aucun x n’est solution.

* Sim # 0, I'équation devient z = =. On a obtenu une équation si simple qu’elle
énonce sa propre solution. Noter que - est bien défini car m # 0 et = appartient
naturellement a D gg.

Résumons :
e Sim =0,alors S = 0.
e Sim e R*, alors S = {1}

3~ o

ra
L4
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Animation disponible sur botafogo.saitis.net/analyse-A

Remarque 2.22. Attention a ne pas confondre la variable et le parameétre.
* Variable z : c’est I'inconnue, ce que I'on cherche.
* Parametre m : une donnée, on le connait (on ne fixe pas de valeur particuliere car on
traite toutes ses valeurs possibles).
o

Exemple 2.23. Résoudre pour = € R par rapport a m € R 1'équation
(m—2)r=m—2.

On établit d’abord le domaine de définition : Dg¢s = R. Puis on cherche a isoler = en prenant
garde a la division par zéro. L'erreur serait de simplifier par m — 2 et conclure que z = 1
pour tout valeur de m!

* Sim = 2,1’équation devient 0 - z = 0 et tout z est solution.

* Sim # 2,1’équation devient z = 1.
Résumons :

e Sim=2,alors S =R.

e Sim e R\ {2}, alors S = {1}.

Exemple 2.24. Résoudre pour = € R par rapport a m € R I'inéquation
m(z—1) = (z—1).

Ici aussi, Dgy = R. L'erreur a ne pas faire est de diviser par z — 1 et d’obtenir m > 1 ce qui
ne veut rien dire, car m est un parametre (que I'on peut choisir) et non pas l'inconnue du
probleme. De plus,

* on ne sait pas si z — 1 est nul (x est ce que 'on cherche),

* on ne connait pas le signe de x — 1 et donc s’il faut intervertir ou non 1'inégalité.
On procede en soustrayant « — 1 des deux cotés (ce qui ne change pas I’ensemble solution) :

mz—1)=2@—-1) < (m-1)(z—1)>0.

La discussion se fait alors en fonction du coefficient m — 1 :

e Sim = 1,1’équation devient 0 - (x — 1) > 0 et tous les = sont solutions.

e Sim > 1,alorsm —1 > 0etl'équation devientz —1 >0 &z > 1,

* sim < 1,alorsm —1 < 0etl'équation devientz —1 <0 2 < 1.
Résumons :

e Sim=1,5=R.

e Sim>1,5=[l,+o0].

e Sim<1,5=]—o0,1].

Exemple 2.25. Résoudre en = € R 1'équation,
m?r —m — 4z =2,

en fonction du parametre m € R.

On cherche a isoler x dans (m?—4)x = m+2. Distinguons les valeurs possibles du coefficient
devant le z :
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2.3. Equations et inéquations linéaires

e Casm? —4 # 0: Dans ce cas (m + 2)(m — 2) # 0, qui signifie m & {—2,2}, et on peut
diviser des deux cotés par m? — 4 :

m+2_ 1

(m*—4z=m+2 & z=

dou S = {}.

o Casm? —4=0:m € {—2,2}, qui signifie que
— sim = —2,l"équation devient 0z = 0 et tout z est solution, d’'ou S = R,
— sim = 2,1"équation devient 0z = 4 et aucun = n’est solution, d’out S' = .

Résumons :

* Sim ¢ {-2,2},5={-"5}.

e Sim=-2,5=R.

e Sim=2,5=0.

rA
Ld

Animation disponible sur botafogo.saitis.net/analyse-A

Exemple 2.26. Résoudre en = € R I'inéquation,

m2$—m—4x<2,

en fonction du parametre m € R.

On cherche a isoler z dans I'inéquation (m? — 4)z < m + 2. Discussion en fonction du coeffi-
cient devantle z :
e Casm?—4= (m+2)(m—2)>0:Cecicorrespond am €] — oo, —2[U]2, +o0], pour
lesquels I'équation devient

m+ 2 1

TSmy2)(m—2) m-2’

d’oﬂS:}—oo, ﬁ}
e Cas m? — 4 = 0: Deux possibilités, m € {—2,2}.
— Sim = —2,0x < 0 et tout z est solution, d’out S = R.

