
Chapitre 2

Algèbre élémentaire

2.1 Calcul dans R
Propriété (R,+, ·) est un corps commutatif qui satisfait aux règles de calcul usuel. Soient

a, b, c ∈ R.

1. a+ b = b+ a (+ est commutative)

2. a+ (b+ c) = (a+ b) + c (+ est associative)

3. a+ 0 = 0 + a = a ( 0 est l’élément neutre pour +)

4. a+ (−a) = 0 (élément opposé pour +)

5. a · b = b · a (· est commutative)

6. a · (b · c) = (a · b) · c (· est associative)

7. a · 1 = 1 · a = a ( 1 est l’élément neutre pour ·)
8. a · 1

a
= 1 (a ̸= 0) (élément inverse pour ·)

9. a · (b+ c) = a · b+ a · c (distributivité mixte)

Définition 2.1.

R+ = {a ∈ R | a ⩾ 0} ,
R− = {a ∈ R | a ⩽ 0} .

Propriété

1. La somme de deux nombres positifs est un nombre positif : ∀a, b ∈ R+, a+ b ∈ R+.

2. Soient x, y, a ∈ R. x = y ⇐⇒ x+ a = y + a.

3. Soient x, y, a ∈ R. x ⩽ y ⇐⇒ x+ a ⩽ y + a.

4. Soient a, b, c ∈ R. a ⩽ b et b ⩽ c =⇒ a ⩽ c. La réciproque est fausse.

5. Soient x, y, a, b ∈ R. x ⩽ y et a ⩽ b =⇒ x+ a ⩽ y + b. La réciproque est fausse.

6. ∀ a, b ∈ R+, ab ∈ R+.

7. Soient x, y, a ∈ R∗. x = y ⇐⇒ ax = ay.

8. Soient a, b ∈ R. ab = 0 ⇐⇒ a = 0 ou b = 0.

9. Soient x, y, a ∈ R. x ⩾ y et a > 0 =⇒ ax ⩾ ay.
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2.1. Calcul dans R

10. Soient x, y, a ∈ R. x ⩾ y et a < 0 =⇒ ax ⩽ ay. Attention au changement du sens
de l’inégalité !

Illustration : si x ∈ [2, 5] et si y ∈ [1, 4], que dire de x− y ?
• Un calcul faux :

2 ⩽ x ⩽ 5
1 ⩽ y ⩽ 4

2− 1 = 1 ⩽ x− y ⩽ 1 = 5− 4

Pas de soustraction terme à terme!
• Un calcul juste : 1 ⩽ y ⩽ 4 ⇔ −1 ⩾ −y ⩾ −4 (attention au changement du sens des

inégalités !)
2 ⩽ x ⩽ 5

−4 ⩽ −y ⩽ −1
2− 4 = −2 ⩽ x− y ⩽ 4 = 5− 1

Ainsi x− y ∈ [−2, 4 ].

Définition 2.2. Représentation décimale. Un réel positif x ∈ R+ peut toujours s’écrire sous
la forme

x = n+ r , n ∈ N, r ∈ [ 0, 1[ .

n et r sont respectivement la partie entière et la partie décimale de x. Comme 0 ⩽ r < 1, il
existe des dk ∈ {0, . . . , 9}, k ∈ N∗ tels que

r = d110
−1 + d210

−2 + · · · =
∞∑
k=1

dk10
−k .

Les dk sont appelées les décimales de x et on donne x sous sa représentation décimale

x : D(x) = n.d1d2 . . .

Pour x < 0, on définit D(x) = −D(−x).

Exemple 2.3. 17
4
= 4.25, −24

11
= −2.18, π = 3.14159 . . ., 0.9 = 1. ⋄

Théorème 2.4. Soit x ∈ R. On a l’équivalence

x ∈ Q ⇐⇒ D(x) est soit finie, soit périodique.

Définition 2.5. Soient a ∈ R et n ∈ N∗. La puissance n-ième de a, notée an, est le nombre

an = a · a · . . . · a︸ ︷︷ ︸
n facteurs

.

Exemple 2.6. • (−2)3 = (−2)(−2)(−2) = −8
• (1

3
)2 = 1

3
1
3
= 1

9

• 04 = 0.
⋄

Propriété Soient a, b ∈ R, m,n ∈ N∗.
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2.1. Calcul dans R

1. aman = am+n

2. (am)n = amn

3. (ab)n = anbn

Généralisation aux exposants négatifs ou nuls :

Définition 2.7. Soient a ∈ R∗ et n ∈ Z. Alors

a−n =
1

an
a0 = 1 .

Remarque 2.8. On adopte la convention 00 = 1. ⋄
Remarque 2.9. Les propriétés 1 à 3 restent valables pour m,n ∈ Z. ⋄

2.1.1 Fonction signe

Définition 2.10. Soit x ∈ R∗. Le signe de x , noté sgn(x), est le nombre

sgn(x)

{
+1 si x > 0

−1 si x < 0 .

Remarque 2.11. La fonction signe est parfois définie en x = 0 par sgn(0) = 0 . ⋄

Propriété Soient a, b ∈ R∗.

1. sgn(ab) = sgn(a) sgn(b) .

2. sgn
(
a
b

)
= sgn(ab) .

Exemple 2.12. Etudier le signe de l’expression

f(x) =
2(x+ 1)(x− 2)

(x+ 2)(3− x)
.

• Ddéf = R \ {−2, 3}
• Tableau des signes (remarque : le facteur 2 est strictement positif et ne joue pas de

rôle)
x −2 −1 2 3

x+ 1 − − − 0 + + + + +
x− 2 − − − − − 0 + + +
x+ 2 − 0 + + + + + + +
3− x + + + + + + + 0 −
f(x) − ∥ + 0 − 0 + ∥ −

Ainsi
• f(x) < 0 si x ∈ ]−∞ , −2 [ ∪ ]−1 , 2 [ ∪ ] 3 , +∞[
• f(x) = 0 si x ∈ {−1, 2}
• f(x) > 0 si x ∈ ]−2 , −1 [ ∪ ] 2 , 3 [ .

⋄
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2.2. Généralités sur les équations

2.1.2 Identités algébriques

Propriété Identités remarquables. Soient a, b ∈ R.

1. (a± b)2 = a2 ± 2ab+ a2

2. (a± b)3 = a3 ± 3a2b+ 3ab2 ± b3

3. a2 − b2 = (a− b)(a+ b). Ici, (a+ b) est l’expression conjuguée de (a− b).

4. a3−b3 = (a−b)(a2+ab+b2). Ici, (a2+ab+b2) est l’expression conjuguée de (a−b).

5. an − bn = (a− b)(an−1 + an−2b+ · · ·+ an−kbk−1 + · · ·+ abn−2 + bn−1)

Exemple 2.13. Amplification par l’expression conjuguée

1√
2− 1

=
1√
2− 1

√
2 + 1√
2 + 1

=

√
2 + 1

2− 1
=

√
2 + 1 .

⋄
Exemple 2.14. Amplification par l’expression conjuguée

1
3
√
x+ 1

=
1

3
√
x+ 1

3
√
x
2 − 3

√
x+ 1

3
√
x
2 − 3

√
x+ 1

=
3
√
x2 − 3

√
x+ 1

x+ 1
=

3
√
x2 − 3

√
x+ 1

x+ 1
(x ̸= −1) .