— Sim =2, 0x < 4 et tout z est solution, d’ot1 S = R.
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e Casm? —4 = (m+2)(m—2) < 0:Ceci correspond a m €] — 2, 2|, pour lesquels

I’équation devient
m+ 2 1

TP mi)m-2) m-2

JPRES _ 1
dou S =[5, +ool.
En résumé,

e sime]—o0, —2[U]2, 400[, S = | —00, =5 ]
'ﬁmE]QQ[S an+m[
e sime {-2,2}, S

Exemple 2.27. Résolvons I'inéquation

2r +m
T

>1, Dy=R

En soustrayant 1 de chaque c6té et en simplifiant, celle-ci devient

xr+m

= 0.

T

On résout une telle inégalité en établissant un tableau de signes. On voit que le numérateur
(z) change de signe en 0, et le numérateur change de signe en —m. On doit donc prendre
garde a séparer les cas.

1. Sim < 0:Dans ce cas, —m > 0, et le tableau des signes est

x 0 —m
r+m|{— — — 0 +
x - 0 + + +
dmor - 0+
L’ensemble solution est donc S =| — oo, 0[U[—m, +o0].

2. Sim = 0: Dans ce cas, I'inéquation est 7 > 0, dont I'ensemble solution est S = R*.

3. Sim > 0:Dans ce cas, —m < 0, et le tableau des signes est

x -m 0
r+m|— 0 + + +
x - = — 0 +
sl 00—
L'ensemble solution est donc S =] — oo, —m|UJ0, +o0].

On a donc
| — 00, 0[U[—m, +oo[ sim <0,
S=qR* sim=0,
| = 00, —m|U]0, 400 sim > 0.

2:c+m

Sur I’animation ci-dessous, on vérifie que le graphe de la fonction est au-dessus de la

droite horizontale a hauteur 1 sur les intervalles calculés :
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Animation disponible sur botafogo.saitis.net/analyse-A

2.4 Equations et inéquations du deuxiéme degré

Définition 2.28. Soient a, b, c € R, avec a # 0. On appelle
p(z) =az® + bz +c
un trindme du deuxiéme degré en z, et
p(z) =0
est une équation quadratique en x € R.

Avant d’étudier les solutions d"une équation quadratique, remarquons que 1’on peut écrire,
puisque a # 0,

p(z) = ax® +bx +c
b
:a<x2+2—x—|—f)
2a a

=a x2+2£x—|— i — v —l—E
B 2¢"  (2a)?2  (20)%  a

n b\? b —4dac
T+ —] ———1 .
2a 42

(Dans la troisieme ligne, on a complété le carré.) Si b* — 4ac est positif, ’expression entre cro-
chets peut étre factorisée.

=a

Définition 2.29. A = b? — 4ac est appelé le discriminant du trindme p(z) = az® + bx + ¢,
a,b,c € R, a # 0.

Définition 2.30. Sib =20/, A’ = I/* — ac est appelé le discriminant réduit du trindme p(z) =
ax? + 2z +c,a,b,c€R, a#0.
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2.4. Equations et inéquations du deuxieme degré

2.4.1 Signe du trinbme

* Cas A > 0:0On peut écrire A = VA, et donc

36

sont les deux racines (ou zéros) distinctes de p(z). Remarquons que z_ < z.

Donc dans le cas A > 0, I’équation p(z) = 0 possede deux solutions distinctes : S =

{J},, er}‘

—b £ VA
Remarque 2.31.Sib =20, x4 = —
Etudions encore le signe de p(z) :
sgn(p(r)) = sgn(a) - sgn(z — ) - sgn(z — ).

Tableau des signes pour (z —z_)(x — x4) :

x T_ Ty
T —T_ - 0 + + +
T — T4 - - = 0 +
(x—z_)(z—24)|+ 0O — 0 +
Ainsi,
— sgn(p(z)) = sgn(a) pour tout z € | — 0o, z_ U]z, +00]
— sgn(p(x)) = —sgn(a) pour tout z €jz_, x|

Cas A = 0: Dans ce cas,
b 2
p(z) =a (m—{—%) :
Les deux racines de p(z) sont confondues,

b

T T Ty

et la discussion du signe de p(z) est immédiate :

sgn(p(z)) =sgn(a) VzeR\{-2%

e Cas A < 0:Dans ce cas, p(r) n’a pas de racine réelle, et

sgn(p(z)) =sgn(a) VxeR.
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Remarque 2.32. La discussion du signe de p(z) est la méme avec A'. o

Remarque 2.33. Si z_ et z sont deux racines (distinctes ou confondues) du trindme p(z) =
azr?® + bx + ¢, alors

b
r_+ryp=—-—
a
c
T Ty = —.
a
On appelle ces dernieres les formules de Viete. o

2.4.2 Représentation graphique

Considérons le graphe de p, c’est-a-dire 1’ensemble des points (z,y) du plan vérifiant y =
p(x) = ax? +bx +c:
I {(z,y) eR? : z € R, y=p(a)}.

Puisque I’on suppose a # 0, on appelle I' une parabole.

En utilisant la factorisation de p(x) obtenue plus haut,

B b A
y=a\r 2a 4a’

on conclut que I s’obtient a partir de la parabole élémentaire y = 2 par
1. translation horizontale (selon ) de —%
2. amplification (multiplication) verticale par a
3. translation verticale (selon y) de —ﬁ.

Ceci permet d’en déduire les propriétés suivantes :

1. T possede un axe de symétrie, vertical, d’équation z = — .

2. Les coordonnées du sommet (z,, y) de I" sont

b A
Ts = Ys = 1a

3. Les intersections de I" avec I’axe des = sont données par les racines (s’il y en a) de p(z).

4. Sia > 0:T est tournée vers le haut (les branches infinies vont vers les y positifs) et
p(z) admet un minimum.

A>0 A=0 A<0
~5 o
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5. Sia < 0:T est tournée vers le bas (les branches infinies vont vers les y négatifs) et
p(r) admet un maximum.

b A
/‘\‘ (_E._E)
x T T

|
A>0 A=0 A <0

Remarque 2.34. L’abscisse du sommet est bien la moyenne des racines :

x_x_—l—m+_—b/a_ b
o2 2 24

2.4.3 Exemples avec parametre

Exemple 2.35. Résoudre en 2 € R I'inéquation suivante, en fonction du parametre m € R :
2 —1<mz—1),
En regroupant et en factorisant, I’équation devient
(z—1D(z+1)—mx—-1)<0 < (z—1)(z+1-—m)<O0.

Les racines du trindme sont 1 et m — 1.

e Sil<m—-1lem>25=[1,m—-1].
e Sil=m—-1e&m=2,5={1}.
e Sil>m—-1lem<2,S=[m-1,1].
En résumé,
[m—1,1] sim<2
S =< {1} sim =2
[1,m—1] sim>2.

Si on interprete I'ensemble des solutions de z* — 1 < m(z — 1) comme étant ’ensemble des
abscisses z pour lesquelles la parabole y = 2? — 1 est au-dessous de la droite y = m(z — 1),
on peut vérifier sur I'animation ci-dessous que notre ensemble solution est le bon :
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Animation disponible sur botafogo.saitis.net/analyse-A

Exemple 2.36. Soit p le trindme
1
p(z) :kx2—2(k+1)x+5—g.

Déterminer les valeurs du parametre £ € R* pour lesquelles la parabole I' (graphe de p) soit
située strictement sous 'axe Oz.

Pour que I' soit entierement sous Oz, il faut que p(z) < 0 pour tout x € R. Cela signifie :
1. Pas d’intersection avec Oz : A < 0
2. T tournée vers le bas : coefficient devant 2> négatif, k < 0.

Figure d’étude :

Regardons ce que ces conditions impliquent sur k. D’abord, si on tient compte de la présence
de k dans les coefficients du trindme,
A=(=2(k+1))*—4k(5— 1)
= 4(k* — 3k + 2)
=4(k—-1)(k—2)

Les valeurs de k qui garantissent A < 0 (premiére condition ci-dessus) sont donc % €1, 2[.
Ensuite, on a vu que la deuxiéme condition impose k£ < 0. Comme on ne doit garder que

les k qui satisfont aux deux conditions en méme temps, k €]1,2[ et £ < 0. Comme ces deux
conditions sont incompatibles, on conclut qu’il n’y a aucun k qui satisfait a la condition
requise.

Effectivement, on vérifie sur I'animation ci-dessous qu’il n’y a pas de valeurs de k£ < 0 pour
lesquelles la parabole p(z) = ka? — 2(k + 1)z + 5 — | est entierement sous l'axe O, :

NumChap: chap-algebre-elementaire, Derniére compilation: 2025-05-18 23:51:26+02:00. (Version Web:botafogo.saitis.net/analyse-2) 39


botafogo.saitis.net/analyse-A
botafogo.saitis.net/analyse-A

2.4. Equations et inéquations du deuxieme degré

Animation disponible sur botafogo.saitis.net/analyse-A

(Il y a bien les valeurs de k €]1,2[ pour lesquelles la parabole ne coupe pas Ox, mais ces
valeurs sont positives...) o

Exemple 2.37. Soit p le trindbme

2

p(x) =mz® —mz— (m+1).