⋄

2.2 Généralités sur les équations

Dans ce chapitre on commence à s’intéresser à la résolution d’équations.

Si f et g sont deux fonctions définies sur Ddéf ⊂ R, on pourra considérer l’équation

f(x) = g(x) ,

ou l’inéquation stricte
f(x) < g(x) ,

ou l’inéquation large
f(x) ⩽ g(x) .

Résoudre l’équation (ou l’inéquation) (en x), c’est chercher l’ensemble de toutes les valeurs de x
vérifiant l’équation (ou l’inéquation) ; on l’appellera ensemble solution :

S = {x ∈ Ddéf |x vérifie l’équation (ou l’inéquation)} .

Remarque 2.15. Dans ce cours, on ne considérera que des (in-)équations où f, g contiennent
• des polynômes
• des valeurs absolues
• des fonctions racines
• des fonctions trigonométriques ou trigonométriques réciproques
• des fonctions logarithmiques ou exponentielles

⋄
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2.2. Généralités sur les équations

Dans la recherche de S, il s’agit de passer de la propriété qui définit les solutions à partir de
l’équation de départ,

E : x est solution de f(x) = g(x)

à celle, équivalente, qui rend explicite l’ensemble solution :

Esol : x ∈ S où S est l’ensemble solution.

Pour ce faire, on passe par une suite d’étapes intermédiaires équivalentes,

E ⇔ E1 ⇔ E2 ⇔ · · · ⇔ En ⇔ Esol ,

où les Ei sont des propriétés impliquant des équations intermédiaires de plus en plus en
simples.

Pour aboutir à un ensemble de solutions qui soit exactement le même que celui de l’(in-
)équation de départ, chaque équivalence intermédiaire devra contenir une opération qui
assure l’équivalence de l’ensemble solution. Cette opération consistera en général à appli-
quer une fonction h des deux côtés d’une (in-)égalité, celle de départ étant f(x) = g(x) (ou
f(x) < g(x)). Il faudra donc, à chaque étape, s’assurer que ’ensemble des x qui vérifient
l’(in-)équation est le même avant et après l’application de h.

À la première étape par exemple, il faudra s’assurer
• que h est injective dans le cas des équations

f(x) = g(x) ⇔ h
(
f(x)

)
= h

(
g(x)

)
.

• que h est strictement monotone (et donc aussi injective) dans le cas des inéquations

f(x) < g(x) ⇔ h
(
f(x)

)
< h

(
g(x)

)
si strictement croissante,

f(x) < g(x) ⇔ h
(
f(x)

)
> h

(
g(x)

)
si strictement décroissante.

Par exemple, les équations faisant intervenir la fonction racine (voir semaine 5) sont délicates
car l’élévation au carré n’est pas injective sur tout R ou dans le cas d’inéquations avec des
fonctions trigonométriques, ces dernières n’étant pas monotones (et pas injectives non plus).

Voici quelques exemples où il est important de respecter cette équivalence :
Exemple 2.16. Résoudre en x ∈ R, P (x) : 3

√
x ⩽ 2.

• Ddéf = R
• Equivalence : 3

√
x ⩽ 2︸ ︷︷ ︸

P (x): ens. A

⇔ x ⩽ 23 = 8︸ ︷︷ ︸
Q(x): ens. B

. Ainsi,

S = A = B = ]−∞, 8]

⋄
Exemple 2.17. Résoudre en x ∈ R, P (x) : x2 = 64.

• Ddéf = R
• Implication : x2 = 64︸ ︷︷ ︸

P (x): ens. A

⇐ x = 8︸ ︷︷ ︸
Q(x): ens. B

. Il n’y a pas équivalence : des solutions sont per-

dues. En effet, {8} = B ⊂ A = S = {−8, 8}.
⋄
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2.3. Équations et inéquations linéaires

Exemple 2.18. Résoudre en x ∈ R, P (x) :
√
x = −4.

• Ddéf = R+

• Implication :
√
x = −4︸ ︷︷ ︸

P (x): ens. A

⇒ x = 16︸ ︷︷ ︸
Q(x): ens. B

. Il n’y a pas équivalence : on a introduit des « so-

lutions parasites ». En effet, S = ∅ = A ⊂ B = {16}.
⋄

2.2.1 Equations avec paramètres

Pour chacun des types d’(in-)équation présenté dans les chapitres suivants, on considérera
des (in-)équations avec paramètres. Par exemple, pour une équation,

fm(x) = gm(x) ,

où m est le paramètre de l’équation. Dans ce cas, l’ensemble de définition et l’ensemble
solution dépendent a priori de m.

Les équations avec paramètres sont importantes pour plusieurs raisons.

1. Dans la pratique, on cherche à déterminer des solutions en fonction de certains para-
mètres (par exemple en physique, trajectoire en fonction de la vitesse initiale).

2. Parfois, on cherche à résoudre le problème inverse : quels sont les paramètres néces-
saires à l’observation de telle solution particulière.

3. Leur résolution représente un bon exercice méthodologique.

2.3 Équations et inéquations linéaires

2.3.1 Cas général

Définition 2.19. Soient a, b ∈ R.
ax = b

est une équation linéaire en x ∈ R.

On résout facilement une équation linéaire, pour laquelle clairement Ddéf = R, en isolant x.
On peut le faire en prenant garde à distinguer les valeurs de a : a.

• Cas a ̸= 0 : ax = b ⇔ x = b
a
, d’où S =

{
b
a

}
.

• Cas a = 0 : ax = b ⇔ 0x = b. Ainsi,
— si b = 0, tout x est solution, d’où S = R
— si b ̸= 0, aucun x n’est solution, d’où S = ∅.

Définition 2.20. Soient a, b ∈ R.
ax > b

est une inéquation linéaire en x ∈ R.

Ici aussi, Ddéf = R, et on résout également une inéquation linéaire en isolant x, et en prenant
garde à distinguant les valeurs et le signe de a :

• Cas a > 0 : ax > b ⇔ x > b
a
, d’où S =

]
b
a
,+∞

[
.
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2.3. Équations et inéquations linéaires

• Cas a = 0 : ax > b ⇔ 0x > b
— si b < 0, tout x est solution, d’où S = R
— si b ⩾ 0, aucun x n’est solution, d’où S = ∅.

• Cas a < 0 : ax > b ⇔ x < b
a
, d’où S =

]
−∞, b

a

[
.

Un discussion similaire s’adapte pour les inéquations ax ⩾ b, ax < b et ax ⩽ b.

2.3.2 Avec paramètre

Considérons maintenant des équations linéaires avec paramètre.

Un exemple introductif :
Exemple 2.21. Résoudre, pour x ∈ R, par rapport à m ∈ R, l’équation

mx = 1.

On peut résoudre cette équation pour certaines valeurs fixées de m. Par exemple :
1. Si m = 2 : 2x = 1 ⇔ x = 1

2
⇔ S =

{
1
2

}
.

2. Si m = 3 : 3x = 1 ⇔ x = 1
3
⇔ S =

{
1
3

}
.

On constate que l’ensemble solution dépend de m ; il s’agit donc de déterminer, pour toute
valeur de m, l’ensemble des solutions. Formellement, il s’agit de trouver

{les paramètres} → {les ensembles solutions}
m 7→ S = S(m).