Déterminer les valeurs de m € R* pour lesquelles p(z) possede deux racines distinctes x_ et
xy Vérifiantz_ <1 < x,.

Figure d’étude : 1) la parabole doit doit couper Ox en deux points, et 2) x = 1 doit étre entre
ces deux points :

Détaillons les deux conditions ci-dessus.

1. Pour couper Oz en deux points, il faut que A > 0, ot

A = (—m)®>+4m(m +1)
=m(bm+4).

Donc I’ensemble des valeurs de m qui satisfont a la premiére condition est

(S

Se =] —00, =3 [U]0, +o0f
2. Pour que = = 1 se trouve entre les deux racines, il faut que le coefficient de z* soit
opposé au signe de p(1), ou plus simplement que leur produit soit strictement négatif :
m - p(l) < 0. Comme p(1) = m —m — (m+ 1) = —m — 1, la condition sur m est
donc —m(m + 1) < 0. Ainsi, 'ensemble des valeurs de m qui satisfont a la deuxieme
condition est
Sb:] — 00, _1[U]O7 +OO{
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Ainsi, I’ensemble des valeurs de m qui satisfont aux deux conditions en méme temps est
S=5,NS%=]—00, —1[U]0, +00|.

On peut vérifier le résultat sur ’animation ci-dessous :

ra
Ld

Animation disponible sur botafogo.saitis.net/analyse-A

o
2.5 Equations et inéquations avec valeur absolue
Définition 2.38. Soit « € R. La valeur absolue de z, notée |z|, est le réel positif ou nul

x siz=>0

x| = .

-z siz <O0.

Exemples 2.39. e |3]=3
=T =—(-T) =7
o

Lorsque la valeur absolue contient une expression qui dépend d"une variable, on doit étu-
dier le signe de cette expression.

Exemple 2.40.
|2 1 22 —1 siz? —12>0,
xTr — =
—(22—1) siz*-1<0,
! siz €] — oo, —1]U[l, +o0],
—(2*—=1) sixzel—1,1].

Le graphe de la fonction z — |z :
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Be

Animation disponible sur botafogo.saitis.net/analyse-A

Propriété Soient z,y € R. Alors

1. |z >0

2. jz|=0 2=

3. |z|* = 2?

4 Jzl =] —a

5. x =sgn(z) |z|, |z| = sgn(x) x

6. |z| = max(z, —x)

7. —|z| <z < ||

8. |z +y| < |z| + |y| (inégalité triangulaire)
9. |zyl = |zl yl.

2.5.1 L'équation |z| =a

Puisque |z| > 0 pour tout x € R, 1’équation |z| = a, a € R, ne peut clairement pas avoir de so-
lution si a < 0. Ceci s’interprete graphiquement, en voyant que le graphe de |z| n’intersecte
pas une droite horizontale a hauteur a < 0:

y y = |z
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Théoreme 2.41. Soit a € R. On a I'équivalence

r=a
lz] =a & a>0et Sou
T=—a.

Graphiquement, le graphe de |z| intersecte une droite horizontale en deux points lorsque

celle-ci est 4 hauteur a > 0 :

Y y = |z|

En résumé, ’ensemble solution S de I'équation |z| = a est donné par

1. S={—a,a}sia >0,
2. S=0sia<0.

2.5.2 L'inéquation |z| < a

Théoreme 2.42. Soit a € R. On a I'équivalence

r<a
lz] < a & —a<z<a & et
T = —a
y y = |z|
r<a a —a
| I 2 I
l l
_____ Vasusneenunghanirmin £ St
e a a<0
9=

Sia < 0, alors il n’existe aucun x qui satisfait a la fois < a < 0et x > —a > 0.Iln'y a donc
pas besoin d’inclure de condition de positivité (“a > 0”) dans la résolution de I'inéquation.

En résumé, ’ensemble solution de 'inéquation |z| < a est

43
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1. S=[—a,a]sia >0,
2. S=0sia<0.

2.5.3 L’inéquation |z| > a

L’équation |z| > a, a € R, admet évidemment tout x € R comme solution si ¢ < 0, une
valeur absolue étant toujours plus grande qu'un nombre négatif. Il n’est donc pas nécessaire
de discuter le signe de a!