Trouvons donc l’ensemble solution de l’équation mx = 1, en fonction de m. Pour commen-
cer, remarquons que le domaine de définition de l’équation ne dépend pas de m : Ddéf = R.
Puis, on cherche à isoler x en prenant garde à éviter la division par zéro.

• Si m = 0, l’équation devient 0 · x = 1 et aucun x n’est solution.
• Si m ̸= 0, l’équation devient x = 1

m
. On a obtenu une équation si simple qu’elle

énonce sa propre solution. Noter que 1
m

est bien défini car m ̸= 0 et 1
m

appartient
naturellement à Ddéf.

Résumons :
• Si m = 0, alors S = ∅.
• Si m ∈ R∗, alors S =

{
1
m

}
.

NumChap: chap-algebre-elementaire, Dernière compilation: 2025-05-18 23:51:26+02:00. (Version Web:botafogo.saitis.net/analyse-A) 31

botafogo.saitis.net/analyse-A


2.3. Équations et inéquations linéaires

Animation disponible sur botafogo.saitis.net/analyse-A

⋄
Remarque 2.22. Attention à ne pas confondre la variable et le paramètre.

• Variable x : c’est l’inconnue, ce que l’on cherche.
• Paramètre m : une donnée, on le connaît (on ne fixe pas de valeur particulière car on

traite toutes ses valeurs possibles).
⋄

Exemple 2.23. Résoudre pour x ∈ R par rapport à m ∈ R l’équation

(m− 2)x = m− 2.

On établit d’abord le domaine de définition : Ddéf = R. Puis on cherche à isoler x en prenant
garde à la division par zéro. L’erreur serait de simplifier par m − 2 et conclure que x = 1
pour tout valeur de m !

• Si m = 2, l’équation devient 0 · x = 0 et tout x est solution.
• Si m ̸= 2, l’équation devient x = 1.

Résumons :
• Si m = 2, alors S = R.
• Si m ∈ R \ {2}, alors S = {1}.

⋄
Exemple 2.24. Résoudre pour x ∈ R par rapport à m ∈ R l’inéquation

m(x− 1) ⩾ (x− 1) .

Ici aussi, Ddf = R. L’erreur à ne pas faire est de diviser par x − 1 et d’obtenir m ⩾ 1 ce qui
ne veut rien dire, car m est un paramètre (que l’on peut choisir) et non pas l’inconnue du
problème. De plus,

• on ne sait pas si x− 1 est nul (x est ce que l’on cherche),
• on ne connaît pas le signe de x− 1 et donc s’il faut intervertir ou non l’inégalité.

On procède en soustrayant x− 1 des deux côtés (ce qui ne change pas l’ensemble solution) :

m(x− 1) ⩾ (x− 1) ⇔ (m− 1)(x− 1) ⩾ 0.

La discussion se fait alors en fonction du coefficient m− 1 :
• Si m = 1, l’équation devient 0 · (x− 1) ⩾ 0 et tous les x sont solutions.
• Si m > 1, alors m− 1 > 0 et l’équation devient x− 1 ⩾ 0 ⇔ x ⩾ 1,
• si m < 1, alors m− 1 < 0 et l’équation devient x− 1 ⩽ 0 ⇔ x ⩽ 1 .

Résumons :
• Si m = 1, S = R.
• Si m > 1, S = [1,+∞[.
• Si m < 1, S =]−∞, 1].

⋄
Exemple 2.25. Résoudre en x ∈ R l’équation,

m2x−m− 4x = 2 ,

en fonction du paramètre m ∈ R.

On cherche à isoler x dans (m2−4)x = m+2. Distinguons les valeurs possibles du coefficient
devant le x :
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2.3. Équations et inéquations linéaires

• Cas m2 − 4 ̸= 0 : Dans ce cas (m + 2)(m− 2) ̸= 0, qui signifie m ̸∈ {−2, 2}, et on peut
diviser des deux côtés par m2 − 4 :

(m2 − 4)x = m+ 2 ⇔ x =
m+ 2

m2 − 4
=

1

m− 2
,

d’où S =
{

1
m−2

}
.

• Cas m2 − 4 = 0 : m ∈ {−2, 2}, qui signifie que
— si m = −2, l’équation devient 0x = 0 et tout x est solution, d’où S = R,
— si m = 2, l’équation devient 0x = 4 et aucun x n’est solution, d’où S = ∅.

Résumons :
• Si m ̸∈ {−2, 2}, S =

{
1

m−2

}
.

• Si m = −2, S = R.
• Si m = 2, S = ∅.

Animation disponible sur botafogo.saitis.net/analyse-A

⋄
Exemple 2.26. Résoudre en x ∈ R l’inéquation,

m2x−m− 4x ⩽ 2 ,

en fonction du paramètre m ∈ R.

On cherche à isoler x dans l’inéquation (m2 − 4)x ⩽ m+ 2. Discussion en fonction du coeffi-
cient devant le x :

• Cas m2 − 4 = (m+2)(m− 2) > 0 : Ceci correspond à m ∈ ]−∞ , −2 [∪ ] 2 , +∞[, pour
lesquels l’équation devient

x ⩽
m+ 2

(m+ 2)(m− 2)
=

1

m− 2
,

d’où S =
]
−∞ , 1

m−2

]
.

• Cas m2 − 4 = 0 : Deux possibilités, m ∈ {−2, 2}.
— Si m = −2, 0x ⩽ 0 et tout x est solution, d’où S = R.
— Si m = 2, 0x ⩽ 4 et tout x est solution, d’où S = R.
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2.3. Équations et inéquations linéaires

• Cas m2 − 4 = (m + 2)(m − 2) < 0 : Ceci correspond à m ∈ ] − 2 , 2 [, pour lesquels
l’équation devient

x ⩾
m+ 2

(m+ 2)(m− 2)
=

1

m− 2
,

d’où S =
[

1
m−2

, +∞
[
.

En résumé,
• si m ∈ ]−∞ , −2 [ ∪ ] 2 , +∞[, S =

]
−∞ , 1

m−2

]
• si m ∈ ]− 2 , 2 [, S =

[
1

m−2
, +∞

[
• si m ∈ {−2, 2}, S = R.

⋄
Exemple 2.27. Résolvons l’inéquation

2x+m

x
⩾ 1 , Ddf = R∗

En soustrayant 1 de chaque côté et en simplifiant, celle-ci devient

x+m

x
⩾ 0 .

On résout une telle inégalité en établissant un tableau de signes. On voit que le numérateur
(x) change de signe en 0, et le numérateur change de signe en −m. On doit donc prendre
garde à séparer les cas.

1. Si m < 0 : Dans ce cas, −m > 0, et le tableau des signes est

x 0 −m
x+m − − − 0 +

x − 0 + + +
x+m
x

+ ∥ − 0 +

L’ensemble solution est donc S =]−∞, 0[∪[−m,+∞[.

2. Si m = 0 : Dans ce cas, l’inéquation est x
x
⩾ 0, dont l’ensemble solution est S = R∗.

3. Si m > 0 : Dans ce cas, −m < 0, et le tableau des signes est

x −m 0
x+m − 0 + + +

x − − − 0 +
x+m
x

+ 0 − ∥ +

L’ensemble solution est donc S =]−∞,−m]∪]0,+∞[.

On a donc

S =


]−∞, 0[∪[−m,+∞[ si m < 0 ,

R∗ si m = 0 ,

]−∞,−m]∪]0,+∞[ si m > 0 .

Sur l’animation ci-dessous, on vérifie que le graphe de la fonction 2x+m
x

est au-dessus de la
droite horizontale à hauteur 1 sur les intervalles calculés :
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Animation disponible sur botafogo.saitis.net/analyse-A

⋄

2.4 Équations et inéquations du deuxième degré

Définition 2.28. Soient a, b, c ∈ R, avec a ̸= 0. On appelle

p(x) = ax2 + bx+ c

un trinôme du deuxième degré en x, et

p(x) = 0

est une équation quadratique en x ∈ R.

Avant d’étudier les solutions d’une équation quadratique, remarquons que l’on peut écrire,
puisque a ̸= 0,

p(x) = ax2 + bx+ c

= a

(
x2 + 2

b

2a
x+

c

a

)
= a

(
x2 + 2

b

2a
x+

b2

(2a)2
− b2

(2a)2
+

c

a

)
= a

[(
x+

b

2a

)2

− b2 − 4ac

4a2

]
.

(Dans la troisième ligne, on a complété le carré.) Si b2 − 4ac est positif, l’expression entre cro-
chets peut être factorisée.

Définition 2.29. ∆ = b2 − 4ac est appelé le discriminant du trinôme p(x) = ax2 + bx + c,
a, b, c ∈ R, a ̸= 0.

Définition 2.30. Si b = 2b′, ∆′ = b′2 − ac est appelé le discriminant réduit du trinôme p(x) =
ax2 + 2b′x+ c, a, b′, c ∈ R, a ̸= 0.
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2.4. Équations et inéquations du deuxième degré

2.4.1 Signe du trinôme

• Cas ∆ > 0 : On peut écrire ∆ =
√
∆

2
, et donc

p(x) = a

(x+
b

2a

)2

−

(√
∆

2a

)2


= a

(
x+

b

2a
−

√
∆

2a

)(
x+

b

2a
+

√
∆

2a

)
= a
(
x− x+

)(
x− x−

)
où

x± =
−b±

√
∆

2a

sont les deux racines (ou zéros) distinctes de p(x). Remarquons que x− < x+.

Donc dans le cas ∆ > 0, l’équation p(x) = 0 possède deux solutions distinctes : S =
{x−, x+}.

Remarque 2.31. Si b = 2b′, x± =
−b′ ±

√
∆′

a
. ⋄

Etudions encore le signe de p(x) :

sgn(p(x)) = sgn(a) · sgn(x− x−) · sgn(x− x+) .

Tableau des signes pour (x− x−)(x− x+) :

x x− x+

x− x− − 0 + + +
x− x+ − − − 0 +

(x− x−)(x− x+) + 0 − 0 +

Ainsi,
— sgn(p(x)) = sgn(a) pour tout x ∈ ]−∞, x−[∪]x+,+∞[
— sgn(p(x)) = − sgn(a) pour tout x ∈]x−, x+[

• Cas ∆ = 0 : Dans ce cas,

p(x) = a

(
x+

b

2a

)2

.

Les deux racines de p(x) sont confondues,

x− = x+ = − b

2a
,

et la discussion du signe de p(x) est immédiate :

sgn(p(x)) = sgn(a) ∀x ∈ R \
{
− b

2a

}
.

• Cas ∆ < 0 : Dans ce cas, p(x) n’a pas de racine réelle, et

sgn(p(x)) = sgn(a) ∀x ∈ R .
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2.4. Équations et inéquations du deuxième degré

Remarque 2.32. La discussion du signe de p(x) est la même avec ∆′. ⋄
Remarque 2.33. Si x− et x+ sont deux racines (distinctes ou confondues) du trinôme p(x) =
ax2 + bx+ c, alors

x− + x+ = − b

a

x− · x+ =
c

a
.

On appelle ces dernières les formules de Viète. ⋄

2.4.2 Représentation graphique

Considérons le graphe de p, c’est-à-dire l’ensemble des points (x, y) du plan vérifiant y =
p(x) = ax2 + bx+ c :

Γ : {(x, y) ∈ R2 : x ∈ R, y = p(x)} .

Puisque l’on suppose a ̸= 0, on appelle Γ une parabole.

En utilisant la factorisation de p(x) obtenue plus haut,

y = a

(
x+

b

2a

)2

− ∆

4a
,

on conclut que Γ s’obtient à partir de la parabole élémentaire y = x2 par

1. translation horizontale (selon x) de − b
2a

2. amplification (multiplication) verticale par a

3. translation verticale (selon y) de −∆
4a

.

Ceci permet d’en déduire les propriétés suivantes :

1. Γ possède un axe de symétrie, vertical, d’équation x = − b
2a

.

2. Les coordonnées du sommet (xs, ys) de Γ sont

xs = − b

2a
ys = −∆

4a
.

3. Les intersections de Γ avec l’axe des x sont données par les racines (s’il y en a) de p(x).

4. Si a > 0 : Γ est tournée vers le haut (les branches infinies vont vers les y positifs) et
p(x) admet un minimum.
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2.4. Équations et inéquations du deuxième degré

5. Si a < 0 : Γ est tournée vers le bas (les branches infinies vont vers les y négatifs) et
p(x) admet un maximum.

Remarque 2.34. L’abscisse du sommet est bien la moyenne des racines :

xs =
x− + x+

2
=

−b/a

2
= − b

2a
.

⋄

2.4.3 Exemples avec paramètre

Exemple 2.35. Résoudre en x ∈ R l’inéquation suivante, en fonction du paramètre m ∈ R :

x2 − 1 ⩽ m(x− 1) ,

En regroupant et en factorisant, l’équation devient

(x− 1)(x+ 1)−m(x− 1) ⩽ 0 ⇔ (x− 1)(x+ 1−m) ⩽ 0 .

Les racines du trinôme sont 1 et m− 1.

• Si 1 < m− 1 ⇔ m > 2, S = [ 1 , m− 1 ] .
• Si 1 = m− 1 ⇔ m = 2, S = {1} .
• Si 1 > m− 1 ⇔ m < 2, S = [m− 1 , 1 ] .

En résumé,

S =


[m− 1 , 1 ] si m < 2

{1} si m = 2

[ 1 , m− 1 ] si m > 2 .

Si on interprète l’ensemble des solutions de x2 − 1 ⩽ m(x − 1) comme étant l’ensemble des
abscisses x pour lesquelles la parabole y = x2 − 1 est au-dessous de la droite y = m(x − 1),
on peut vérifier sur l’animation ci-dessous que notre ensemble solution est le bon :
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Animation disponible sur botafogo.saitis.net/analyse-A

⋄
Exemple 2.36. Soit p le trinôme

p(x) = kx2 − 2(k + 1)x+ 5− 1

k
.

Déterminer les valeurs du paramètre k ∈ R∗ pour lesquelles la parabole Γ (graphe de p) soit
située strictement sous l’axe Ox.