Théoreme 2.43. Soit a € R. On a I'équivalence
|CL’| = a <~ ou

Similairement a 1'inéquation précédente, on constate qu’il n'y a pas besoin de discuter du
signe de a. En effet, a < 0 signifie que 1'inéquation admet une infinité de solutions, puisque
dans ce cas

] — 00, —a] U [a, +oo[=R.

y y = |z
=t
= 1)
1 P oS,
| L '?:.

En résumé, ’ensemble solution S de I'équation |z| > a est donné par
1. S =] —o00,—a|U][a,+oo[sia >0,
2. S=Rsia<0.

2.54 FEquations a valeurs absolues

L’équivalence vue plus haut,

lz] =a & a>0et Qou
r=—a.

peut se généraliser au cas ou = et a deviennent des fonctions.

Soient f et g deux fonctions réelles. Pour x € Daegs N Daerg = Daer, on a I’équivalence

f(x) = g(x)
|f(z)| = g(z) & glx) >0 et {ou
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Remarque 2.44. On ne discute que le signe de g(z) (condition de positivité), et pas celui de
f(z). On doit donc résoudre I'équation | f(x)| = g(x) sur Dges N Dpos, Ol

Dpos = {JZ € Dyt | g(l’) = O}

Exemple 2.45. Résolvons, en = € R, I'équation
2> 422 —5| =2 +1.
Sur Dye = R, I'équation |z? 4 2z — 5| = x + 1 est équivalente a

P +2x—-5=r+1 (1)
a:—i—l}O et ou
242 —-5=—(x+1). (2)

La condition de positivité z + 1 > 0 donne Dpos = [—1, 4-00].
1. Résolvons (1) sur Dges N Dpos = [—1, +00] :

??+r—-6=0 & (x+3)(xz—2)=0,

d’ou S; = {2}. (On ne garde pas —3, car hors du domaine de positivité : —3 ¢
2. Résolvons (2) sur Dges N Dpos :

2?43 —4=0 & (r+4)(z—1)=0,

d’ott Sy = {1}. (On ne garde pas —4, car hors du domaine de positivité : —4 ¢
[—1,+00].)
En résumé, S = S, U Sy = {1,2}. o
Exemple 2.46. Résolvons en x € R I'équation

|t —3m+4|=x+m,

ol le parametre m € R.
Sur Dy = R, la condition de positivité est

Dpos = {z |z +m = 0} = [-m, +o0f,

ce qui donne Dygs N Dpos = [—m, +-00].

Ensuite, sur Dy N Dpos, On résout [z — 3m + 4 = x + m, qui s’exprime par

r—3m+4d=x+m (1)
ou

r—3m+4=—zx—m. (2)
1. Résolvons (1) sur Dggr N Dpos
r—3m+4d=x+m & 0-z2=4(m—1)

On discute les cas :
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* Sim =1 alors I'équation devient 0 - z = 0, qui est satisfaite pour tout z € R, donc
en ne gardant que ce qui est dans Dgsr N Dpos, On obtient S} = [—1, +o0].
e Sim # 1 alors ’équation devient

0-z=4(m—-1),
——
£0

qui n’a aucune solution, et donc S; = 0.

2. Résolvons ensuite (2) sur Dger N Dpos,
r—3m+4d=—-xr—m & r=(m-—2),

dont la solution est x = m — 2. Mais on ne veut garder cette solution que si elle
appartient a Dger N Dpos, ¢'est-a-dire si

m—2 € [—m,+0o0o] m—2>=-m

=
= m>=1

Onadonc:
e Sim > 1, alors Sy = {m — 2}.
e Sim < 1,alors Sy = 0.
Finalement on résume la discussion en prenant I’ensemble solution S = S; U S; en fonction
dem:
0 sim<1,
S=<¢[-1,40[ sim=1,
{m—-2} sim>1.

On observe ces solutions sur I’animation ci-dessous. En bleu, ’ensemble des solutions x € S,
donnant I'ensemble des points ot le graphe de |« — m + 4| coupe la droite z + m :

m=1.4...
rA

Animation disponible sur botafogo.saitis.net/analyse-A
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2.5.5 Inéquations |f(z)| < g(z)

On va ensuite généraliser I'inéquation
lz] < a & et

au cas ou x et a sont remplacés par des fonctions de z.