Pour que Γ soit entièrement sous Ox, il faut que p(x) < 0 pour tout x ∈ R. Cela signifie :
1. Pas d’intersection avec Ox : ∆ < 0

2. Γ tournée vers le bas : coefficient devant x2 négatif, k < 0.
Figure d’étude :

Regardons ce que ces conditions impliquent sur k. D’abord, si on tient compte de la présence
de k dans les coefficients du trinôme,

∆ = (−2(k + 1))2 − 4k(5− 1
k
)

= 4(k2 − 3k + 2)

= 4(k − 1)(k − 2)

Les valeurs de k qui garantissent ∆ < 0 (première condition ci-dessus) sont donc k ∈]1, 2[.
Ensuite, on a vu que la deuxième condition impose k < 0. Comme on ne doit garder que

les k qui satisfont aux deux conditions en même temps, k ∈]1, 2[ et k < 0. Comme ces deux
conditions sont incompatibles, on conclut qu’il n’y a aucun k qui satisfait à la condition
requise.

Effectivement, on vérifie sur l’animation ci-dessous qu’il n’y a pas de valeurs de k < 0 pour
lesquelles la parabole p(x) = kx2 − 2(k + 1)x+ 5− 1

k
est entièrement sous l’axe Ox :

NumChap: chap-algebre-elementaire, Dernière compilation: 2025-05-18 23:51:26+02:00. (Version Web:botafogo.saitis.net/analyse-A) 39

botafogo.saitis.net/analyse-A
botafogo.saitis.net/analyse-A


2.4. Équations et inéquations du deuxième degré

Animation disponible sur botafogo.saitis.net/analyse-A

(Il y a bien les valeurs de k ∈]1, 2[ pour lesquelles la parabole ne coupe pas Ox, mais ces
valeurs sont positives...) ⋄
Exemple 2.37. Soit p le trinôme

p(x) = mx2 −mx− (m+ 1) .

Déterminer les valeurs de m ∈ R∗ pour lesquelles p(x) possède deux racines distinctes x− et
x+ vérifiant x− < 1 < x+.

Figure d’étude : 1) la parabole doit doit couper Ox en deux points, et 2) x = 1 doit être entre
ces deux points :

Détaillons les deux conditions ci-dessus.

1. Pour couper Ox en deux points, il faut que ∆ > 0, où

∆ = (−m)2 + 4m(m+ 1)

= m(5m+ 4) .

Donc l’ensemble des valeurs de m qui satisfont à la première condition est

Sa =]−∞ , −4
5
[ ∪ ] 0 , +∞[

2. Pour que x = 1 se trouve entre les deux racines, il faut que le coefficient de x2 soit
opposé au signe de p(1), ou plus simplement que leur produit soit strictement négatif :
m · p(1) < 0. Comme p(1) = m − m − (m + 1) = −m − 1, la condition sur m est
donc −m(m + 1) < 0. Ainsi, l’ensemble des valeurs de m qui satisfont à la deuxième
condition est

Sb = ]−∞ , −1 [ ∪ ] 0 , +∞[
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2.5. Équations et inéquations avec valeur absolue

Ainsi, l’ensemble des valeurs de m qui satisfont aux deux conditions en même temps est

S = Sa ∩ Sb = ]−∞ , −1 [ ∪ ] 0 , +∞[ .

On peut vérifier le résultat sur l’animation ci-dessous :

Animation disponible sur botafogo.saitis.net/analyse-A

⋄

2.5 Équations et inéquations avec valeur absolue

Définition 2.38. Soit x ∈ R. La valeur absolue de x, notée |x|, est le réel positif ou nul

|x| =

{
x si x ⩾ 0

−x si x < 0 .

Exemples 2.39. • |3| = 3
• | − 7| = −(−7) = 7

⋄
Lorsque la valeur absolue contient une expression qui dépend d’une variable, on doit étu-
dier le signe de cette expression.

Exemple 2.40.

|x2 − 1| =

{
x2 − 1 si x2 − 1 ⩾ 0 ,

−(x2 − 1) si x2 − 1 < 0 ,

=

{
x2 − 1 si x ∈]−∞,−1] ∪ [1,+∞[ ,

−(x2 − 1) si x ∈]− 1, 1[ .

⋄
Le graphe de la fonction x 7→ |x| :
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Animation disponible sur botafogo.saitis.net/analyse-A

Propriété Soient x, y ∈ R. Alors

1. |x| ⩾ 0

2. |x| = 0 ⇔ x = 0

3. |x|2 = x2

4. |x| = | − x|

5. x = sgn(x) |x|, |x| = sgn(x)x

6. |x| = max(x,−x)

7. −|x| ⩽ x ⩽ |x|

8. |x+ y| ⩽ |x|+ |y| (inégalité triangulaire)

9. |xy| = |x| |y|.

2.5.1 L’équation |x| = a

Puisque |x| ⩾ 0 pour tout x ∈ R, l’équation |x| = a, a ∈ R, ne peut clairement pas avoir de so-
lution si a < 0. Ceci s’interprète graphiquement, en voyant que le graphe de |x| n’intersecte
pas une droite horizontale à hauteur a < 0 :
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Théorème 2.41. Soit a ∈ R. On a l’équivalence

|x| = a ⇔ a ⩾ 0 et


x = a

ou

x = −a .

Graphiquement, le graphe de |x| intersecte une droite horizontale en deux points lorsque
celle-ci est à hauteur a > 0 :

En résumé, l’ensemble solution S de l’équation |x| = a est donné par

1. S = {−a, a} si a ⩾ 0,
2. S = ∅ si a < 0.

2.5.2 L’inéquation |x| ⩽ a

Théorème 2.42. Soit a ∈ R. On a l’équivalence

|x| ⩽ a ⇔ −a ⩽ x ⩽ a ⇔


x ⩽ a

et

x ⩾ −a .

Si a < 0, alors il n’existe aucun x qui satisfait à la fois x ⩽ a < 0 et x ⩾ −a > 0. Il n’y a donc
pas besoin d’inclure de condition de positivité (“a ⩾ 0”) dans la résolution de l’inéquation.

En résumé, l’ensemble solution de l’inéquation |x| ⩽ a est
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1. S = [−a, a] si a ⩾ 0,
2. S = ∅ si a < 0.

2.5.3 L’inéquation |x| ⩾ a

L’équation |x| ⩾ a, a ∈ R, admet évidemment tout x ∈ R comme solution si a < 0, une
valeur absolue étant toujours plus grande qu’un nombre négatif. Il n’est donc pas nécessaire
de discuter le signe de a !

Théorème 2.43. Soit a ∈ R. On a l’équivalence

|x| ⩾ a ⇔


x ⩾ a

ou

x ⩽ −a .

Similairement à l’inéquation précédente, on constate qu’il n’y a pas besoin de discuter du
signe de a. En effet, a < 0 signifie que l’inéquation admet une infinité de solutions, puisque
dans ce cas

]−∞,−a] ∪ [a,+∞[= R .

En résumé, l’ensemble solution S de l’équation |x| ⩾ a est donné par
1. S =]−∞,−a] ∪ [a,+∞[ si a ⩾ 0,
2. S = R si a < 0.

2.5.4 Équations à valeurs absolues

L’équivalence vue plus haut,

|x| = a ⇔ a ⩾ 0 et


x = a

ou

x = −a .

peut se généraliser au cas où x et a deviennent des fonctions.