Soient f et g deux fonctions réelles. Pour x € Daegs N Daerg = Daer, on a I’équivalence

fz) < glx)
f@) <g(x) & et
f(x) = —g(@).

Comme déja expliqué, il n’est pas nécessaire de discuter du signe de g(z).

Remarque 2.47. L’équivalence reste vraie en remplagant les inégalités larges par les inégali-
tés strictes. ¢

Exemple 2.48. Résolvons, en = € R, I'inéquation

|z| + :cT—l <0.
Sur Dgs = R,
S T < % (1)
lz] < — 5 = et .
r> = (2)
1. Résolvons (1) sur Dy : 3z < 1 et donc S; =] — o0, %[
2. Résolvons (2) sur Dggs : @ > —1, et donc Sy =] — 1, +00].

En conclusion,

S=5nS,=]—1,1.

Exemple 2.49. Résolvons, en = € R, I'inéquation
|t —m|—1<2x,

ol le parametre m € R.

Sur Ddéf = R,
r—m<2r+1 (1)
|t —m| <2z +1 & et
r—m>-2r—1. (2)
1. Résolvons (1) sur Dges: —m — 1 < z,d’ou S; =] —m — 1,40 |.

2. Résolvons (2) sur Dggs: 3x > m —1,d’ou Sy = } m7717 400 [
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Pour pouvoir conclure, il faut calculer S = S; N S,. Or cette intersection va dépendre de m,
et pour le comprendre, il faut quel intervalles, S; ou S;, a son extrémité gauche plus petite
que celle de 'autre. On peut donc par exemple regarder quand S; a son extrémité gauche
inférieure a celle de S :

m— 1
3 2

-m—-12=

On peut donc conclure que

e sim< —%alors S=5NS% =5 =]-—m-—1,+00],

o sim > —1,alors S =5, NS =5, = |21 4o0].
Graphiquement, ’animation ci-dessous permet de vérifier que 1’ensemble S décrit bien les
points pour lesquels le graphe de y = |z — m| — 1 est au-dessous de la droite y = 2z :

—-m—1
m=—1.6...
Ll
Animation disponible sur botafogo.saitis.net/analyse-A
o
2.5.6 Inéquations |f(z)| > g(x)
On va ensuite généraliser I'inéquation
T =a
\x! = a <~ ou
< —a

au cas ou z et a sont remplacés par des fonctions de z.

Soient f et g deux fonctions réelles. Pour x € Dgsss N Dyerg = Dyer, 0n a I'équivalence

f@)=9(x) ou

Remarque 2.50. L’équivalence reste vraie en remplagant les inégalités larges par les inégali-
tés strictes. o
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2.6. Equations et inéquations avec racines

Exemple 2.51. Résolvons, en = € R, I'inéquation

2 — 4
z—2> "=
Sur Dg¢ = R*, on a
_ o~ 2e-4
9% — 4 r—2> (1)
|z —2| > —= ou
r—2< -4 (2)
1. Résolvons (1) sur Dy :
20 — 4 —2)?
r—2— a >0 <= (v ) >0,
x x
d’ou 51 =R%L\ {2}
2. Résolvons (2) sur Dy :
20— 4 -2 2
T —2+4+ ’ <0 — (z )z + )<O
x
Tableau des signes :
x —2 0 2
x—2 - 0 4+ + + + +
T+ 2 R |
x - - — 0 + + +
(x—=2)(x+2)/z|— 0 + || — 0 +
D'ou Sy =] — 00, —2[U]0, 2.
On a ainsi comme ensemble solution :
S = Sl U SQ :] — 00, —Q[U]O,Q[U}Z—FOO[

2.6 Equations et inéquations avec racines

2.6.1 Racines positives (ou arithmétiques)

Définition 2.52. Soient a € R et n € N*. Le réel positif = vérifiant

Va
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La racine 2°™¢, appelée racine carrée, est notée /a (au lieu de /a).

Exemple 2.53. e 4 est racine cubique de 64, puisque 4% = 64, donc V64 = 4,

*V9=3,
* /—4n’est pas défini.

Propriété Soienta,b € R, m,n € N*.
(

1. (/a)" = a.

2. {am = (y/a)™.
3. Vab = /a/b.
L YVa=

Démonstration. 1.estjuste une reformulation de la définition. Les autres propriétés découlent
des propriétés des puissances entieres.
* Sion pose x = ({/a)™, alors

ce qui signifie bien que = = {/a™.
* Sion pose r = {/a/b, alors
" = (C/E%)n = (%)n (\771_9)” =ab,

ce qui signifie bien que z = /ab.
e Sionposex = 3/ {/a,alors

o= (Yea) = (§fvar) - war -,

ce qui signifie bien que z = "{/a.

O]
Remarque 2.54. Les propriétés usuelles des puissances restent valables en posant
Var = a7 a€ RY,p€Z,qec N".
o

V3z2 = |z|V3. o

Exemple 2.55. 75 =

1
2.6.2 Racines réelles

Définition 2.56. Soient ¢ € R et n € N*. Un nombre z € R est une racine n¢ réelle de a si =
vérifie z" = a.

Exemples 2.57. * 2 et —2 sont racines carrées réelles de 4,
* —3est racine cubique réelle de —27.
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Discussion graphique des solutions en z a 1’équation 2" = a.
* n pair

Le graphe admet Oy comme axe de symétrie, et les solutions de 1’équation 2" = a

sont
— sia > 0: 2 racines distinctes,

— sia = 0:racine double, S = {0}

— sia < 0: pas de racine, S = ()
* n impair

a1

Le graphe admet l'origine (0,0) comme centre de symétrie, et quel que soit a € R, la

solution de 2" = a est toujours unique : S = {/a}.

Dans le cas d’une puissance impaire, on peut donc étendre la racine n®™® aux réels négatifs :

Définition 2.58. Sia € R_ et n € N* est impair, on définit {/a := —/—a.

Cette derniere donne bien la racine n®*™ négative de a, puisque

(—V=a)"=—V¥—=d" = —(-a)=a.

Exemples 2.59. e 74 =16 admet 2 racines réelles 1 = v 16 =2 et vy = —v/16 = —2

e 23 + 8 = 0 admet l'unique solution z = /-8 = —2.

Conséquences :
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e Soit a € R*. Alors

W _ {CL S1 n 1mpair,

la| sin pair.

En particulier,
Va2 =la| VaeR

* Sin est pair, et si a et b ont le méme signe, alors
a=b<=a" ="
Sin est pair, et si a et b sont positifs, alors
a<b<=a"<b"
* Sin impair, alors pour tout a,b € R, on a

a="b — a” =b",
a<b — a" <b".
En particulier, et sera utilisé pour résoudre des équations a racines carrées :
a* = b> & a = bsi et seulement si a et b sont de méme signes
et

a® < bV* & a < bsi et seulement si a et b sont positifs ou nuls.

2.6.3 Equations avec racine carrée

Commengons par considérer une équation du type
f(z) =g(x), x € Dygs .
La racine carrée étant définie seulement sur les positifs, on a
Dg4es = {x € R| f(x) et g(x) sont définis, et f(x) > 0}.

Pour résoudre I'équation, on aimerait « élever au carré »pour ne plus avoir de racine. Mais
puisque 1’équivalence

@) =g(x) & i@ =g@)?

n’est vraie que si v/ f(x) et g(z) sont de méme signes, et puisque / f(z), lorsqu’il est bien
défini, est toujours positif, on doit donc introduire une condition de positivité :

Dpos = {z € R| g(x) > 0}.
On adonc:

Théoreme 2.60. Soient f et g deux fonctions réelles. Pour x € Dy, on a 'équivalence
flx)=g(x) <= glx)=0et f(z) = g*(z).
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Exemple 2.61. Résolvons I'équation
Vat—3r+6=4r—6.

Comme le discriminant de 22 — 3z + 6 est A = —15 < 0 et comme le coefficient devant 22 est
1 (strictement positif), on a que

Dyt ={r €R|2* —-32+6 >0} =R.
Ecrivons la condition de positivité : 4z — 6 > 0 < z > 2, d’ou
Dy = [§+20].

Sous la condition de positivité, on peut élever les deux membres au carré. Sur Dpes N Dygy,
I’équation de départ est donc équivalente a

2? — 3z + 6 = (40 — 6)*
= 162> — 48z + 36

En regroupant les termes de mémes degrés, celle-ci devient

1522 — 452 +30=0 < 22—3x+2=0
& (r—1)(z—-2)=0
< rx=1loux=2.
Comme 1 ¢ Dps, on conclut : S = {2}.