Soient f et g deux fonctions réelles. Pour x ∈ Ddéf,f ∩Ddéf,g = Ddéf, on a l’équivalence

|f(x)| = g(x) ⇔ g(x) ⩾ 0 et


f(x) = g(x)

ou

f(x) = −g(x) .
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Remarque 2.44. On ne discute que le signe de g(x) (condition de positivité), et pas celui de
f(x). On doit donc résoudre l’équation |f(x)| = g(x) sur Ddéf ∩Dpos, où

Dpos = {x ∈ Ddéf | g(x) ⩾ 0} .

⋄
Exemple 2.45. Résolvons, en x ∈ R, l’équation

|x2 + 2x− 5| = x+ 1 .

Sur Ddéf = R, l’équation |x2 + 2x− 5| = x+ 1 est équivalente à

x+ 1 ⩾ 0 et


x2 + 2x− 5 = x+ 1 (1)

ou

x2 + 2x− 5 = −(x+ 1) . (2)

La condition de positivité x+ 1 ⩾ 0 donne Dpos = [−1,+∞[.

1. Résolvons (1) sur Ddéf ∩Dpos = [−1,+∞[ :

x2 + x− 6 = 0 ⇔ (x+ 3)(x− 2) = 0 ,

d’où S1 = {2}. (On ne garde pas −3, car hors du domaine de positivité : −3 /∈
[−1,+∞[.)

2. Résolvons (2) sur Ddéf ∩Dpos :

x2 + 3x− 4 = 0 ⇔ (x+ 4)(x− 1) = 0 ,

d’où S2 = {1}. (On ne garde pas −4, car hors du domaine de positivité : −4 /∈
[−1,+∞[.)

En résumé, S = S1 ∪ S2 = {1, 2}. ⋄
Exemple 2.46. Résolvons en x ∈ R l’équation

|x− 3m+ 4| = x+m,

où le paramètre m ∈ R.
Sur Ddéf = R, la condition de positivité est

Dpos = {x |x+m ⩾ 0} = [−m,+∞[ ,

ce qui donne Ddéf ∩Dpos = [−m,+∞[.

Ensuite, sur Ddéf ∩Dpos, on résout |x− 3m+ 4| = x+m, qui s’exprime par
x− 3m+ 4 = x+m (1)

ou

x− 3m+ 4 = −x−m. (2)

1. Résolvons (1) sur Ddéf ∩Dpos :

x− 3m+ 4 = x+m ⇔ 0 · x = 4(m− 1)

On discute les cas :
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• Si m = 1 alors l’équation devient 0 · x = 0, qui est satisfaite pour tout x ∈ R, donc
en ne gardant que ce qui est dans Ddéf ∩Dpos, on obtient S1 = [−1,+∞[.

• Si m ̸= 1 alors l’équation devient

0 · x = 4(m− 1)︸ ︷︷ ︸
̸=0

,

qui n’a aucune solution, et donc S1 = ∅.

2. Résolvons ensuite (2) sur Ddéf ∩Dpos,

x− 3m+ 4 = −x−m ⇔ x = (m− 2) ,

dont la solution est x = m − 2. Mais on ne veut garder cette solution que si elle
appartient à Ddéf ∩Dpos, c’est-à-dire si

m− 2 ∈ [−m,+∞[ ⇔ m− 2 ⩾ −m

⇔ m ⩾ 1 .

On a donc :
• Si m ⩾ 1, alors S2 = {m− 2}.
• Si m < 1, alors S2 = ∅.

Finalement on résume la discussion en prenant l’ensemble solution S = S1 ∪ S2 en fonction
de m :

S =


∅ si m < 1 ,

[−1,+∞[ si m = 1 ,

{m− 2} si m > 1 .

On observe ces solutions sur l’animation ci-dessous. En bleu, l’ensemble des solutions x ∈ S,
donnant l’ensemble des points où le graphe de |x−m+ 4| coupe la droite x+m :

Animation disponible sur botafogo.saitis.net/analyse-A

⋄
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2.5.5 Inéquations |f(x)| ⩽ g(x)

On va ensuite généraliser l’inéquation

|x| ⩽ a ⇔


x ⩽ a

et

x ⩾ −a

au cas où x et a sont remplacés par des fonctions de x.

Soient f et g deux fonctions réelles. Pour x ∈ Ddéf,f ∩Ddéf,g = Ddéf, on a l’équivalence

|f(x)| ⩽ g(x) ⇔


f(x) ⩽ g(x)

et

f(x) ⩾ −g(x) .

Comme déjà expliqué, il n’est pas nécessaire de discuter du signe de g(x).
Remarque 2.47. L’équivalence reste vraie en remplaçant les inégalités larges par les inégali-
tés strictes. ⋄
Exemple 2.48. Résolvons, en x ∈ R, l’inéquation

|x|+ x− 1

2
< 0 .

Sur Ddéf = R,

|x| < −x− 1

2
⇔


x < −x−1

2
(1)

et

x > x−1
2

. (2)

1. Résolvons (1) sur Ddéf : 3x < 1 et donc S1 =]−∞, 1
3
[.

2. Résolvons (2) sur Ddéf : x > −1, et donc S2 =]− 1,+∞[.

En conclusion,
S = S1 ∩ S2 =]− 1, 1

3
[ .

⋄
Exemple 2.49. Résolvons, en x ∈ R, l’inéquation

|x−m| − 1 < 2x ,

où le paramètre m ∈ R.

Sur Ddéf = R,

|x−m| < 2x+ 1 ⇔


x−m < 2x+ 1 (1)

et

x−m > −2x− 1 . (2)

1. Résolvons (1) sur Ddéf : −m− 1 < x, d’où S1 =]−m− 1,+∞ [.

2. Résolvons (2) sur Ddéf : 3x > m− 1, d’où S2 =
]
m−1
3

,+∞
[
.
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Pour pouvoir conclure, il faut calculer S = S1 ∩ S2. Or cette intersection va dépendre de m,
et pour le comprendre, il faut quel intervalles, S1 ou S2, a son extrémité gauche plus petite
que celle de l’autre. On peut donc par exemple regarder quand S2 a son extrémité gauche
inférieure à celle de S1 :

−m− 1 ⩾
m− 1

3
⇔ m ⩽ −1

2
.

On peut donc conclure que
• si m ⩽ −1

2
, alors S = S1 ∩ S2 = S1 =]−m− 1,+∞ [,

• si m > −1
2
, alors S = S1 ∩ S2 = S2 =

]
m−1
3

,+∞
[
.

Graphiquement, l’animation ci-dessous permet de vérifier que l’ensemble S décrit bien les
points pour lesquels le graphe de y = |x−m| − 1 est au-dessous de la droite y = 2x :

Animation disponible sur botafogo.saitis.net/analyse-A

⋄

2.5.6 Inéquations |f(x)| ⩾ g(x)

On va ensuite généraliser l’inéquation

|x| ⩾ a ⇔


x ⩾ a

ou

x ⩽ −a

au cas où x et a sont remplacés par des fonctions de x.

Soient f et g deux fonctions réelles. Pour x ∈ Ddéf,f ∩Ddéf,g = Ddéf, on a l’équivalence

|f(x)| ⩾ g(x) ⇔


f(x) ⩾ g(x)

ou

f(x) ⩽ −g(x) .