Remarquons qu’en effet, © = 1 n’est pas solution puisque

VI2—3.1+6#4-1-6
\ ~ s N —

=2 =2
o

Exemple 2.62. Résolvons I'équation

ver+m?2=x+m,
en fonction du parameétre réel m.
D’abord,
Dyt ={r €R|z+m? >0} = [—mZ,—i—oo[ ,
et

Dpos = {z € R|z +m = 0} = [-m, +00] .
Sur Dges N Dpos, 'équation de départ est équivalente a

r+m? = (z+m)?

= 2% + 2mzx + m?
Si on regroupe les termes de mémes degrés,

2?4+ 2m—-1z=0 < wz(z+2m—-1)=0
& x=0oux=1-2m

Voyons maintenant, en fonction de m, si ces nombres sont effectivement solutions de 1'équa-
tion, c’est-a-dire appartiennent a Dger N Dpos. Pour la premiere,
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¢ )€ Dyt <— 02—7712 <~ meR.
® 0€ Dpos <= 0= -—m < m 2> 0.
Donc 0 est solution si et seulement si m > 0.
* 1-2meDyy <= 1-2m>-m? < (1-m)?>0 < meR.
* 1-2me€ Dpps <= 1-2m=2-m < m< L
Donc 1 — 2m est solution si et seulement si m < 1.

En résumé,
{1-2m} sim <0,
S=<{0,1-2m} simel0,1],
{0} sim>1.
On observe la dépendance de S sur I’animation ci-dessous, en regardant ot la courbe y =
V& +m? coupe la droite y = = + m, en fonction de m :

1—2m

ra
Ld

Animation disponible sur botafogo.saitis.net/analyse-A

2.6.4 Inéquations avec racine carrée

Tout comme dans une équation, on cherchera dans une inéquation contenant une racine
carrée a « élever au carré »pour se débarrasser de la racine. Il convient cependant de prendre
quelques précautions, I'équivalence a < b & a®> < b? n’étant vraie que pour a,b > 0. Le
domaine de définition est le méme que dans le cas des équations.

Théoreme 2.63. Soient f et g deux fonctions réelles. Pour x € Dy, on a les équivalences

En effet, dans le premier cas, si g(z) < 0, I'inéquation ne peut avoir de solution puisque

f(x) est toujours positif. Ainsi, si la condition de positivité g(z) > 0 est satisfaite, les
deux membres de I'inéquation sont positifs et la mise au carré conduit au méme ensemble
solution.
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Exemple 2.64. Résolvons

V6 —ax <3+ 2.

D’abord, Dyt = {x € R|6 — x > 0} =] — 00, 6]. On a dong, sur Dge, I’équivalence
VE—2<3+2r <= 3+20>0,et6—x<(3+22)2.

La condition de positivité z > —3 donne Dpos = [—32, 4+00[. Sur Dpos N Daes = [—3, 6], on peut
maintenant résoudre

6—1<9+120+42> < 4224+132+3>0
& (4rx+1)(2z+3)=0
&z €] —o00, =3 U[—3,+oo[.

En ne gardant que les éléments qui sont dans Dpes N Dyss = [—%, 6],onadonc: S = [ —

Théoreme 2.65. Soient f et g deux fonctions réelles. Pour x € D, on a les équivalences

g(xz) = 0et f(z) > g*(x)

En effet, si z est tel que g(x) < 0, alors I'inéquation est vérifiée puisque /f(z) > 0. C'est
donc une partie de la solution. D'un autre coté, pour les z tels que g(z) > 0les deux membres
de I'inéquation sont positifs et la mise au carré conduit au méme ensemble solution, sous la
restriction g(x) > 0. C’est ’autre partie de la solution.

Exemple 2.66. Résolvons I'inéquation

V—rl—-z+6=>z+1.

D’abord,
Dages={z €R| —2® —2+6 >0} =[-3,2].

Sur Dy, 0n a

V—al—z+6>c+1
r+1<0 (1)
<~ ou

r+1>20 et —2?—z+6>(x+1)2%. (2)

Les solutions de (1) sont + < —1, et en ne gardant que celles dans Dge, on obtient S; =
(-3, —1].
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Pour résoudre (2), on peut inclure la condition de positivité, z > —1 dans Dyos = [—1, 400,
puis résoudre

2 —rx4+6>22+2204+1 & 222+3x-5<0
& (2z45)(z—1)<0
& rel-21]

Ainsi, en ne gardant que les = qui sont aussi dans Dg¢s N Dpos = [—1,2], ona Sy = [—1,1].

Pour conclure: S = S; U Sy = [-3, 1].
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