Remarque 2.50. L’équivalence reste vraie en remplaçant les inégalités larges par les inégali-
tés strictes. ⋄

48 NumChap: chap-algebre-elementaire, Dernière compilation: 2025-05-18 23:51:26+02:00. (Version Web:botafogo.saitis.net/analyse-A)

botafogo.saitis.net/analyse-A
botafogo.saitis.net/analyse-A


2.6. Équations et inéquations avec racines

Exemple 2.51. Résolvons, en x ∈ R, l’inéquation

|x− 2| > 2x− 4

x
.

Sur Ddéf = R∗, on a

|x− 2| > 2x− 4

x
⇐⇒


x− 2 > 2x−4

x
(1)

ou

x− 2 < −2x−4
x

. (2)

1. Résolvons (1) sur Ddéf :

x− 2− 2x− 4

x
> 0 ⇐⇒ (x− 2)2

x
> 0 ,

d’où S1 = R∗
+ \ {2}.

2. Résolvons (2) sur Ddéf :

x− 2 +
2x− 4

x
< 0 ⇐⇒ (x− 2)(x+ 2)

x
< 0

Tableau des signes :

x −2 0 2
x− 2 − 0 + + + + +
x+ 2 − − − − − 0 +
x − − − 0 + + +

(x− 2)(x+ 2)/x − 0 + ∥ − 0 +

D’où S2 = ]−∞, −2 [∪ ] 0 , 2 [.
On a ainsi comme ensemble solution :

S = S1 ∪ S2 =]−∞,−2[∪]0, 2[∪]2,+∞[ .

⋄

2.6 Équations et inéquations avec racines

2.6.1 Racines positives (ou arithmétiques)

Définition 2.52. Soient a ∈ R+ et n ∈ N∗. Le réel positif x vérifiant

xn = a

est appelé racine nème positive de a. Il est noté x = n
√
a.
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2.6. Équations et inéquations avec racines

La racine 2ème, appelée racine carrée, est notée
√
a (au lieu de 2

√
a).

Exemple 2.53. • 4 est racine cubique de 64, puisque 43 = 64, donc 3
√
64 = 4,

•
√
9 = 3,

•
√
−4 n’est pas défini.

⋄

Propriété Soient a, b ∈ R+, m,n ∈ N∗.

1. ( n
√
a)

n
= a.

2. n
√
am = ( n

√
a)

m.

3. n
√
ab = n

√
a n
√
b.

4. m
√

n
√
a = mn

√
a.

Démonstration. 1. est juste une reformulation de la définition. Les autres propriétés découlent
des propriétés des puissances entières.

• Si on pose x = ( n
√
a)m, alors

xn =
(
( n
√
a)m
)n

=
(

n
√
a
)mn

=
(
( n
√
a)n
)m

= am ,

ce qui signifie bien que x = n
√
am.

• Si on pose x = n
√
a n
√
b, alors

xn =
(

n
√
a

n
√
b
)n

=
(

n
√
a
)n ( n

√
b
)n

= ab ,

ce qui signifie bien que x = n
√
ab.

• Si on pose x = m
√

n
√
a, alors

xmn =

(
m

√
n
√
a

)mn

=

(
(

m

√
n
√
a)m
)n

= ( n
√
a)n = a ,

ce qui signifie bien que x = mn
√
a.

Remarque 2.54. Les propriétés usuelles des puissances restent valables en posant

q
√
ap = a

p
q a ∈ R∗

+, p ∈ Z, q ∈ N∗ .

⋄
Exemple 2.55. 7−

2
3 =

1
3
√
72
,
√
3x2 = |x|

√
3 . ⋄

2.6.2 Racines réelles
Définition 2.56. Soient a ∈ R et n ∈ N∗. Un nombre x ∈ R est une racine ne réelle de a si x
vérifie xn = a.

Exemples 2.57. • 2 et −2 sont racines carrées réelles de 4,
• −3 est racine cubique réelle de −27.

⋄
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2.6. Équations et inéquations avec racines

Discussion graphique des solutions en x à l’équation xn = a.
• n pair

Le graphe admet Oy comme axe de symétrie, et les solutions de l’équation xn = a
sont
— si a > 0 : 2 racines distinctes,

S = {− n
√
a, n

√
a}

— si a = 0 : racine double, S = {0}
— si a < 0 : pas de racine, S = ∅

• n impair

Le graphe admet l’origine (0, 0) comme centre de symétrie, et quel que soit a ∈ R, la
solution de xn = a est toujours unique : S = { n

√
a}.

Dans le cas d’une puissance impaire, on peut donc étendre la racine nème aux réels négatifs :

Définition 2.58. Si a ∈ R− et n ∈ N∗ est impair, on définit n
√
a := − n

√
−a.

Cette dernière donne bien la racine nème négative de a, puisque(
− n
√
−a
)n

= − n
√
−a

n
= −(−a) = a .

Exemples 2.59. • x4 = 16 admet 2 racines réelles x1 =
4
√
16 = 2 et x2 = − 4

√
16 = −2

• x3 + 8 = 0 admet l’unique solution x = 3
√
−8 = −2.

⋄
Conséquences :
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2.6. Équations et inéquations avec racines

• Soit a ∈ R∗. Alors
n
√
an =

{
a si n impair,
|a| si n pair.

En particulier, √
a2 = |a| ∀a ∈ R

• Si n est pair, et si a et b ont le même signe, alors

a = b ⇐⇒ an = bn

Si n est pair, et si a et b sont positifs, alors

a < b ⇐⇒ an < bn

• Si n impair, alors pour tout a, b ∈ R, on a

a = b ⇐⇒ an = bn,

a < b ⇐⇒ an < bn .

En particulier, et sera utilisé pour résoudre des équations à racines carrées :

a2 = b2 ⇔ a = b si et seulement si a et b sont de même signes

et
a2 < b2 ⇔ a < b si et seulement si a et b sont positifs ou nuls.

2.6.3 Equations avec racine carrée

Commençons par considérer une équation du type√
f(x) = g(x) , x ∈ Ddéf .

La racine carrée étant définie seulement sur les positifs, on a

Ddéf = {x ∈ R | f(x) et g(x) sont définis, et f(x) ⩾ 0} .

Pour résoudre l’équation, on aimerait « élever au carré »pour ne plus avoir de racine. Mais
puisque l’équivalence √

f(x) = g(x) ⇔
√

f(x)
2
= g(x)2

n’est vraie que si
√
f(x) et g(x) sont de même signes, et puisque

√
f(x), lorsqu’il est bien

défini, est toujours positif, on doit donc introduire une condition de positivité :

Dpos = {x ∈ R | g(x) ⩾ 0} .

On a donc :

Théorème 2.60. Soient f et g deux fonctions réelles. Pour x ∈ Ddéf, on a l’équivalence√
f(x) = g(x) ⇐⇒ g(x) ⩾ 0 et f(x) = g2(x) .
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2.6. Équations et inéquations avec racines

Exemple 2.61. Résolvons l’équation
√
x2 − 3x+ 6 = 4x− 6 .

Comme le discriminant de x2 − 3x+6 est ∆ = −15 < 0 et comme le coefficient devant x2 est
1 (strictement positif), on a que

Ddéf = {x ∈ R |x2 − 3x+ 6 ⩾ 0} = R .

Ecrivons la condition de positivité : 4x− 6 ⩾ 0 ⇔ x ⩾ 3
2
, d’où

Dpos =
[
3
2
,+∞

[
.

Sous la condition de positivité, on peut élever les deux membres au carré. Sur Dpos ∩ Ddéf,
l’équation de départ est donc équivalente à

x2 − 3x+ 6 = (4x− 6)2

= 16x2 − 48x+ 36

En regroupant les termes de mêmes degrés, celle-ci devient

15x2 − 45x+ 30 = 0 ⇔ x2 − 3x+ 2 = 0

⇔ (x− 1)(x− 2) = 0

⇔ x = 1 ou x = 2 .

Comme 1 ̸∈ Dpos, on conclut : S = {2}.

Remarquons qu’en effet, x = 1 n’est pas solution puisque
√
12 − 3 · 1 + 6︸ ︷︷ ︸

=2

̸= 4 · 1− 6︸ ︷︷ ︸
=−2

⋄
Exemple 2.62. Résolvons l’équation

√
x+m2 = x+m,

en fonction du paramètre réel m.

D’abord,
Ddéf = {x ∈ R |x+m2 ⩾ 0} =

[
−m2,+∞

[
,

et
Dpos = {x ∈ R |x+m ⩾ 0} = [−m,+∞[ .

Sur Ddéf ∩Dpos, l’équation de départ est équivalente à

x+m2 = (x+m)2

= x2 + 2mx+m2

Si on regroupe les termes de mêmes degrés,

x2 + (2m− 1)x = 0 ⇔ x(x+ 2m− 1) = 0

⇔ x = 0 ou x = 1− 2m

Voyons maintenant, en fonction de m, si ces nombres sont effectivement solutions de l’équa-
tion, c’est-à-dire appartiennent à Ddéf ∩Dpos. Pour la première,
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2.6. Équations et inéquations avec racines

• 0 ∈ Ddéf ⇐⇒ 0 ⩾ −m2 ⇐⇒ m ∈ R.
• 0 ∈ Dpos ⇐⇒ 0 ⩾ −m ⇐⇒ m ⩾ 0.

Donc 0 est solution si et seulement si m ⩾ 0.
• 1− 2m ∈ Ddéf ⇐⇒ 1− 2m ⩾ −m2 ⇐⇒ (1−m)2 ⩾ 0 ⇐⇒ m ∈ R.
• 1− 2m ∈ Dpos ⇐⇒ 1− 2m ⩾ −m ⇐⇒ m ⩽ 1.

Donc 1− 2m est solution si et seulement si m ⩽ 1.

En résumé,

S =


{1− 2m} si m < 0 ,

{0, 1− 2m} si m ∈ [0, 1] ,

{0} si m > 1 .

On observe la dépendance de S sur l’animation ci-dessous, en regardant où la courbe y =√
x+m2 coupe la droite y = x+m, en fonction de m :

Animation disponible sur botafogo.saitis.net/analyse-A

⋄

2.6.4 Inéquations avec racine carrée

Tout comme dans une équation, on cherchera dans une inéquation contenant une racine
carrée à « élever au carré »pour se débarrasser de la racine. Il convient cependant de prendre
quelques précautions, l’équivalence a ⩽ b ⇔ a2 ⩽ b2 n’étant vraie que pour a, b ⩾ 0. Le
domaine de définition est le même que dans le cas des équations.

Théorème 2.63. Soient f et g deux fonctions réelles. Pour x ∈ Ddéf, on a les équivalences√
f(x) ⩽ g(x) ⇐⇒ g(x) ⩾ 0 et f(x) ⩽ g2(x) ,√
f(x) < g(x) ⇐⇒ g(x) ⩾ 0 et f(x) < g2(x) .

En effet, dans le premier cas, si g(x) < 0, l’inéquation ne peut avoir de solution puisque√
f(x) est toujours positif. Ainsi, si la condition de positivité g(x) ⩾ 0 est satisfaite, les

deux membres de l’inéquation sont positifs et la mise au carré conduit au même ensemble
solution.
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2.6. Équations et inéquations avec racines

Exemple 2.64. Résolvons √
6− x ⩽ 3 + 2x .

D’abord, Ddéf = {x ∈ R | 6− x ⩾ 0} =]−∞, 6]. On a donc, sur Ddéf, l’équivalence

√
6− x ⩽ 3 + 2x ⇐⇒ 3 + 2x ⩾ 0, et 6− x ⩽ (3 + 2x)2 .

La condition de positivité x ⩾ −3
2

donne Dpos = [−3
2
,+∞[. Sur Dpos ∩Ddéf = [−3

2
, 6], on peut

maintenant résoudre

6− x ⩽ 9 + 12x+ 4x2 ⇔ 4x2 + 13x+ 3 ⩾ 0

⇔ (4x+ 1)(x+ 3) ⩾ 0

⇔ x ∈]−∞,−3] ∪ [−1
4
,+∞[ .

En ne gardant que les éléments qui sont dans Dpos ∩Ddéf = [−3
2
, 6], on a donc : S =

[
−1

4
, 6
]
.
⋄

Théorème 2.65. Soient f et g deux fonctions réelles. Pour x ∈ Ddéf„ on a les équivalences

√
f(x) ⩾ g(x) ⇐⇒


g(x) < 0

ou

g(x) ⩾ 0 et f(x) ⩾ g2(x)

√
f(x) > g(x) ⇐⇒


g(x) < 0

ou

g(x) ⩾ 0 et f(x) > g2(x)
.

En effet, si x est tel que g(x) < 0, alors l’inéquation est vérifiée puisque
√

f(x) ⩾ 0. C’est
donc une partie de la solution. D’un autre côté, pour les x tels que g(x) ⩾ 0 les deux membres
de l’inéquation sont positifs et la mise au carré conduit au même ensemble solution, sous la
restriction g(x) ⩾ 0. C’est l’autre partie de la solution.
Exemple 2.66. Résolvons l’inéquation

√
−x2 − x+ 6 ⩾ x+ 1 .

D’abord,
Ddéf = {x ∈ R | − x2 − x+ 6 ⩾ 0} = [−3, 2] .

Sur Ddéf, on a
√
−x2 − x+ 6 ⩾ x+ 1

⇐⇒


x+ 1 < 0 (1)

ou

x+ 1 ⩾ 0 et − x2 − x+ 6 ⩾ (x+ 1)2 . (2)

Les solutions de (1) sont x < −1, et en ne gardant que celles dans Ddéf, on obtient S1 =
[−3, −1 [.
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2.6. Équations et inéquations avec racines

Pour résoudre (2), on peut inclure la condition de positivité, x ⩾ −1 dans Dpos = [−1,+∞[,
puis résoudre

−x2 − x+ 6 ⩾ x2 + 2x+ 1 ⇔ 2x2 + 3x− 5 ⩽ 0

⇔ (2x+ 5)(x− 1) ⩽ 0

⇔ x ∈ [−5
2
, 1]

Ainsi, en ne gardant que les x qui sont aussi dans Ddéf ∩Dpos = [−1, 2], on a S2 = [−1, 1].

Pour conclure : S = S1 ∪ S2 = [−3, 1].

⋄
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